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1. Introduction

Because of the immensity of the class of all C∗-algebras it has become

important to identify and study special types of C∗-algebras. The theory

of C∗-crossed products by group actions, specially group C∗-algebras,

C∗(G), and reduced group C∗-algebras, C∗
r (G), are very well developed.

In 1982, J. R. Wordingham proved that the left regular representation

of `1(S) on `2(S) is faithful ([11]). Following Wordingham, C∗-algebras

of an inverse semigroup, has been investigated by Duncan and Paterson

as a generalization of crossed product of discrete groups ([2, 3, 8]).
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The notion of partial crossed product of a C∗-algebra by a discrete

group is introduced by R. Exel ([4]) and generalized by McClanahan

([7]). Nándor Sieben in his master thesis, at the Arizona State Univer-

sity, under the supervision of J. Quigg defined the C∗-crossed product

by action of an inverse semigroup and published the results in ([9]).

Partial actions of groups and actions of inverse semigroups have been

studied by R. Exel in ([5]), where an inverse semigroup, S(G), is associ-

ated to a given group G. R. Exel in ([5]) proved that there is a one-to-one

correspondence between actions of S(G) and partial actions of G. Also,

he introduced a “partial” version of the group C∗-algebra, that is, par-

tial group C∗-algebra, C∗
P (G). Partial inverse semigroup C∗-algebra is

introduced in ([10]). Now, following ([6]) we will consider the C∗-algebra

of a cancellative semigroupoid.

The organization of this paper is as follows:

Semigroupoids and its properties are considered in Section 2. Section

3 is devoted to the representations, tight representations, universal rep-

resentations, the C∗-algebra of a cancellative semigroupoid; and it is

shown that source elements transfer to zero by tight representation.

2. Semigroupoids

In this section the concepts of semigroupoid, cancellative semigroupoid,

divisiblity, and source element of a semigroupoid are introduced. An
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equivalence relation is defined on a special subset of a given semigroupoid.

Also, it is shown that the disjoint union of the quotient space of this

equivalence relation with the given semigroupoid is a new semigroupoid

which has no source.

Let G be a non-empty set and G(2) be a special subset of G×G, that

is, G(2) is the set of all ordered pairs on which a kind of multiplication

is meaningful. With this in mind we have the following definition.

Definition 2.1. By a semigroupoid G we shall mean a triple (G,G(2), .)

such that

. : G(2) −→ G

is an associative binary operation in the following sense:

For given x, y, z ∈ G if either

(i)(x, y) ∈ G(2) and (y, z) ∈ G(2), or

(ii) (x, y) ∈ G(2) and (xy, z) ∈ G(2), or

(iii) (y, z) ∈ G(2) and (x, yz) ∈ G(2),

then all of (x, y), (y, z), (xy, z) and (x, yz) are in G(2) and x(yz) = (xy)z.

Example 2.2. Let E = (E1, E0, r, s) be a graph. Then the path

space of E,F+(E), consists of all finite paths including the vertices,

is a semigroupoid with a product xy if s(x) = r(y). In particular,

x = xs(x) = r(x)x.

Before we give the definition of divisiblity we need to know that:
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If a semigroupoid, say G, has not a unit element it is possible to add a

unit element to it. That is, to pick some element from the universe of

outside of G, call it 1, and set G̃ = G∪̇{1}. Obviously, 1x = x1 = x for

every x in G.

It should be noted that G̃ may not be a semigroupoid. Because if

it is a semigroupoid, since for given x, y in G̃ the products x1 and 1y

are meaningful we have (x, 1) and (1, y) are elements of G(2). By the

Definition 2.1 we conclude that xy = (x1)y is a meaningful product and

we know that it is not always the case.

For given x in G̃, we would like to determine the set of all elements of

G, say y, for which xy is meaningful. Therefore we have

Gx = {y ∈ G : (x, y) ∈ G(2)} and G1 = G.

Definition 2.3. Let G̃ be a unital semigroupoid and x, y ∈ G. We shall

say that x divids y or y is a multiple of x, in symbols x|y, if there exists

z in G̃ such that (x, z) ∈ G(2) and y = xz.

Lemma 2.4. The divisiblity relation is reflexive, transitive, and invari-

ant under multiplication on the left.

Proof. Let x ∈ G. Since 1x = x1 = x, we see that the relation is

reflexive. To prove the transitivity, if x, y, z are in G such that x|y and

y|z we should show that x|z. If x = y from y|z we conclude that x|z.
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Similarly if y = z, the relation x|y shows that x|z. Otherewise from

x|y we have a u in G such that (x, u) ∈ G(2) and y = xu. Also, by

y|z we conclude that there exists v in G such that (y, v) ∈ G(2) and

z = yv. Since (x, u), (y, v) ∈ G(2), that is (x, u), (xu, v) ∈ G(2) we see

that (u, v) ∈ G(2). Consequently, z = yv = (xu)v = x(uv). This shows

that x|z.

To prove the last part of the lemma, let x, y, k ∈ G, x|y, (k, x) ∈ G(2)

and (k, y) ∈ G(2). We should show that ky is a multiple of kx. From x|y
we conclude that there exists u in G such that (x, u) ∈ G(2) and xu = y.

Since (k, x) and (x, u) are elements of G(2) we see that (kx, u) ∈ G(2) and

(k, y) = (k, xu) ∈ G(2). As a consequence we have (kx)u = k(xu) = ky,

that is, kx|ky. This completes the proof. ¤

The following important concept is pivotal in our work.

Definition 2.5. We shall say that an element x ∈ G is cancellative if

for every y, z ∈ G the equation xy = xz implies y = z. If every element

of G is cancellative, then G is called a cancellative semigroupoid.

Some elements of G has special properties, that is, given x ∈ G, there

exists y ∈ G such that xy is not a legal multiplicative. Here, we would

like to introduce the set of all such elements.

Definition 2.6. An element x of G is called source if Gx = φ.

If Gx 6= φ, then it is called the multiplicative set of x.
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Here, we make an attempt to introduce a semigroupoid without sources.

Theorem 2.7. If G is a semigroupoid which has sources, then there

exists a semigroupoid which has no source and contains G.

Proof. Let G0 = {x ∈ G : x is a source }. Also, let

ψ : G −→ G

defined by ψ(x) = e′x be a one-to-one map, and E′ = ψ(G). For any

source y and any x such that y ∈ Gx, we observe that if t ∈ Gy, that

is, (y, t) ∈ G(2) then (xy, t) ∈ G(2). This shows that Gx ⊆ Gxy. On

the other hand if s ∈ Gxy, that is, (xy, s) ∈ G(2) then (y, s) ∈ G(2). So,

s ∈ Gy and Gxy ⊆ Gy. Consequently Gy = Gxy, and we conclude that

xy is also a source.

Let “∼” be any equivalence relation on E′ such that e′xy ∼ e′y for any

source y and any x for which y ∈ Gx. Also, let ex = [e′x] = {t ∈ E′ :

x ∼ t}, and the quotient space, E′
∼ , be denoted by E. Take Γ = G∪̇E,

Γ(2) = G(2) ∪ {(y, ey) : y ∈ G0} ∪ {(ey, ey) : y ∈ G0}, and

define the multiplication

. : Γ(2) −→ Γ

which is nothing but the multiplication on G when restricted to G(2),

with

y.ey = ey , ey.ey = ey ∀y ∈ G0.
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Now we can prove that (Γ,Γ(2), .) is a semigroupoid which contains

G and has no source. To show this, let r, s, t ∈ Γ. If r, s, t ∈ G it is

finished, otherwise r = ex, s = ey and t = ez for some x, y, z ∈ G0.

Case 1. If ex = y and ez = ey, then

(r, s) = (ex, ey) = (y, ey) ∈ Γ(2), and (s, t) = (ey, ez) = (ey, ey) ∈ Γ(2).

That is, (r, s) and (s, t) ∈ Γ(2) and by Definition 2.1 part (i) we conclude

that Γ is a semigroupoid.

Proofs of other cases are similar to the proof of case 1 and is left to the

reader. ¤

3. Representations of Semigroupoids

In this section the notion of representation of a semigroupoid is intro-

duced. Also, a universal C∗-algebra is associated to a cancellative semi-

groupoid. The concept of a tight representation and the fact that a

source element transfres to the zero operator by a tight representation

are discussed.

Throught this section, G is a semigroupoid and A is a unital C∗-algebra.

Definition 3.1. Let x, y ∈ G. We shall say that x and y intersect if

they have a common multiple, that is, if there exists an element m of G

such that x|m and y|m. The fact that x and y are intersect is denoted

by x∩ y. Otherwise we will say that x and y are disjoint and is denoted
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by x⊥y.

The next concept is crucial in understanding the definition of a tight

representation.

Definition 3.2. If X is any subset of G and Z ⊆ X, then Z is called a

covering of X if for every x ∈ X, there exists h ∈ Z such that x and h

are intersect.

The next definition is the first step in bridging semigroupoids and oper-

ator algebras.

Definition 3.3. By a representation of G in A we mean a mapping

Π : G → A

such that Π(x) = Πx is a partial isometry and if x, y ∈ G then

ΠxΠy =
{

Πxy, if (x, y) ∈ G(2),
0, otherwise.

Moreover the initial projections Qx = Π∗xΠx, and the final projections

Py = ΠyΠ∗y should commute among themselves and satisfy to the follow-

ing conditions:

(i)PxPy = 0, if x⊥y ;

(ii) QxPy = Py , if (x, y) ∈ G(2) ;

(iii) QxPy = 0 , if (x, y) 6∈ G(2) .

It should be noted that any representation extends to G̃ by taking

Π(1) = Π1 = 1 and Q1 = P1 = 1.
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Here we are able to present the reason why we choose cancellative semi-

groupoid.

If G is not a cancellative semigroupoid, that is, there exists x in G such

that for a distinct pair of elements y, z ∈ G we have xy = xz. For given

representation Π, since Πx is a partial isometry we have

Πy = ΠyΠ∗yΠy = (ΠyΠ∗y)Πy = PyΠy = QxPyΠy

= Π∗xΠxΠyΠ∗yΠy = Π∗xΠxΠy = Π∗x(ΠxΠy) = Π∗xΠxy.

And,

Πz = ΠzΠ∗zΠz = (ΠzΠ∗z)Πz = PzΠz =

QxPzΠz = Π∗xΠxΠzΠ∗zΠz = Π∗xΠxΠz = Π∗x(ΠxΠz) = Π∗xΠxz.

Since xz = xy we have Πxy = Πxz, that is Πy = Πz whereas y 6= z. This

shows that if G is not a cancellative semigroupoid, then we may have

Π(y) = Π(x) for some x, y such that x 6= y.

Before we present the definition of a tight representation we need to

know some more about representations.

For given x ∈ G and z ∈ Gx, since (x, z) ∈ G(2) we know that the

initial projection, Qx = Π∗xΠx, and the final projection, Pz = ΠzΠ∗z,

commute and QxPz = Pz. Also, we know that QxPz = Pz is equivalent

to Pz 6 Qx. So, if z1, z2 ∈ Gx we have Pz1 6 Qx and Pz2 6 Qx.
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Consequently Pz1 ∨ Pz2 6 Qx, and if H is a finite subset of Gx we have

∨

z∈H

Pz 6 Qx.

If y ∈ G̃ and z ∈ G − Gy then (y, z) 6∈ G(2), hence QyPz = PzQy = 0.

Therefore, from Pz = Pz we have Pz = Pz − PzQy = Pz(1 −Qy) which

is equivalent to Pz 6 1−Qy. Since z is an arbitrary element of G−Gy

we conclude that if H is a finite subset of G−Gy, then we have

∨

z∈H

Pz 6 1−Qy

Now for given finite subsets X, Y of G, let

GX,Y = (
⋂

x∈X

Gx) ∩ (
⋂

y∈Y

G−Gy).

If z ∈ GX,Y , then from z ∈ ⋂
x∈X

Gx we conclude that Pz 6 Qx for all

x ∈ X and as a consequence

Pz 6
∏

x∈X

Qx. (1)

Also, from z ∈ ⋂
y∈Y

G − Gy we have Pz 6 1 − Qy for all y ∈ Y , and

consequently

Pz 6
∏

y∈Y

(1−Qy). (2)

From (1) and (2), for given z ∈ GX,Y we have

Pz 6
∏

x∈X

Qx

∏

y∈Y

(1−Qy).
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Also, for given finite subset H of GX,Y , we conclude that

∨

z∈H

Pz 6
∏

x∈X

Qx

∏

y∈Y

(1−Qy).

With this in mind we can present the following important definition.

Definition 3.4. A representation Π of G in A is said to be tight if for

every subsets X, Y of G̃ and every covering H of GX,Y the following

equality holds
∨

z∈H

Pz =
∏

x∈X

Qx

∏

y∈Y

(1−Qy).

It should be noted that if no such covering exists, then any representation

is tight vacuously.

Before we present the definition of the C∗-algebra of a semigroupoid we

need to introduce the concept of a universal C∗-algebra.

In recent years, universal constructions play a crucial role in the

theory of operator algebras, specially in the theory of C∗-algebras. In

other words, many important C∗-algebras can be expressed as universal

C∗-algebras generated by a given set and a set of relations which satisfy

in certain conditions. In what follows we will describe that, what do we

mean by a universal C∗-algebra generated by a set and a set of relations.

Suppose a set B = {bi : i ∈ Ω} of generators and a set R of relations

are given. It should be noted that the relations can be of a very general
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nature. Usually, some algebraic relations between generators and their

adjoints exist. The only restriction on the relation is that:

(i) they must be realizable among operators on a Hilbert space.

(ii) each generator should have an upper bound when realized as an

operator.

A representation of (B|R) is a set {Ti : i ∈ Ω} of bounded operators

on a Hilbert space H which satisfying in the given relations. Each such

representation of (B|R) defines a ∗-representation of the free ∗-algebra

A on the set B. For given x ∈ A, let

||x|| = sup{||Π(x)|| : Π is a representation of (B|R)}.

This supremum defines a C∗-seminorm on A provided that it is finite.

If the elements of seminorm 0 are divided out, then the completion of

A is called the universal C∗-algebra generated by B, R, or the universal

C∗-algebra on (B|R), and is denoted by C∗(B|R).

Example 3.5. Let B = {x} and R = {x = x∗, ||x|| < 1}. Then

C∗(B|R) is the universal C∗-algebra generated by a single self-adjoint

element of norm 1.

Note that there is no universal C∗-algebra generated by a single self-

adjoint element, because there is no bound on the norm of the element.

For more on universal C∗-algebras, see Chapter II of [1].

Here, we introduce a universal C∗-algebra which contains the C∗-algebra
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of semigroupoid.

Definition 3.6. Let G be a semigroupoid, B = {Πx}x∈G be a family of

partial isometries and R be the set of all relations such that the corre-

spondence x → πx is a tight representation of G. The unital universal

C∗-algebra generated by B, R, that is, C∗(B|R) denoted by Õ(G).

In order to give the definition of the C∗-algebra of a semigroupoid G we

need to know that, what do we mean by the universal representation of

G?

Definition 3.7. A collection of partial isometries, {Πx}x∈G, such that

the correspondence x → Πx is a tight representation of G is called the

universal representation of G.

Now, we are ready to present the definition of the C∗-algebra of a semi-

groupoid.

Definition 3.8. The closed ∗-subalgebra of Õ(G) which is generated by

the range of the universal representation of G denoted by O(G), is the

C∗-algebra of G.

We close this section by the following important theorem.

Theorem 3.9. If Π is a tight representation of a semigroupoid, G and

x ∈ G is a source element, then Πx = 0.

Proof. Since x is a source element, we have Gx = φ. From the fact
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that empty set is a covering for Gx, we conclude that Qx = 0. Since

Qx = Π∗xΠx, we have Πx = 0. ¤
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