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Abstract. First kind integral equations can be solved numerically
with several methods. In this paper we describe a recursive method
for solving Volterra integral equation that don’t need to solve system
of algebraic equation. This method offers several advantages in reduc-
ing computational burden. Finally by comparison of numerical results,
simplicity and efficiency of this method will be shown.
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1. Introduction

Many phenomena in physics and engineering reduced to an integral equa-
tion of the first or second kind. There are several numerical methods
for solving these equations. In the most of these methods the integral
equation is transformed to a system of linear algebraic equations.
Unfortunately system of algebraic equations corresponding to a first kind
integral equation is ill-conditioned, meaning that small changes in the
data of the problem cause very large changes in its solution. Hence
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it is necessary to use other methods, such as preconditions, to convert
the system of equations to a well-conditioned system. In this article we
present a method in which the coefficients of the Taylor expansion of
the exact solution are calculate by a recursive schemes,without solving
any system of equations.
First, we propose method for solving Volterra integral equation of the
first kind. Then we apply the proposed method on some examples to
show the simplicity and efficiency of the method.

2. Assumptions and Definitions

Consider the following Volterra integral equation of the first kind
∫ s

0
k(s, t)x(t)dt = y(s), (1)

where k(s, t) and y(s) are known functions and x(s) is unknown. Also
suppose that y(s) is a polynomial of s and k(s, t) is a polynomial of
(s − t). Otherwise, we can substitute the Taylor expansion of y(s) at
s = 0 and the Taylor expansion of k(s, t) at s = t ( or s = −t if it is
suitable). Hence we assume

k(s, t) =
∞∑

j=0

cj(s− t)j = co + c1(s− t) + c2(s− t)2 + · · · , (2)

y(s) =
∞∑

i=0

bis
i = bo + b1s + b2s

2 + · · · . (3)

Let us consider the solution of (1) as

x(s) =
∞∑

i=0

ais
i = ao + a1s + a2s

2 + · · · (4)

and truncate x(s) by

xk(s) =
k∑

i=0

ais
i = ao + a1s + a2s

2 + · · ·+ aks
k, (5)
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then equation (1) writes as below
∫ s

0

[
co + c1(s− t) + c2(s− t)2 + · · · ] [

ao + a1t + a2t
2 + · · · ] dt

=
[
bo + b1s + b2s

2 + · · · ] . (6)

Comparing both sides of (6) implies that b0 = 0. The main study of the
method is calculating the coefficients in (4).

3. Study of the Method

Theorem 1. Under assumptions (2), (3) and (4), and k(s, s) 6= 0 for all
s > 0, the coefficients of the expansion of solution of problem (1) satisfy
the following recursive formula

a0 =
b1

c0
(7)

an = (n + 1)
bn+1 −

∑
i+j=n,j<n ciajuij

c0
, n = 1, 2, · · · (8)

where

uij =
1

si+j+1

∫ s

0
(s− t)itjdt =

i∑

r=0

(
i
r

)

r + j + 1
. (9)

Proof. For obtaining a0 note that the derivative of (7) is

k(s, s)x(s) +
∫ s

0
ks(s, t)x(t)dt = y′(s)

⇒ x(s) =
y′(s)
k(s, s)

−
∫ s

0

ks(s, t)
k(s, s)

x(t)dt

therefore
a0 = x(0) =

y′(0)
k(0, 0)

=
b1

c0
.

Now suppose
x(s) ≈ x1(s) = a0 + a1s (10)
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substituting (10) in (7), we have
∫ s

0

[
co + c1(s− t) + c2(s− t)2 + · · · ] [ao + a1t] dt =

[
b1s + b2s

2 + · · · ]

(11)
by neglecting all terms after s2 or (s − t)2 in both sides, the above
equation reduce to

∫ s

0
[c1a0(s− t) + c0a1t] dt = b2s

2

⇒ c1a0u10 + c0a1u01 = b2

but u01 = 1
2 and then

a1 = 2
b2 − c1a0u10

c0
.

Similarly, for calculating an let

x(s) ≈ xn(s) = a0 + a1s + · · ·+ ansn (12)

and consider first n + 1 terms in all factors in (12) to obtain,
∫ s

0

[
c0antn + c1an−1(s− t)tn−1 + · · ·+ cna0(s− t)n

]
dt = bn+1s

n+1.

Thus c0anu0n + c1an−1u1,n−1 + · · ·+ cna0un0 = bn+1.

Replacing u0n by 1
n+1 , we have

an = (n + 1)
bn+1 −

∑
i+j=n,j<n ciajuij

c0
,

uij =
1

si+j+1

∫ s

0
(s− t)itjdt

=
1

si+j+1

∫ s

0

i∑

r=0

(
i
r

)
si−rtr+jdt =

i∑

r=0

(
i
r

)

r + j + 1
.

Hence the theorem is proved. ¤
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4. Convergence Analysis

In this section we prove that the above recursive method, converges to
the solution of (8).

Theorem 2. Let k(s, t) and y(s) be kernel and function in C∞[a, b] and
C∞([a, b]× [a, b]), respectively . Then the solution of

∫ s

0
k(s, t)x(t)dt = y(s), a 6 s 6 b, (13)

is also a function in C∞[a, b].

Proof. See [1] and [2]. ¤

Theorem 3. Let xn(s) be a solution of (8) that produced by recursive
relations (7) and (8). Then xn(s) converges strongly to the solution of
Volterra integral equation (1), when n → +∞.

Proof. In (2) and (3) we consider the coefficients of Taylor expansion of
k(s, t) and y(s). Thus coefficients of solution using (7) and (8) are also
the coefficients of Taylor expansion. Therefore xn(s) converges strongly
to x(s), when n → +∞. On the other hand let

en(s) = y(s)−
∫ s

0
k(s, t)xn(t)dt, (14)

then we have

en(s) =
∫ s

0
k(s, t)x(t)dt−

∫ s

0
k(s, t)xn(t)dt =

∫ s

0
k(s, t)[x(t)− xn(t)]dt,

(15)
therefore

‖en‖ 6 ‖k‖ · ‖x− xn‖ (16)

since ‖k‖ is bounded. Thus ‖x−xn‖ → 0 (strongly) implies that ‖en‖ →
0 (strongly) and proof is completed. ¤
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5. Numerical Examples

In this section we use the presented method for solving some examples.
The computations associated with the examples were performed by Mat-
lab 7.

Example 1. Consider the following first kind integral equation:

∫ s

0
es+tx(t)dt = ses (17)

where the exact solution is xT (s) = e−s for 0 6 s < 1. This Example is
selected from [3]. The Exact solution, Approximate solution of proposed
method and Approximate solution obtained in [3] are denoted by xT (s),
x̄1(s) and x̄2(s), respectively. To show accuracy of mentioned method,
results of both methods are compared with exact solution by

Ei(s) = |xT (s)− x̄i(s)|, i = 1, 2. (18)

at 10 points. Results are shown in Table 1.

Table 1. Solution of example 1.

s xT (s) x̄1(s) x̄2(s) E1(s) E2(s)
n=10 m=64

0 1.00000000 1.00000000 0.994792 0 0.005208
0.1 0.90483742 0.90483742 0.905768 1.11× 10−14 0.000931
0.2 0.81873037 0.81873075 0.824711 5.55× 10−14 0.005980
0.3 0.74081822 0.74081822 0.735426 4.31× 10−12 0.005392
0.4 0.67032005 0.67032005 0.669613 1.01× 10−10 0.000707
0.5 0.60653066 0.60653066 0.603372 1.17× 10−9 0.003159
0.6 0.54881164 0.54881164 0.549376 8.65× 10−9 0.000564
0.7 0.49658530 0.49658530 0.500213 4.67× 10−8 0.003628
0.8 0.44932896 0.44932897 0.446058 2.01× 10−7 0.003271
0.9 0.40656966 0.40656967 0.406141 7.31× 10−7 0.000429
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Example 2. Consider the following first kind integral equation:

∫ s

0
cos(s− t)x(t)dt = s sin(s) (19)

where the exact solution is xT (s) = 2 sin(s) for 0 6 s < 1. This Example
is selected from [3]. Under notations of example 1, results are shown in
Table 2.

Table 2. Solution of example 2.

s xT (s) x̄1(s) x̄2(s) E1(s) E2(s)
n=10 m=128

0 0.00000000 0.00000000 0.005208 0 0.005208
0.1 0.19966683 0.19966683 0.192399 2.77× 10−15 0.007267
0.2 0.39733866 0.39733866 0.398412 1.05× 10−13 0.001073
0.3 0.59104041 0.59104041 0.589930 8.87× 10−12 0.001110
0.4 0.77883668 0.77883668 0.785758 2.09× 10−10 0.006921
0.5 0.95885108 0.95885108 0.963098 2.44× 10−9 0.004246
0.6 1.1292849 1.1292849 1.122812 1.81× 10−8 0.006473
0.7 1.2884354 1.2884354 1.289847 9.87× 10−8 0.001412
0.8 1.4347122 1.4347122 1.433200 4.28× 10−7 0.001512
0.9 1.5666538 1.5666538 1.572171 1.56× 10−6 0.005517

Example 3. Consider the following first kind integral equation:

∫ s

0

exp(s− t)
1 + s2

x(t)dt = −4π cos(4πs) + sin(4πs)− 4πexp(s)
(1 + s2)(1 + 16π2)

(20)

where the exact solution is xT (s) = sin(4πs). This Example is selected
from [4]. The coefficients of the expansion of solution are shown in table
3. The results agree with the coefficients of Taylor expansion of xT (s).
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Table 3. Comparing expansion of proposed solution and Taylor series
for example 3.

n a(n) Coefficients of
Taylor expansion

0 0.0000 0
1 12.5664 12.5664
2 0.0000 0
3 -330.7336 -330.7336
4 0.0000 0
5 2.6114× 10+3 2.6114× 10+3

6 0.0000 0
7 −9.8184× 10+3 −9.8184× 10+3

8 0.0000 0
9 2.1534× 10+4 2.1534× 10+4

10 0.0000 0

6. Conclusion

In this paper, a recursive method based on calculating coefficients in
expansion of solution was developed to approximate the solution of
Volterra integral equations of first kind. Numerical examples show that
this method have several advantages, as:

Convergence. Above theorems illustrate that the method is conver-
gent.

Coefficient determination. Coefficient determination of the unknown
function x(s) using mentioned recursive method, don’t need to solve any
system of algebraic equations.

Accuracy. In terms of accuracy and error analysis, above examples
show that our method is better than the methods discussed in [3] and [4].
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