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Abstract. We give sufficient conditions on a domain Ω so that the
associated canonical model is reflexive. Also, we discuss a class of shifts
that are reflexive, and the operator Mz of multiplication by z on a
Banach space of functions analytic on a domain is shown to be reflexive
whenever Mz is polynomially bounded.
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1. Introduction

In this section we include some preparatory material which will be
needed later. By a domain we understand a connected open subset of
the plane. If Ω is a bounded domain in the plane, then the Carathéodory
hull (or C-hull) of Ω is the complement of the closure of the unbounded
component of the complement of the closure of Ω. The C-hull of Ω is de-
noted by Ω∗. Intuitively, Ω∗ can be described as the interior of the outer
boundary of Ω, and in analytic terms it can be defined as the interior of
the set of all points z0 in the plane such that |p(z0)| 6 sup{|p(z)| : z ∈ Ω}
for all polynomials p. The components of Ω∗ are simply connected; in
fact, one can easily see that each of these components has a connected
complement. The component of Ω∗ that contains Ω is denoted by Ω1.
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Note that for all polynomials p, ‖p‖Ω = ‖p‖Ω1 . The domain Ω is called
a Carathéodory domain if Ω∗ = Ω. In this case the Farrell-Rubel-Shields
Theorem holds: let f be a bounded analytic function on Ω. Then there
is a sequence {pn} of polynomials such that ||pn||Ω 6 c for a constant c

and pn(z) → f(z) for all z ∈ Ω ([9, theorem 5.1, p.151]).
Now let X be a reflexive Banach space. For the algebra B(X) of all

bounded operators on the Banach space X, the weak operator topology
is the one in which a net Aα converges to A if Aαx → Ax weakly, x ∈ X.
Recall that if A ∈ B(X), then Lat(A) is by definition the lattice of all
invariant subspaces of A, and AlgLat(A) is the algebra of all operators
B in B(X) such that Lat(A) ⊂ Lat(B). An operator A in B(X) is
said to be reflexive if AlgLat(A) = W (A), where W (A) is the smallest
subalgebra of B(X) that contains A and the identity I and is closed in
the weak operator topology.

The operator Mz has been the focus of attention for several decades
and many of its properties have been studied ([2]). In [12] Sarason
proved that normal operators are reflexive. It was shown by J. Deddens
([6]) that every isometry is reflexive. Also, R. Olin and J. Thomson
([10]) have shown that subnormal operators are reflexive. H. Bercovici,
C. Foias, J. Langsam, and C. Pearcy ([1]) have shown that (BCP)-
operators are reflexive. The reflexive operators on a finite dimensional
space were characterized by J. Deddens and P. A. Fillmore ([7]). Re-
flexivity of certain bilateral weighted shift are also studied in [24, 27].
In [18] we investigated some sufficient conditions for the reflexivity of
multiplication operators on Dirichlet spaces. Also, in [28] we study the
reflexivity of canonical models associated with generalized Bergman ker-
nel. For some sources of reflexivity see [11, 14, 15, 25, 31].

2. Conditions for the Reflexivity of Canonical Model

For a connected open subset Ω of the plane and n a positive integer, let
Bn(Ω) be the Cowen-Douglas class of operators. In this article we show
that if Ω is an arbitrary domain and T ∈ Bn(Ω), then under sufficient
conditions T is reflexive.

For a connected open subset Ω of the plane and n a positive integer,
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let Bn(Ω) denote the operators T defined on the Hilbert space H which
satisfy

(a) Ω ⊆ σ(T ),
(b) ran(T − λ) = H for λ in Ω,
(c)

∨
λ∈Ω

ker(T − λ) = H, and

(d) dimker(T − λ) = n for λ in Ω.

The spaces Bn(Ω) has been introduced by Cowen and Douglas ([3]).
It is shown in [5] that every operator in the class Bn(Ω) is unitarily equiv-
alent to the adjoint of the canonical model associated with a generalized
Bergman kernel (g.B.k. for brevity) K. Actually K is the reproducing
kernel for a coanalytic functional Hilbert space K on which we can define
the operator Tz̄ of multiplication by z̄. The operator T = T ∗̄z acting on
K is called the canonical model associated with K. We know that for
every λ in Ω, T − λ is onto,

ker(T − λ) = ranK(λ, ·) = {K(λ, ·)ξ : ξ ∈ Cn},

and dimker(T − λ) = n. For a detailed treatment of the subject of
Cowen-Douglas classes see [3,5,29,33].

From now on T = T ∗̄z ∈ Bn(Ω)∩B(K). Indeed T is a canonical model
associated with a g.B.k. K for a coanalytic functional Hilbert space K.
In this section we give some sufficient conditions so that the associated
canonical model is reflexive. This answers the question 5.6 in [13, p.98].

Lemma 2.1. Let K be a g.B.k. on Ω. If X ∈ AlgLat(T ), then there
exists a function ψ ∈ H∞(Ω) such that XK(λ, ·) = ψ(λ)K(λ, ·) for all
λ in Ω.

Proof. Let X ∈ AlgLat(T ). Then every invariant subspace of T is in-
variant under X too. In particular, the one-dimensional span of K(λ, ·)ξ
is invariant under X. Hence

XK(λ, ·)ξ = ψ(λ, ξ)K(λ, ·)ξ, ψ(λ, ψ) ∈ C. (1)

We shall show that ψ does not depend on ξ and that it is analytic on Ω.
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To show that ψ is independent of ξ, let u and v be two distinct
nonzero vectors in Cn. First, suppose u is not a multiple of v. In (1)
replace ξ by u and v and add the two equations to get

XK(λ, ·)(u + v) = ψ(λ, u)K(λ, ·)u + ψ(λ, v)K(λ, ·)v. (2)

Again, replacing ξ by u + v in (1) gives us

XK(λ, ·)(u + v) = ψ(λ, u + v)K(λ, ·)(u + v). (3)

Subtract (3) from (2) to get

ψ(λ, u)K(λ, ·)u + ψ(λ, v)K(λ, ·)v = ψ(λ, u + v)K(λ, ·)(u + v).

Since K(λ, λ) is invertible we have ψ(λ, u)+ψ(λ, v)v = ψ(λ, u+v)(u+v).
Hence

(ψ(λ, u)− ψ(λ, u + v))u = (ψ(λ, u + v)− ψ(λ, v))v.

Since u is not a multiple of v we get ψ(λ, u) = ψ(λ, v) = ψ(λ, u + v).
Now let v = cu where c is a nonzero constant. In (1) replace ξ by u

and then multiply the resulting equation by c to get

XK(λ, ·)v = ψ(λ, u)K(λ, ·)v.

Again, replace ξ by v in (1) to get

XK(λ, ·)v = ψ(λ, v)K(λ, ·)v.

Comparing the two equations and using the fact that K(λ, λ) is invert-
ible we arrive at ψ(λ, u) = ψ(λ, v).

The preceding argument shows that XK(λ, ·) = ψ(λ)K(λ, ·). Writ-
ing

XK(λ, ·)−XK(λ0, ·) = (ψ(λ)−ψ(λ0))K(λ, ·)+ψ(λ0)(K(λ, ·)−K(λ0, ·)),

then dividing by λ−λ0 and taking the limit shows that ψ is analytic on
Ω. We also have

|ψ(λ)|‖K(λ, ·)ξ‖ = ‖XK(λ, ·)ξ‖ 6 ‖X‖‖K(λ, ·)ξ‖.
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So |ψ(λ)| 6 ‖X‖ for all λ in Ω and therefore ψ ∈ H∞(Ω). This completes
the proof. ¤

Corollary 2.2. Let K be a g.B.k. on Ω. Then Alglat(T ) ⊆ {T}′. Also
if W (T ) = {T}′, then T is reflexive.

Corollary 2.3. If T ∈ B1(Ω) and T ∗ is an injective unilateral weighted
shift, then T is reflexive.

Note that a compact subset F of the plane is a spectral set for a
bounded operator A if F contains σ(A) and ‖f(A)‖ 6 sup

z∈F
|f(z)| for all

rational functions f with poles off F .

Theorem 2.4.([8]) Let K be a g.B.k. on a domain Ω such that any
sequence of polynomials in T that converges on a dense subset of K is
bounded. Then T is reflexive.
By σ(T ), we mean the spectrum of T .

Corollary 2.5. Let K be a g.B.k. on a Caratheodory region Ω such
that σ(T ) = Ω is a spectral set for T . Then T is reflexive.

Proof. Let X ∈ AlgLat(T ). Then XK(λ, .) = ψ(λ)K(λ, .) for some
function ψ ∈ H∞(Ω). Since Ω is a Caratheodory region, there is a uni-
formly bounded sequence {pn}n of polynomials converging pointwise to
ψ. Also {pn(T )g}n converges for all g in a dense subset of K. Since
σ(T ) = Ω is a spectral set, {pn(T )}n is bounded and so by the Theorem
the proof is complete. ¤

Corollary 2.6. If T is a contraction in Bn(U) where U is the open unit
disc, then T is reflexive.

3. Certain Weighted Shifts are Reflexive

In this section we give sufficient conditions for reflexivity of the multi-
plication operator by the independent variable z, Mz, acting on Banach
spaces of formal series. This work presents sufficient conditions to a
problem considered by A. L. Shields.

Let β = {β(n)}∞n=−∞ be a sequence of positive numbers satisfying



32 B. YOUSEFI

β(0) = 1. If 1 6 p < ∞, the space Lp(β) consists of all formal Lau-

rent series f(z) =
∞∑

n=−∞
f̂(n)zn such that the norm ‖f‖p = ‖f‖p

β =
∑∞

n=−∞ |f̂(n)|pβ(n)p is finite. When n just runs over N∪{0}, the space

Lp(β) only contains formal power series f(z) =
∞∑

n=0
f̂(n)zn and it is usu-

ally denoted by Hp(β). If p = 2, such spaces were introduced by Allen
L. Shields [17] to study weighted shift operators. Let f̂k(n) = δk(n).
So fk(z) = zk and then {fk}k∈Z is a basis for Lp(β) such that ‖fk‖ =
β(k). Now consider Mz, the operator of multiplication by z on Lp(β):

(Mzf)(z) =
∑∞

n=−∞ f̂(n)zn+1 where f(z) =
∞∑

n=−∞
f̂(n)zn ∈ Lp(β). In

other words (Mzf)(̂n) = f̂(n − 1) for all n ∈ Z. Clearly Mz shifts the
basis {fk}k. The operator Mz is bounded if and only if {β(k+1)/β(k)}k

is bounded and in this case ‖Mn
z ‖ = supk[β(k + n)/β(k)] for all

n ∈ N ∪ {0}. Clearly Mz is invertible if and only if β(k)/β(k + 1) is
bounded.

We denote the set of multipliers {ϕ ∈ Lp(β) : ϕLp(β) ⊆ Lp(β)} by
Lp∞(β) and the linear operator of multiplication by ϕ on Lp(β) by Mϕ.
Also the set of multipliers on Hp(β) is denoted by Hp∞(β).

We say that a complex number λ is a bounded point evaluation on
Lp(β) if the functional e(λ) : Lp(β) −→ C defined by e(λ)(f) = f(λ) is
bounded.

By the same method used in [19] we can see that Lp(β)∗ = Lq(β
p
q ),

where 1
p + 1

q = 1. Also if f(z) =
∑
n

f̂(n)zn ∈ Lp(β) and g(z) =
∑
n

ĝ(n)zn ∈ Lq(β
p
q ), then clearly < f, g >=

∑
n f̂(n)ĝ(n)β(n)p. For

a good source in formal power series, we refer the reader to [4, 17, 19–
23, 26].

First we note that the multiplication operator Mz on Lp(β)(Hp(β)) is
unitarily equivalent to an injective bilateral (unilateral) weighted shift
and conversely, every injective bilateral (unilateral) weighted shift is
unitarily equivalent to Mz acting on Lp(β)(Hp(β)) for a suitable choice
of β (the proof is similar to the case p=2 in [17]).

This work presents sufficient conditions to a problem that has been
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posed by A. L. Shields.

Question 3.1. Which shifts are reflexive?
We use the following notations:

r01 = limβ(−n)
−1
n , Ω01 = {z ∈ C : |z| > r01}

r11 = limβ(n)
1
n , Ω11 = {z ∈ C : |z| < r11}

r12 = r(M−1
z )−1 , Ω12 = {z ∈ C : |z| > r12}

r22 = r(Mz) , Ω22 = {z ∈ C : |z| < r22}
r23 = ‖M−1

z ‖−1 , Ω23 = {z ∈ C : |z| > r23}
r33 = ‖Mz‖ , Ω33 = {z ∈ C : |z| < r33}
Ω1 = Ω01 ∩ Ω11 = {z ∈ C : r01 < |z| < r11}
Ω2 = Ω12 ∩ Ω22 = {z ∈ C : r12 < |z| < r22}
Ω3 = Ω23 ∩ Ω33 = {z ∈ C : r23 < |z| < r33}.

If r01 < r11, the same method used for formal power series in [6] yields
that each point of Ω1 is a bounded point evaluation on Lp(β).

Theorem 3.2. Let Mz be invertible on Lp(β) and r01 < r11. If there
exists c > 0 such that ‖Ms‖ 6 c‖s‖Ω1 for all Laurent polynomials s, then
Mz is reflexive.

Proof. Let A ∈ AlgLat(Mz). Then Lat(Mz) ⊂ Lat(A). By the same
method used in the proof of Theorem 1 in [21] we can see that each point
of Ω1 is a bounded point evaluation on Lp(β). Since M∗

z e(λ) = λe(λ)
for all λ in Ω1, the one dimensional span of e(λ) is invariant under M∗

z .
Therefore it is invariant under A∗ and we write A∗e(λ) = ϕ(λ)e(λ), λ ∈
Ω1. So

< Af, e(λ) >=< f, A∗e(λ) >= ϕ(λ)f(λ)

for all f ∈ Lp(β) and λ ∈ Ω1. This implies that A = Mϕ and ϕ ∈ Lp∞(β).
Now since ϕ ∈ Lp∞(β) ⊂ H∞(Ω1), by the same Lemma in [17, p.81] we
can write ϕ(z) =

∑∞
n=−∞ ϕ̂(n)zn = ϕ1(z) + ϕ2(z) where

ϕ1(z) =
∞∑

n=0

ϕ̂1(n)zn ∈ H∞(Ω11),

ϕ2(z) =
−1∑

n=−∞
ϕ̂2(n)zn ∈ H∞(Ω01).
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Since Ω11 is a Caratheodory domain, by the Farrell-Rubel-Shields The-
orem, there exists a uniformly bounded sequence {sn}n of polynomials
converging pointwise to ϕ1. By the assumption we have ‖sn(Mz)‖ =
‖Msn‖ 6 c‖sn‖Ω1 for all n. Passing to a subsequence, if necessary, we
may assume that sn(Mz) −→ X in the weak operator topology for some
operator X. Now since every point in Ω1 is a bounded point evaluation,
we conclude that

M∗
sn

e(λ) = sn(λ)e(λ) −→ ϕ1(λ)e(λ) = M∗
ϕ1

e(λ)

for every λ ∈ Ω1. On the other hand M∗
sn

e(λ) −→ X∗e(λ) weakly.
Therefore X∗e(λ) = M∗

ϕ1
e(λ). Since the linear span of {e(λ) : λ ∈ Ω1}

is dense in Lp(β)∗ we conclude that Mϕ1 = X ∈ W (Mz). If we show that
ϕ2 ≡ c, a constant, then A = Mϕ = Mϕ1 + cI ∈ W (Mz) and the proof
is complete. To see this, note that Lp(β) ∈ Lat(Mz), so Lp(β) ∈ Lat(A)
and also Lp(β) ∈ Lat(Mϕ1). Hence ϕ2 = ϕ− ϕ1 = A1−Mϕ11 ∈ Lp(β).
If ϕ2 6= c, then ϕ̂2(k) 6= 0 for some k < 0. Since ϕ2 ∈ H∞(Ω01), there
is a sequence of polynomials in 1

z , {sn(1
z )}n, uniformly bounded on Ω01

and converging pointwise to ϕ2(z). Therefore sn(M−1
z ) −→ Mϕ2 in the

weak operator topology. To see this note that

M∗
sn( 1

z
)
e(λ) = sn(

1
λ

)e(λ) −→ ϕ2(λ)e(λ) = M∗
ϕ2

e(λ).

Hence M∗
sn( 1

z
)
f −→ M∗

ϕ2
f for every f in the linear span of {e(λ) : λ ∈

Ω01} that is dense in Lq(β
p
q ). But ϕ2 ∈ Lp∞(β), thus by using the

assumption we get

‖Msn( 1
z
)‖ 6 c‖sn(

1
z
)‖Ω01 .

Therefore {Msn( 1
z
)}n is uniformly bounded and hence

M∗
sn( 1

z
)
f −→ M∗

ϕ2
f

for every f ∈ Lp(β). We have actually shown that

sn(M−1
z ) −→ Mϕ2
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in the strong operator topology. Therefore

< sn(M−1
z )1, fk >−→< Mϕ21, fk >

where fk(z) = zk. That is sn(1
z )̂(k) −→ ϕ̂2(k) as n −→ ∞. This is a

contradiction, since the left hand side is zero and the right hand side is
nonzero. Hence ϕ2 is a constant and the proof is complete. ¤

Theorem 3.3. ([30]) Let Mz be invertible on Lp(β) and r12 6 r01 6
r11 6 r22. Then Mz is reflexive.

Theorem 3.4. Let Mz be invertible on Lp(β) and r12 < r22. If there
exists c > 0 such that ‖Ms‖ 6 c‖s‖Ω2 for all Laurent polynomials s, then
Mz is reflexive.

Proof. Let A ∈ AlgLat(Mz). Then A = Mϕ for some ϕ in Lp∞(β). By
the same proof of Theorem 3 in [21] we can see that Lp∞(β) ⊂ H∞(Ω2).
Thus ϕ ∈ H∞(Ω2) and so we can write ϕ = ϕ1+ϕ2 where ϕ1 ∈ H∞(Ω22)
and ϕ2 ∈ H∞(Ω12). Now, the proof runs as that one of Theorem 3.2. ¤

In the special case when p = 2, we have the following Corollary.

Corollary 3.5. If Mz is invertible on L2(β) and r01 = r12 = r23 <

r11 = r22 = r33, then Mz is reflexive.

Proof. By using the von Neumann’s inequality we have ‖Ms‖ 6 c‖s‖Ω3

for all Laurent polynomials s, ([17, Prop.23, P.82]). This completes the
proof. ¤

Note that in Theorem 3.4, the inequality ‖Ms‖ 6 c‖s‖Ω2 was assumed
to be held for Laurent polynomials. In the next theorem, we assume it
for all polynomials.

Theorem 3.6. ([27]) Let Mz be invertible on Lp(β) and r12 < r22.
If Lp(β) = Lp∞(β) and there exists a constant c > 0 such that ‖Ms‖ 6
c‖s‖Ω2 for all polynomials s, then Mz is reflexive.

Theorem 3.7. ([24]) Suppose that Mz is not invertible on Lp(β). If
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r01 < r11, then Mz is reflexive.

Theorem 3.8. ([24]) If limβ(n)
1
n > 0, then Mz is reflexive on Hp(β).

4. Reflexivity on Banach Spaces of Analytic Functions

Let X be a reflexive Banach space of functions analytic on a plane
domain. We give sufficient conditions for the multiplication operator,
Mz, to be reflexive on X.

By (X,Ω) we mean that X is a Banach space of analytic functions on
a plane domain Ω. Throughout this section (X, Ω) is a reflexive Banach
space such that:

(1) For each λ ∈ Ω the linear functional, e(λ), of evaluation at λ is
bounded on X.

(2) X contains the constant functions.
(3) multiplication by the independent variable z defines a bounded

linear operator Mz on X.
A complex valued function ϕ on Ω for which ϕf ∈ X for every f ∈ X

is called a multiplier of X and the collection of all these multipliers is
denoted by M(X). Each multiplier ϕ of X determines a multiplication
operator Mϕ on X by Mϕf = ϕf , f ∈ X. It is well-known that each
multiplier is a bounded analytic function ([16 ]). Indeed |ϕ(λ)| 6 ||Mϕ||
for each λ in Ω. Also Mϕ1 = ϕ ∈ X. But X ⊂ H(Ω), thus ϕ is a
bounded analytic function. We also point out that if ϕ is a multiplier
and λ ∈ Ω then M∗

ϕe(λ) = ϕ(λ)e(λ), since for all f in X we have

< f, M∗
ϕe(λ) >= ϕ(λ)f(λ) = ϕ(λ) < f, e(λ) >=< f, ϕ(λ)e(λ) >

(here for simplicity we used the notation < x, x∗ > instead of x∗(x) for
x ∈ X and x∗ ∈ X∗).

By definition Mz is called polynomially bounded on a Banach space
(X, Ω) if for some c > 0, ||Mp|| 6 c||p||Ω for all polynomials p.

Consider the circular plane domain Ω = U\K1 ∪ · · · ∪KN where

Ki = Di = {z : |z − zi| 6 ri}
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are disjoint closed subdiscs of the open unit disc U . We can choose
circles

γi = {z : |z − zi| 6 ri + εi} (i = 1, ..., N)

and γ0 = {z : |z| = 1− ε0} in Ω and concentric to the boundary circles
of Ω so that they do’nt meet each other. Put Ωi = (C ∪{∞})\Ki for
i = 1, 2, · · · , N . Then by the Cauchy integral formula it is proved that

H∞(Ω) = H∞(Ω0) + H∞
0 (Ω1) + · · ·+ H∞

0 (ΩN )

where Ω0 = U , H∞
0 (Ωi) = H∞(Ωi)∩H0(Ωi), and H0(Ωi) is the space of

all analytic functions on Ωi that vanish at infinity.

Theorem 4.1. Let Ω be a circular plane domain and suppose that Mz

is polynomially bounded on (X, Ω). Then Mz is reflexive.

Proof. Let A ∈ AlgLat(Mz). Then A = Mϕ for some multiplier ϕ, in-
deed since M∗

z e(λ) = λe(λ), the one dimensional span of e(λ) is invariant
under M∗

z , so it is invariant under A∗. That is,

A∗e(λ) = ϕ(λ)e(λ), λ ∈ Ω.

Using the Hahn-Banach Theorem we see that the linear span of {e(λ)}λ∈Ω

is weak star dense in X∗. Hence ϕ ∈ M(X) and A = Mϕ, and so
ϕ ∈ H∞(Ω). Set X0 = X ∩ H(U). Since X contains the constants,
X0 6= {0}. Clearly every function in X0 is analytic in U . Now we show
that X0 is a closed subspace of X that is invariant under Mz. To see this
let {gn} be a sequence in X0 such that gn converges to f in X. By ap-
plying the Cauchy Integral Theorem we can write f = f0 +f1 + · · ·+fN

where f0 ∈ H(U) and fi ∈ Ho(Ωi) for i = 1, · · · , N . Set h = f1+· · ·+fN .

Clearly gn − f0 converges uniformly to h on compact subsets of Ω and
so zi(gn − f0) converges uniformly to zih on compact subsets of Ω for
i = 0, 1, 2, · · · . Since zi(gn − f0) ∈ H(U) we have

∫

γ0

ξi(gn(ξ)− f0(ξ))dξ = 0, i = 0, 1, 2, · · · ; n = 1, 2, · · · ,

where γ0 is the circle defined as before. Choose the circle γ′0 sufficiently
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close to γ0 with smaller radius so that γ0 lies in ext(γ′0). We can write

h(z) =
−1∑

n=−∞
anzn , z ∈ ext(γ′0)

an =
1

2πi

∫

γ0

h(ξ)/ξn+1 dξ , n < 0.

But ∫

γ0

ξkh(ξ) = 0, k = 0, 1, 2, · · · .

From this it follows that h(z) = 0, z ∈ ext(γ′0). Hence h ≡ 0.
Therefore f = f0 is analytic in U and so X0 is closed. Clearly X0 is
invariant under Mz, and contains the constants.

Since AX0 ⊂ X0 and 1 ∈ X0, we see that A1 = φ ∈ X0. But
X0 ⊂ H(U) and ϕ ∈ H∞(Ω). Thus ϕ ∈ H∞(U). Since U is a
Carathéodory domain, there exists a sequence {pn} of polynomials such
that sup

n
||pn||Ω < ∞ and pn(z) → ϕ(z), z ∈ U . By hypothesis ||Mpn || 6

c||pn||Ω, where c is a constant. But X is a reflexive Banach space, so the
unit ball of B(X) is compact in the weak operator topology. Thus, we
may assume by passing to a subsequence if necessary, that Mpn → S, in
the weak operator topology, for some operator S. Thus

M∗
pn

e(λ) = pn(λ)e(λ) → ϕ(λ)e(λ) = M∗
ϕe(λ)

for every λ ∈ Ω. On the other hand, M∗
pn

e(λ) → S∗e(λ) weak star.
Therefore S∗e(λ) = M∗

ϕe(λ). So S∗ = M∗
ϕ, hence S = Mϕ on X. Since

A = Mϕ, A = S and so it follows that A ∈ W (Mz) and Mz is reflexive.
This completes the proof. ¤

In the proof of the Theorem 4.1 we used the polynomially bounded
condition. In the following Corollary we substitute it by another condi-
tions that each of which implies the desired result.

Corollary 4.2. The above Theorem holds also if we substitute the con-
dition of polynomially bounded by one of the following conditions:

(i) The map ϕ −→ Mϕ of M(X) −→ B(X) is an isometry,



REFLEXIVITY ON SOME FUNCTION ... 39

(ii) Ω is a spectral set for Mz,
(iii) ‖Mϕ‖ 6 c‖ϕ‖Ω for every multiplier ϕ,
(iv) H∞(Ω1) ⊂M(X).

Proof. It is clear to see that all conditions (i), (ii) and (iii) imply
the polynomially bounded condition. So it is sufficient to show that
the condition (iv) implies the polynomially bounded condition. For this
we show that L : H∞(Ω1) −→ B(X) given by L(ϕ) = Mϕ is con-
tinuous. Suppose that the sequence {ϕn}n converges to ϕ in H∞(Ω1)
and L(ϕn) = Mϕn converges to A in B(X). Then for each f in X,
Af = lim

n
Mϕnf = lim

n
ϕnf and so {ϕnf}n is convergent in X. Note

that by the continuity of point evaluations ϕnf converges pointwise to
ϕf . Thus Af is analytic on Ω and agree with ϕf on Ω. Hence A = Mϕ

and so L is continuous. This implies that there is a constant c > 0 such
that ‖Mϕ‖ 6 c‖ϕ‖Ω1 for all ϕ in H∞(Ω1). But ‖p‖Ω = ‖p‖Ω1 for all
polynomials p, hence ‖Mp‖ 6 c‖p‖Ω holds and so Mz is polynomially
bounded. ¤

Theorem 4.3. ([32]) If {e(λ) : λ ∈ Ω} is norm bounded and H∞(Ω1) ⊂
M(X), then Mz is reflexive on (X, Ω).
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