C*-Algebra of Cancellative Semigroupoids

B. Tabatabaie

Shiraz University

Abstract. In this paper the definition and some properties of semi-groupoids are considered. Representations, tight representations, and universal representations of a cancellative semigroupoid are discussed. Also, the C^* -algebra of a semigroupoid is introduced and it is shown that source elements transfer to zero by tight representations.

AMS Subject Classification: 46L05

Keywords and Phrases: C^* -algebra, projection, partial isometry,

graph theory and representation.

1. Introduction

Because of the immensity of the class of all C^* -algebras it has become important to identify and study special types of C^* -algebras. The theory of C^* -crossed products by group actions, specially group C^* -algebras, $C^*(G)$, and reduced group C^* -algebras, $C_r^*(G)$, are very well developed. In 1982, J. R. Wordingham proved that the left regular representation of $\ell^1(S)$ on $\ell^2(S)$ is faithful ([11]). Following Wordingham, C^* -algebras of an inverse semigroup, has been investigated by Duncan and Paterson as a generalization of crossed product of discrete groups ([2, 3, 8]).

The notion of partial crossed product of a C^* -algebra by a discrete group is introduced by R. Exel ([4]) and generalized by McClanahan ([7]). Nándor Sieben in his master thesis, at the Arizona State University, under the supervision of J. Quigg defined the C^* -crossed product by action of an inverse semigroup and published the results in ([9]).

Partial actions of groups and actions of inverse semigroups have been studied by R. Exel in ([5]), where an inverse semigroup, S(G), is associated to a given group G. R. Exel in ([5]) proved that there is a one-to-one correspondence between actions of S(G) and partial actions of G. Also, he introduced a "partial" version of the group C^* -algebra, that is, partial group C^* -algebra, $C_P^*(G)$. Partial inverse semigroup C^* -algebra is introduced in ([10]). Now, following ([6]) we will consider the C^* -algebra of a cancellative semigroupoid.

The organization of this paper is as follows:

Semigroupoids and its properties are considered in Section 2. Section 3 is devoted to the representations, tight representations, universal representations, the C^* -algebra of a cancellative semigroupoid; and it is shown that source elements transfer to zero by tight representation.

2. Semigroupoids

In this section the concepts of semigroupoid, cancellative semigroupoid, divisibility, and source element of a semigroupoid are introduced. An

equivalence relation is defined on a special subset of a given semigroupoid.

Also, it is shown that the disjoint union of the quotient space of this equivalence relation with the given semigroupoid is a new semigroupoid which has no source.

Let G be a non-empty set and $G^{(2)}$ be a special subset of $G \times G$, that is, $G^{(2)}$ is the set of all ordered pairs on which a kind of multiplication is meaningful. With this in mind we have the following definition.

Definition 2.1. By a semigroupoid G we shall mean a triple $(G, G^{(2)}, .)$ such that

$$.:G^{(2)}\longrightarrow G$$

is an associative binary operation in the following sense:

For given $x, y, z \in G$ if either

$$(i)(x,y) \in G^{(2)} \ and \ (y,z) \in G^{(2)}, \ or$$

(ii)
$$(x,y) \in G^{(2)}$$
 and $(xy,z) \in G^{(2)}$, or

(iii)
$$(y, z) \in G^{(2)}$$
 and $(x, yz) \in G^{(2)}$,

then all of (x, y), (y, z), (xy, z) and (x, yz) are in $G^{(2)}$ and x(yz) = (xy)z.

Example 2.2. Let $E = (E^1, E^0, r, s)$ be a graph. Then the path space of $E, F^+(E)$, consists of all finite paths including the vertices, is a semigroupoid with a product xy if s(x) = r(y). In particular, x = xs(x) = r(x)x.

Before we give the definition of divisibility we need to know that:

If a semigroupoid, say G, has not a unit element it is possible to add a unit element to it. That is, to pick some element from the universe of outside of G, call it 1, and set $\tilde{G} = G \dot{\cup} \{1\}$. Obviously, 1x = x1 = x for every x in G.

It should be noted that \tilde{G} may not be a semigroupoid. Because if it is a semigroupoid, since for given x, y in \tilde{G} the products x1 and 1y are meaningful we have (x,1) and (1,y) are elements of $G^{(2)}$. By the Definition 2.1 we conclude that xy = (x1)y is a meaningful product and we know that it is not always the case.

For given x in \tilde{G} , we would like to determine the set of all elements of G, say y, for which xy is meaningful. Therefore we have

$$G^x = \{ y \in G : (x, y) \in G^{(2)} \} \text{ and } G^1 = G.$$

Definition 2.3. Let \tilde{G} be a unital semigroupoid and $x, y \in G$. We shall say that x divids y or y is a multiple of x, in symbols x|y, if there exists z in \tilde{G} such that $(x, z) \in G^{(2)}$ and y = xz.

Lemma 2.4. The divisibility relation is reflexive, transitive, and invariant under multiplication on the left.

Proof. Let $x \in G$. Since 1x = x1 = x, we see that the relation is reflexive. To prove the transitivity, if x, y, z are in G such that x|y and y|z we should show that x|z. If x = y from y|z we conclude that x|z.

Similarly if y=z, the relation x|y shows that x|z. Otherwise from x|y we have a u in G such that $(x,u) \in G^{(2)}$ and y=xu. Also, by y|z we conclude that there exists v in G such that $(y,v) \in G^{(2)}$ and z=yv. Since $(x,u),(y,v) \in G^{(2)}$, that is $(x,u),(xu,v) \in G^{(2)}$ we see that $(u,v) \in G^{(2)}$. Consequently, z=yv=(xu)v=x(uv). This shows that x|z.

To prove the last part of the lemma, let $x, y, k \in G, x | y, (k, x) \in G^{(2)}$ and $(k, y) \in G^{(2)}$. We should show that ky is a multiple of kx. From x | y we conclude that there exists u in G such that $(x, u) \in G^{(2)}$ and xu = y. Since (k, x) and (x, u) are elements of $G^{(2)}$ we see that $(kx, u) \in G^{(2)}$ and $(k, y) = (k, xu) \in G^{(2)}$. As a consequence we have (kx)u = k(xu) = ky, that is, kx | ky. This completes the proof. \square

Definition 2.5. We shall say that an element $x \in G$ is cancellative if for every $y, z \in G$ the equation xy = xz implies y = z. If every element of G is cancellative, then G is called a cancellative semigroupoid. Some elements of G has special properties, that is, given $x \in G$, there exists $y \in G$ such that xy is not a legal multiplicative. Here, we would like to introduce the set of all such elements.

Definition 2.6. An element x of G is called source if $G^x = \phi$. If $G^x \neq \phi$, then it is called the multiplicative set of x. Here, we make an attempt to introduce a semigroupoid without sources.

Theorem 2.7. If G is a semigroupoid which has sources, then there exists a semigroupoid which has no source and contains G.

Proof. Let $G^0 = \{x \in G : x \text{ is a source } \}$. Also, let

$$\psi: G \longrightarrow G$$

defined by $\psi(x) = e'_x$ be a one-to-one map, and $E' = \psi(G)$. For any source y and any x such that $y \in G^x$, we observe that if $t \in G^y$, that is, $(y,t) \in G^{(2)}$ then $(xy,t) \in G^{(2)}$. This shows that $G^x \subseteq G^{xy}$. On the other hand if $s \in G^{xy}$, that is, $(xy,s) \in G^{(2)}$ then $(y,s) \in G^{(2)}$. So, $s \in G^y$ and $G^{xy} \subseteq G^y$. Consequently $G^y = G^{xy}$, and we conclude that xy is also a source.

Let " \sim " be any equivalence relation on E' such that $e'_{xy} \sim e'_y$ for any source y and any x for which $y \in G^x$. Also, let $e_x = [e'_x] = \{t \in E' : x \sim t\}$, and the quotient space, $\frac{E'}{\sim}$, be denoted by E. Take $\Gamma = G \dot{\cup} E$,

$$\Gamma^{(2)} = G^{(2)} \cup \{(y, e_y) : y \in G^0\} \cup \{(e_y, e_y) : y \in G^0\}, \text{ and }$$

define the multiplication

$$.:\Gamma^{(2)}\longrightarrow\Gamma$$

which is nothing but the multiplication on G when restricted to $G^{(2)}$, with

$$y.e_y = e_y$$
, $e_y.e_y = e_y$ $\forall y \in G^0$.

Now we can prove that $(\Gamma, \Gamma^{(2)}, .)$ is a semigroupoid which contains G and has no source. To show this, let $r, s, t \in \Gamma$. If $r, s, t \in G$ it is finished, otherwise $r = e_x$, $s = e_y$ and $t = e_z$ for some $x, y, z \in G^0$.

Case 1. If $e_x = y$ and $e_z = e_y$, then

$$(r,s) = (e_x, e_y) = (y, e_y) \in \Gamma^{(2)}, \text{ and } (s,t) = (e_y, e_z) = (e_y, e_y) \in \Gamma^{(2)}.$$

That is, (r, s) and $(s, t) \in \Gamma^{(2)}$ and by Definition 2.1 part (i) we conclude that Γ is a semigroupoid.

Proofs of other cases are similar to the proof of case 1 and is left to the reader. \Box

3. Representations of Semigroupoids

In this section the notion of representation of a semigroupoid is introduced. Also, a universal C^* -algebra is associated to a cancellative semigroupoid. The concept of a *tight representation* and the fact that a source element transfres to the zero operator by a tight representation are discussed.

Throught this section, G is a semigroupoid and A is a unital C^* -algebra.

Definition 3.1. Let $x, y \in G$. We shall say that x and y intersect if they have a common multiple, that is, if there exists an element m of G such that x|m and y|m. The fact that x and y are intersect is denoted by $x \cap y$. Otherwise we will say that x and y are disjoint and is denoted

by $x \perp y$.

The next concept is crucial in understanding the definition of a tight representation.

Definition 3.2. If X is any subset of G and $Z \subseteq X$, then Z is called a covering of X if for every $x \in X$, there exists $h \in Z$ such that x and h are intersect.

The next definition is the first step in bridging semigroupoids and operator algebras.

Definition 3.3. By a representation of G in A we mean a mapping

$$\Pi:G\to A$$

such that $\Pi(x) = \Pi_x$ is a partial isometry and if $x, y \in G$ then

$$\Pi_x \Pi_y = \begin{cases} \Pi_{xy}, & if(x,y) \in G^{(2)}, \\ 0, & otherwise. \end{cases}$$

Moreover the initial projections $Q_x = \Pi_x^* \Pi_x$, and the final projections $P_y = \Pi_y \Pi_y^*$ should commute among themselves and satisfy to the following conditions:

(i)
$$P_x P_y = 0$$
, if $x \perp y$;

(ii)
$$Q_x P_y = P_y$$
, if $(x, y) \in G^{(2)}$;

(iii)
$$Q_x P_y = 0$$
, if $(x, y) \notin G^{(2)}$.

It should be noted that any representation extends to \tilde{G} by taking $\Pi(1) = \Pi_1 = 1$ and $Q_1 = P_1 = 1$.

Here we are able to present the reason why we choose cancellative semigroupoid.

If G is not a cancellative semigroupoid, that is, there exists x in G such that for a distinct pair of elements $y, z \in G$ we have xy = xz. For given representation Π , since Π_x is a partial isometry we have

$$\Pi_y = \Pi_y \Pi_y^* \Pi_y = (\Pi_y \Pi_y^*) \Pi_y = P_y \Pi_y = Q_x P_y \Pi_y$$

$$= \Pi_x^* \Pi_x \Pi_y \Pi_y^* \Pi_y = \Pi_x^* \Pi_x \Pi_y = \Pi_x^* (\Pi_x \Pi_y) = \Pi_x^* \Pi_{xy}.$$

And,

$$\Pi_z = \Pi_z \Pi_z^* \Pi_z = (\Pi_z \Pi_z^*) \Pi_z = P_z \Pi_z =$$

$$Q_x P_z \Pi_z = \Pi_x^* \Pi_x \Pi_z \Pi_z^* \Pi_z = \Pi_x^* \Pi_x \Pi_z = \Pi_x^* (\Pi_x \Pi_z) = \Pi_x^* \Pi_{xz}.$$

Since xz = xy we have $\Pi_{xy} = \Pi_{xz}$, that is $\Pi_y = \Pi_z$ whereas $y \neq z$. This shows that if G is not a cancellative semigroupoid, then we may have $\Pi(y) = \Pi(x)$ for some x, y such that $x \neq y$.

Before we present the definition of a *tight* representation we need to know some more about representations.

For given $x \in G$ and $z \in G^x$, since $(x, z) \in G^{(2)}$ we know that the initial projection, $Q_x = \Pi_x^* \Pi_x$, and the final projection, $P_z = \Pi_z \Pi_z^*$, commute and $Q_x P_z = P_z$. Also, we know that $Q_x P_z = P_z$ is equivalent to $P_z \leqslant Q_x$. So, if $z_1, z_2 \in G^x$ we have $P_{z_1} \leqslant Q_x$ and $P_{z_2} \leqslant Q_x$.

Consequently $P_{z_1} \vee P_{z_2} \leqslant Q_x$, and if H is a finite subset of G^x we have

$$\bigvee_{z \in H} P_z \leqslant Q_x.$$

If $y \in \tilde{G}$ and $z \in G - G^y$ then $(y, z) \notin G^{(2)}$, hence $Q_y P_z = P_z Q_y = 0$. Therefore, from $P_z = P_z$ we have $P_z = P_z - P_z Q_y = P_z (1 - Q_y)$ which is equivalent to $P_z \leq 1 - Q_y$. Since z is an arbitrary element of $G - G^y$ we conclude that if H is a finite subset of $G - G^y$, then we have

$$\bigvee_{z \in H} P_z \leqslant 1 - Q_y$$

Now for given finite subsets X, Y of G, let

$$G^{X,Y} = (\bigcap_{x \in X} G^x) \cap (\bigcap_{y \in Y} G - G^y).$$

If $z \in G^{X,Y}$, then from $z \in \bigcap_{x \in X} G^x$ we conclude that $P_z \leqslant Q_x$ for all $x \in X$ and as a consequence

$$P_z \leqslant \prod_{x \in X} Q_x. \tag{1}$$

Also, from $z \in \bigcap_{y \in Y} G - G^y$ we have $P_z \leq 1 - Q_y$ for all $y \in Y$, and consequently

$$P_z \leqslant \prod_{y \in Y} (1 - Q_y). \tag{2}$$

From (1) and (2), for given $z \in G^{X,Y}$ we have

$$P_z \leqslant \prod_{x \in X} Q_x \prod_{y \in Y} (1 - Q_y).$$

Also, for given finite subset H of $G^{X,Y}$, we conclude that

$$\bigvee_{z \in H} P_z \leqslant \prod_{x \in X} Q_x \prod_{y \in Y} (1 - Q_y).$$

With this in mind we can present the following important definition.

Definition 3.4. A representation Π of G in A is said to be tight if for every subsets X, Y of \tilde{G} and every covering H of $G^{X,Y}$ the following equality holds

$$\bigvee_{z \in H} P_z = \prod_{x \in X} Q_x \prod_{y \in Y} (1 - Q_y).$$

It should be noted that if no such covering exists, then any representation is tight vacuously.

Before we present the definition of the C^* -algebra of a semigroupoid we need to introduce the concept of a universal C^* -algebra.

In recent years, universal constructions play a crucial role in the theory of operator algebras, specially in the theory of C^* -algebras. In other words, many important C^* -algebras can be expressed as universal C^* -algebras generated by a given set and a set of relations which satisfy in certain conditions. In what follows we will describe that, what do we mean by a universal C^* -algebra generated by a set and a set of relations.

Suppose a set $B = \{b_i : i \in \Omega\}$ of generators and a set R of relations are given. It should be noted that the relations can be of a very general

nature. Usually, some algebraic relations between generators and their adjoints exist. The only restriction on the relation is that:

- (i) they must be realizable among operators on a Hilbert space.
- (ii) each generator should have an upper bound when realized as an operator.

A representation of (B|R) is a set $\{T_i : i \in \Omega\}$ of bounded operators on a Hilbert space H which satisfying in the given relations. Each such representation of (B|R) defines a *-representation of the free *-algebra \mathcal{A} on the set B. For given $x \in \mathcal{A}$, let

$$||x|| = \sup\{||\Pi(x)|| : \Pi \text{ is a representation of } (B|R)\}.$$

This supremum defines a C^* -seminorm on \mathcal{A} provided that it is finite. If the elements of seminorm 0 are divided out, then the completion of \mathcal{A} is called the *universal* C^* -algebra generated by B, R, or the *universal* C^* -algebra on (B|R), and is denoted by $C^*(B|R)$.

Example 3.5. Let $B = \{x\}$ and $R = \{x = x^*, ||x|| < 1\}$. Then $C^*(B|R)$ is the universal C^* -algebra generated by a single self-adjoint element of norm 1.

Note that there is no universal C^* -algebra generated by a single self-adjoint element, because there is no bound on the norm of the element. For more on universal C^* -algebras, see Chapter II of [1].

Here, we introduce a universal C^* -algebra which contains the C^* -algebra

of semigroupoid.

G?

Definition 3.6. Let G be a semigroupoid, $B = \{\Pi_x\}_{x \in G}$ be a family of partial isometries and R be the set of all relations such that the correspondence $x \to \pi_x$ is a tight representation of G. The unital universal C^* -algebra generated by B, R, that is, $C^*(B|R)$ denoted by $\tilde{O}(G)$. In order to give the definition of the C^* -algebra of a semigroupoid G we need to know that, what do we mean by the universal representation of

Definition 3.7. A collection of partial isometries, $\{\Pi_x\}_{x\in G}$, such that the correspondence $x\to\Pi_x$ is a tight representation of G is called the universal representation of G.

Now, we are ready to present the definition of the C^* -algebra of a semi-groupoid.

Definition 3.8. The closed *-subalgebra of $\tilde{O}(G)$ which is generated by the range of the universal representation of G denoted by O(G), is the C^* -algebra of G.

We close this section by the following important theorem.

Theorem 3.9. If Π is a tight representation of a semigroupoid, G and $x \in G$ is a source element, then $\Pi_x = 0$.

Proof. Since x is a source element, we have $G^x = \phi$. From the fact

that empty set is a covering for G^x , we conclude that $Q_x = 0$. Since $Q_x = \Pi_x^* \Pi_x$, we have $\Pi_x = 0$. \square

References

- [1] B. Blackadar, Operator Algebras, Theory of C*-Algebras and Von Neumann Algebras, Springer-Verlag, Berlin Heidelberg, 2006.
- [2] J. Duncan and A. L. T. Paterson, C^* -algebras of inverse semigroups, Proc. Roy. Soc. Edinburgh Math. Soc., 28 (1985), 41-58.
- [3] J. Duncan and A. L. T. Paterson, C^* -algebras of Clifford semigroups, Proc. Edinburgh Math. Soc. A, 111(1989), 129-145.
- [4] R. Exel, Circle actions on C^* -algebras, Partial automorphisms and a generalized Pimsner-Voiculescu exact sequence, J. Funct. Anal., 122 (1994), 361-401.
- [5] R. Exel, Partial actions of groups and actions of inverse semigroups, *Proc. Amr. Math. Soc.*, 126 (12) (1998), 3481-3494.
- [6] R. Exel, Inverse semigroups and combinatorial C^* -algebras, Bull. Braz. Math. Soc., 39(2) (2008), 191-313.
- [7] K. McClanahan, K-theory for partial crossed products by discrete groups, J. Funct. Anal., 130 (1995), 77-117.
- [8] A. L. Paterson, Weak containment and Clifford semigroups, *Proc. Roy. Soc. Edinburgh sect. A*, 81 (1987), 23-30.
- [9] N. Sieben, C*-crossed products by partial actions and actions of inverse semigroups, J. Australian Math. Soc., 63 (1997), 32-46.
- [10] B. Tabatabaie Shourijeh, Partial inverse semigroup C^* -algebra, Taiwanese J. of Math., Vol. 1, No. 6 (2006), 1539-1548.
- [11] J. R. Wordingham, The left regular *-rpresentation of an inverse semi-group, *Proc. Amer. Math. Soc.*, 86 (1982), 55-58.

Bahman Tabatabaie

Department of Mathematics College of Sciences Shiraz University Shiraz 71454, Iran.

E-mail: tabataba@math.susc.ac.ir