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Abstract. In this paper, we introduce a three–parameter generaliza-
tion of the Lindley distribution. This includes as special cases the expo-
nential and gamma distributions. The distribution exhibits decreasing,
increasing and bathtub hazard rate depending on its parameters. We
study various properties of the new distribution and provide numerical
examples to show the flexibility of the model. We also derive a bivariate
version of the proposed distribution.
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1. Introduction

The one parameter family of distributions with the density function

f(x; θ) =
θ2(1 + x)e−θx

1 + θ
, x, θ > 0, (1)

1



2 H. ZAKERZADEH AND A. DOLATI

used by Lindley [8] to illustrate a difference between fiducial distribution

and posterior distribution. Sankaran [9] used it as the mixing distribu-

tion of a Poisson parameter and the distribution he derived is known

as the Poisson–Lindley distribution. Recently, Ghitany et al. [3] re-

discovered and studied various properties of (1). Because of having only

one parameter, the Lindley distribution does not provide enough flex-

ibility for analysing different types of lifetime data. To increase the

flexibility for modelling purposes it will be useful to consider further

alternatives of this distribution. This paper offers a three-parameter

family of distributions which generalizes the Lindley distribution and

includes as special cases the ordinary exponential and gamma distri-

butions. The procedure used here is based on certain mixtures of the

gamma distributions. The study examines various properties of the new

model. The paper is organized as follows: Section 2, introduces the gen-

eralized Lindley distribution and presents its basic properties including:

the behavior of the density and hazard rate functions, the distribution of

the sums and some results on stochastic orderings. We also proposed an

algorithm for generating random data from the new distribution in this

section. Section 3, discusses the estimation of parameters. Two data

modelling examples are provided in this section, where the generalized

Lindley distribution fits marginally better than the gamma, Weibull and

lognormal distributions. Finally, a bivariate derivation of the proposed
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model is discussed in Section 4.

2. Definition and Some Properties

In this section, we introduce the generalized Lindley distribution and

study its basic properties.

2.1. Generalization

Let

fg(x; α, θ) =
θ(θx)α−1e−θx

Γ(α)
, α, θ, x > 0, (2)

be the density function of the gamma distribution with the shape pa-

rameter α and the scale parameter θ, denoted by gamma(α, θ). Let V1

and V2 be two independent random variables distributed according to

gamma(α, θ) and gamma(α + 1, θ), respectively. For γ > 0, consider

the random variable X = V1 with probability θ
θ+γ , and X = V2 with

probability γ
θ+γ . It is then easy to verify that the density function of X

is given by

f(x; α, θ, γ) =
θ2(θx)α−1(α + γx)e−θx

(γ + θ)Γ(α + 1)
, α, θ, γ, x > 0. (3)

This distribution contains the Lindley distribution as a particular case

α = γ = 1. When γ = 0, (3) reduces to the density function of the

gamma distribution with the parameters α and θ. The case (α, γ) =

(1, 0), it coincides with the density function of the ordinary exponential
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distribution. We say that the random variable X has a generalized

Lindley (GL) distribution, if X has the density function defined by (3).

We denote the generalized Lindley distribution with the parameters α,

θ and γ as GL(α, θ, γ).

2.2. Shape

For the density function of the GL distribution, the first and the second

derivatives of log f(x) are

d

dx
log f(x) =

(α− 1)(α + γx) + (γ − θ(α + γx))x
x(α + γx)

,

and
d2

dx2
log f(x) =

(1− α)(α + γx)2 − (γx)2

x2(α + γx)2
.

If α > 1, then d2

dx2 log f(x) 6 0 ; i.e., the density function f(x), is log-

concave. Note that (log f)′(0) = ∞ and (log f)′(∞) = −θ < 0. This

implies that for α > 1, f(x) has a unique mode at x0, where x0 =
α(γ−θ)+

√
(α(γ+θ))2−4αθγ

2γθ , is the solution of the equation d
dx log f(x) = 0.

For α < 1 we have that d
dx log f(x) 6 0; i.e., f(x) is decreasing in x.

Let h(x) = f(x)
1−F (x) be the hazard rate function of the random variable

X. Because the survival function of this distribution can be given only

in terms of the incomplete gamma function when α is not an integer, the

hazard rate function could not be expressed in closed form. However,

properties of this function can still be determined.
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Proposition 1. Let h(t) be the hazard rate function of a random vari-

able X distributed according to GL(α, θ, γ). Then

(i) h(t) is increasing for α > 1;

(ii) h(t) is bathtub shaped for α < 1 and γ > 0;

(iii) h(t) is decreasing for α 6 1 and γ = 0.

Proof. For the density function (3) we have

ρ(t) = −f ′(t)
f(t)

=
1− α

t
− γ

α + γt
+ θ.

It follows that ρ′(t) = α−1
t2

+ γ2

(α+γt)2
> 0, for α > 1; ρ′(t) 6 0 when

α 6 1 and γ = 0. When α < 1 and γ > 0, we have ρ′(t) < 0 for

t < (
√

1− α + 1 − α)/γ; ρ′((
√

1− α + 1 − α)/γ) = 0, and ρ′(t) > 0 for

t > (
√

1− α + 1− α)/γ. Now, parts (i), (ii) and (iii) follow from Glaser

[4]. ¤

2.3. Distribution of the Sums

It is well known that the distribution of a sum of independent gamma

random variables with the same scale parameter is again a gamma dis-

tribution. The following result shows that the distribution of a sum of

independent random variables from the GL distribution, could be writ-

ten as a mixture of the gamma distributions.

Proposition 2. Let X1, ..., Xn denote independent random variables

from GL distribution with the parameters (αi, θ, γ), for i = 1, ..., n. Then
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the density function of S =
n∑

i=1
Xi, is given by

fS(x) =
n∑

k=0

pkfg(x; α∗ + k, θ), (4)

where fg is the density function of the gamma distribution, α∗ =
n∑

i=1
αi

and pk = (n
k)θn−kγk

(γ+θ)n , for k = 0, ..., n; with
n∑

k=0

pk = 1,.

Proof. The proof can be established by comparing the mgf of S and

the mgf corresponding to the density function defined by (4). If X

distributed according to (3) then the corresponding moment generating

function (mgf) of X defined by M(t) = E(etX), is given by

M(t) =
(

θ

θ − t

)α+1 θ − t + γ

θ + γ
. (5)

From (5), the mgf of S =
n∑

i=1
Xi could be obtained as

MS(t) =
(

θ

θ − t

)α∗+n (
θ − t + γ

γ + θ

)n

.

Now, let Mg(t; α∗ + k, θ) = ( θ
θ−t)

α∗+k, k = 0, ..., n, be the mgf of the

gamma distribution with the shape parameter α∗ + k and the scale

parameter θ. Then the mgf corresponding to the density function fS(x),
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denoted by Mf (t), is given by

Mf (t) =
n∑

k=0

pkMg(x; α∗ + k, θ)

=
θn+α∗

(γ + θ)n

(
1

θ − t

)α∗ n∑

k=0

(
n

k

)(
γ

θ − t

)k

=
θn+α∗

(γ + θ)n

(
1

θ − t

)α∗ (
1 +

γ

θ − t

)n

=
(

θ

θ − t

)α∗+n (
θ − t + γ

γ + θ

)n

,

which completes the proof. ¤

2.4. Stochastic Orders

A random variable X is said to be stochastically smaller than Y (de-

noted by X ≺s Y ), if FX(t) > FY (t) for all t. Two stronger stochas-

tic dominance are the hazard rate order (denoted by X ≺hr Y ) if

hX(t) > hY (t), for all t, and the likelihood ratio order (denoted by

X ≺lr Y ) if fX(t)/fY (t) is decreasing in t. It is well known that X ≺lr Y

⇒ X ≺hr⇒ X ≺s Y. For more detail see Shaked and Shanthikumar [10].

Let Yi be a random variable distributed according to (3) with the

parameters (αi, θi, γi), for i = 1, 2. Then

d

dy
log

(fY1(y)
fY2(y)

)
=

γ1

α1 + γ1y
− γ2

α2 + γ2y
+

α1 − α2

y
+ θ2 − θ1. (6)

Clearly, if α1 = α2, then (6) is negative when θ1 > θ2 and γ1 6 γ2.

When θ1 = θ2 and γ1 = γ2, it could be verified that the expression (6)
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is negative for α1 6 α2. In short, we have proved that:

Proposition 3. Let Y1 and Y2 be two random variables having GL

distribution with the parameters (αi, θi, γi), i = 1, 2. Then the followings

hold

(i) If θ1 = θ2, γ1 = γ2 and α1 6 α2, then Y1 ≺lr Y2, Y1 ≺hr Y2 and

Y1 ≺s Y2;

(ii) If α1 = α2, θ1 > θ2 and γ1 6 γ2, then Y1 ≺lr Y2, Y1 ≺hr Y2 and

Y1 ≺s Y2.

2.5. Random Variate Generation

The density function of the GL distribution can be written in terms of

the gamma density function as

f(x;α, θ, γ) =
θ

γ + θ
fg(x; α, θ) +

γ

γ + θ
fg(x; α + 1, θ).

To generate random data Xi, i = 1, ..., n, from GL(α, θ, γ), one can use

the following algorithm:

1. Generate Ui, i = 1, ..., n, from U(0, 1) distribution.

2. Generate V1i, i = 1, ..., n, from the gamma(α, θ).

3. Generate V2i, i = 1, ..., n, from the gamma(α + 1, θ).

4. If Ui 6 θ
γ+θ , then set Xi = V1i; otherwise set Xi = V2i, i = 1, ..., n.

In next section, we consider the maximum likelihood estimation of

the parameter of the GL distribution.
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3. Estimation

3.1. Maximum Likelihood Estimates

In this section we consider the maximum likelihood estimation (MLE)

of the parameters. If X1, ..., Xn, is a random sample from X distributed

according to GL(α, θ, γ), then the log-likelihood function, l(α, θ, γ), is:

l(α, θ, γ) = n(α + 1) log(θ)− n log(γ + θ)− n log Γ(α + 1)

+(α− 1)
n∑

i=1

log(xi) +
n∑

i=1

log(α + γxi)− θ
n∑

i=1

xi.

The derivatives of l(α, θ, γ) with respect to α, θ, and γ are:

∂l

∂α
= n log(θ)− nΨ(α + 1) +

n∑

i=1

log(xi) +
n∑

i=1

1
α + γxi

, (7)

∂l

∂θ
=

n(α + 1)
θ

− n

γ + θ
−

n∑

i=1

xi, (8)

and
∂l

∂γ
=

n∑

i=1

xi

α + γxi
− n

γ + θ
, (9)

where Ψ(t) = Γ′(t)
Γ(t) , denotes the digamma function. The equations (7)–

(9) can be solved simultaneously to find the maximum likelihood esti-

mators of α, θ and γ.

The GL distribution satisfies all the regularity conditions (see, Bain,

[1, pp. 86-87] in a way similar to gamma distribution, and therefore

applying the usual large sample approximation, the estimators (α̂, θ̂, γ̂)

treated as being approximately bivariate normal with the mean vector
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(α, θ, γ) and variance-covariance matrix I−1, where I is the Fisher in-

formation matrix, whose elements are given by

−E(
∂2l

∂α2
) = nΨ′(1 + α) + nJ0(α, θ, γ),

−E(
∂2l

∂α∂θ
) = −n

θ
,

−E(
∂2l

∂α∂γ
) = nJ1(α, θ, γ),

−E(
∂2l

∂θ2
) =

n(α + 1)
θ2

− n

(γ + θ)2
,

−E(
∂2l

∂θ∂γ
) = − n

(γ + θ)2
,

−E(
∂2l

∂γ2
) = nJ2(α, θ, γ)− n

(γ + θ)2
.

Here for i = 0, 1, 2,

Ji(α, θ, γ) = E

(
Xi

(α + γX)2

)

=
θ1−i

αΓ(α + 1)(γ + θ)

∞∑

k=0

(−1)k

k!

( γ

αθ

)k
Γ(α + k + i),

where X distributed as GL(α, θ, γ).

In what follows we provide numerical examples to show the flexibility

of GL distribution for data modeling.

3.2. Numerical Examples

Two sets of real data are considered from Lawless (2003), pp. 204 and

263). The first set of data represents the failure times (in minutes)
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for a sample of 15 electronic components in an accelerated life test

and they are 1.4, 5.1, 6.3, 10.8, 12.1, 18.5, 19.7, 22.2, 23, 30.6, 37.3,

46.3, 53.9, 59.8, 66.2. The second set of data, are the number of cy-

cles to failure for 25 100-cm specimens of yarn, tested at a particular

strain level and they are 15, 20, 38, 42, 61, 76, 86, 98, 121, 146, 149,

157, 175, 176, 180, 180, 198, 220, 224, 251, 264, 282, 321, 325, 653.

In addition to the generalized Lindley distribution, we have considered

the gamma, Weibull and lognormal distributions with respective densi-

ties fg(x; α, θ) = θαxα−1e−θx(Γ(α))−1, fW (x; α, θ) = αθxα−1e−θxα
and

fLN (x; α, θ) = 1√
2παx

e−
1
2
( log x−θ

α
)2 . The estimates, the log-likelihood (LL)

and the Kolmogrov-Smirnov (K-S) statistic presented in Table 1. It is

observed that, the generalized Lindley distribution competes well with

three popular alternatives, the gamma, Weibull and lognormal models.

Table 1

Estimates, log-likelihood and Kolmogrov–Smirnov statistic

Data set Distribution α θ γ LL K–S
GL 1.203 0.064 0.083 -64.080 0.095

1(n = 15) Gamma 1.442 0.052 — -64.186 0.100
Weibull 1.306 0.034 — -64.020 0.451
Lognormal 1.061 2.931 — -65.617 0.161
GL 1.505 0.012 0.018 -152.369 0.137

2(n = 25) Gamma 1.794 0.010 — -152.438 0.135
Weibull 1.414 0.005 — -152.443 0.697
Lognormal 0.891 4.880 — -154.086 0.155

In next section, we introduce a bivariate version of the GL distribution.
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4. The Bivariate Case

A large number of bivariate distributions have been proposed in litera-

ture. A very wide survey on bivariate distributions is given in Kotz et al.

[6]. In this section, we provide a family of bivariate distribution whose

univariate margins are generalized Lindley distributions. For this, let

(V1, V2) and (W1,W2) be two vectors of independent random variables

distributed according to the gamma(α, θ) and gamma(α + 1, θ), respec-

tively. For γ > 0, consider the random pair (X1, X2) = (V1, V2) with the

probability θ
θ+γ , and (X1, X2) = (W1,W2) with the probability γ

θ+γ . It

is then easy to verify that the joint density function of the pair (X1, X2)

is given by

f(x1, x2) =
θα+2(θx1x2)α−1(α2 + γθx1x2)e−θ(x1+x2)

(γ + θ)Γ2(α + 1)
, α, θ, γ, x1, x2 > 0.

(10)

Note that the joint density function (10), may be written in terms of

the gamma density functions as

f(x1, x2) =
θ(α2 + γθx1x2)

α2(γ + θ)
fg(x1; α, θ)fg(x2;α, θ). (11)

It is easy to see that the univariate marginal density functions of (10)

are of the form (3). When γ = 0, the random variables X1 and X2

become independent and the bivariate density function (11), reduces to

the product of two gamma density functions with the same parameters
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The following proposition gives the mixture representation of the

conditional density functions of (10) in terms of the gamma density

functions.

Proposition 4. If X1 and X2 are jointly distributed according to (10),

then the conditional density function of Xj given Xi = xi, denoted by

fj|i(xj |xi), (i 6= j = 1, 2), is given by

f
j |i(xj |xi) =

α

α + γxi
fg(xj ; α, θ) +

γxi

α + γxi
fg(xj ; α + 1, θ). (12)

Proof. The proof follows readily upon substituting for the joint density

function of (X1, X2) in (10) and the marginal density function of Xi,

i = 1, 2, in (3), in the relation

f
j |i(xj |xi) =

f(xi, xj)
fXi(xi)

. ¤

The following result gives the joint and the marginal density func-

tions of the random variables U = X1 + X2 and V = X1/(X1 + X2),

when the pair (X1, X2) is distributed according to (10).

Proposition 5. Let (X1, X2) be a random vector distributed according
to (10). Then the joint and marginal density functions of U = X1 +X2,
and V = X1/(X1 + X2), are given by

fU,V (u, v) =
θ

γ + θ
fg(u; 2α, θ)fB(v;α, α)+

γ

γ + θ
fg(u; 2α+2, θ)fB(v; α+1, α+1),

(13)
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fU (u; α, θ) =
θ

γ + θ
fg(u; 2α, θ) +

γ

γ + θ
fg(u; ; 2α + 2, θ), (14)

and

fV (v; α, θ) =
θ

γ + θ
fB(v;α, α) +

γ

γ + θ
fB(v; α + 1, α + 1), (15)

respectively, where fg(u; a, b) and fB(v; a, b), respectively, denote the

density functions of the gamma and the beta distributions with the pa-

rameters a and b, for all 0 < v < 1 and u > 0.

Simple calculations show that for each positive integer m and n, the

following expression for the moments could be obtained

E(Xn
1 Xm

2 ) =
Γ(α + n)Γ(α + m)

θn+m(γ + θ)Γ2(α + 1)
(α2(θ + γ) + γ(α + m)(α + n)).

In particular the correlation coefficient of X1 and X2 is given by

Corr(X1, X2) =
γθ

α(θ + γ)2 + γ(2θ + γ)
.

Clearly, Corr(X1, X2) = 0, when γ = 0. When α → 0 and θ → ∞, we

have that Corr(X1, X2) → 1
2 ; which is also the maximum value of the

correlation for this family and a limitation of the proposed model.

The proposed bivariate distribution is a mixture of i.i.d random vari-

ables, form the general theory, the resulting pair is positively correlated

by mixtures (see, Droute-Mori and Kotz [2]. In what follows we study the

dependence properties of (10) in detail. A bivariate distribution is said
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to be positively likelihood ratio dependent (PLRD) if the density function

f(x, y) satisfies

f(x1, y1)f(x2, y2) > f(x1, y2)f(x2, y1), (16)

for all x1 > x2 and y1 > y2. For the bivariate density function (10), the

above inequality is equivalent to

(α2 + θγx1y1)(α2 + θγx2y2) > (α2 + θγx1y2)(α2 + θγx2y1),

or (x1 − x2)(y1 − y2) > 0, which holds. The PLRD has several implica-

tions; in particular, it implies P (X1 6 x|X2 = y) is non increasing in y

for all x, and similarly P (X2 6 y|X1 = x) is non increasing in x for all

y. This property is called positive regression dependent (PRD). Further-

more, property PRD implies P (X2 > y|X1 > x) is non decreasing in x

for all y, and P (X2 6 y|X1 6 x) is non increasing in y for all x; each

of which implies that P (X1 6 x,X2 6 y) > P (X1 6 x)P (X2 6 y), for

all x and y, namely, X1 and X2 are positive quadrant dependent. For

more details see Droute-Mori and Kotz ([2]).
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