P-Dense Submodules

H. Khabazian and S. Safaeeyan

Isfahan University of Technology

Abstract. Let M and P be right R-modules. A submodule K of an R-module M is called P-dense if for each $m \in M, (K:m)$ is a P-faithful right ideal of R. P_R is nonsingular if and only if, for each R-module M, every essential submodule of M is a P-dense submodule. For any R-module M, we obtain P-rational extention of M and equivalent condition in order that M is equal with its P-rational extention is found. An R-module P is called right Kasch if every simple R-module can be embedded in P. Finally, we given some equivalent conditions for an R-module P to be right Kasch.

AMS Subject Classification: 16W80.

Keywords and Phrases: P-donse submodule and right Kasch module.

1. Introduction

Throughout this paper, all rings are associative with non-zero identity and modules are unitary right module. For any R-module M, E(M)is injective hull of M. Let \mathcal{A} be a set of right ideals of R and K be a submodule of an R-module M. K is called \mathcal{A} -submodule of M, if for each $m \in M$, $(K : m) \in \mathcal{A}$. K denoted by $K \subseteq_{\mathcal{A}} M$. Let P be a right R-module and I be a right ideal of R. I is called P-faithful, if

$$ann_P(I) = \{ p \in P : pI = 0 \} = 0.$$

Let \mathcal{A} be the set of all P-faithful right ideals of R and K be a submodule of M. If $K \subseteq_{\mathcal{A}} M$, then K is called a P-dense submodule. Dense submodules have been investigated by several authors some of their recent work are cited in the reference. If K is a P-dense submodule of M, then we denote it by $K \subseteq_P M$. In Section 2, we study properties of P-dense submodules of an R-module M. Equivalent conditions are given for a submodule to be P-dense are found 2.4. and show that P is a nonsingular R-module if and only if for each right R-module M, its essential submodules are P-dense submodules. In Section 3, we study modules are called right Kasch R-modules.

2. P-Dense Submodules

Lemma 2.1. Let M and P be right R-modules and K be a submodule of M. The following are equivalent.

- (i) K is a P-dense submodule of M.
- (ii) For each $m \in M$ and non-zero element $p \in P$, there exists $r \in R$ such that $pr \neq 0$ and $mr \in K$.

proof. $(i) \Rightarrow (ii)$ Let $m \in M$ and $0 \neq p \in P$. By (i), (K : m) is P-faithful, then $p(K : m) \neq 0$.

 $(ii) \Rightarrow (i)$ Let $m \in M$ and $p \in P$ such that p(K : m) = 0. If $p \neq 0$, by (ii), there exists $r \in R$ such that $pr \neq 0$ and $mr \in K$. Thus $p(K : m) \neq 0$, a contradiction. \square

Example 2.2. If K is a dense submodule of a right module M over a ring R, then K is M-dense.

Example 2.3. Every essential submodule of a Z-module is Z-dense.

Theorem 2.4. Let M and P be R-modules and K be a submodule of M. The following are equivalent.

- (i) $K \subseteq_P M$.
- (ii) $Hom_R(M/K, E(P)) = 0$.
- (iii) For any submodule Q of M such that $K \subseteq Q \subseteq M, Hom_R$ (Q/K, P) = 0.

Proof. $(i) \Rightarrow (ii)$ Let $f \in Hom_R(M, E(P))$ be such that f(K) = 0. If $f \neq 0$, then $f(m) \neq 0$ for some non-zero element $m \in M$. Since $P \subseteq_{ess} E(P)$, there exists $r \in R$ such that $0 \neq f(mr) = f(m)r \in P$. Since $K \subseteq_P M$, there exists $s \in R$ such that $f(mr)s = f(mrs) \neq 0$ and $mrs \in K$, a contradiction.

 $(ii) \Rightarrow (iii)$ Assume that, for some Q as in (iii), there exists a non-zero R-homomorphism $g \in Hom_R(Q, P)$ such that g(K) = 0. Since E(P) is an injective R-module, then g can be extended to $\bar{g} \in Hom_R(M, E(P))$.

Since $\bar{g}(K) = g(K) = 0$, by (ii), $\bar{g} = 0$, a contradiction.

 $(iii) \Rightarrow (i)$ Suppose that p(K:m) = 0 for some $m \in M$ and $p \in P \setminus \{0\}$. We define $f: K + mR \to P$ by

$$f(k+mr)=pr \qquad (k\in K, r\in R).$$

This map is well-defined, for, if $k+mr=\acute{k}+m\acute{r}$, then $(k-\acute{k})=m(\acute{r}-r)\in K$. Hence $p(\acute{r}-r)=0$. Clearly, f is an R-homomorphism vanishing on K. So by (iii), 0=f(m)=p, a contradiction. \square

Proposition 2.5. Let M and P be R-modules and K and L be submodules of M. Then

- (i) If $K \subseteq_P M$, $L \subseteq_P M$, then $K \cap L \subseteq_P M$.
- (ii) Let $L \subseteq K \subseteq M$. Then $L \subseteq_P M$ if and only if $L \subseteq_P K$ and $K \subseteq_P M$.
- **Proof.** (i) Let $m \in M$ and $p \in P \setminus \{0\}$. Since $K \subseteq_P M$, there exists $r \in R$ such that $pr \neq 0$ and $mr \in K$. Since $L \subseteq_P M$, there exists $s \in R$ such that $prs \neq 0$ and $mrs \in L$. Thus $prs \neq 0$ and $mrs \in K \cap L$.
- (ii) It is sufficient to prove the "if" part. Assume that $L \subseteq_P K$ and $K \subseteq_P M$. Let $m \in M$ and $p \in P \setminus \{0\}$. There exists $r \in R$ such that $pr \neq 0$ and $mr \in K$ since $K \subseteq_P M$. Since $L \subseteq_P K$, there exists $s \in R$ such that $prs \neq 0$ and $mrs \in L$. \square

Let M be a right module over a ring R. An element $m \in M$ is said

to be singular element of M if the right ideal $ann_r(m)$ is essential in R_R . The set of all singular elements of M is denoted by Z(M). The right R-module M is called nonsingular module, if Z(M) = 0.

Theorem 2.6. For any R-module P, the following are equivalent.

- (i) P is a nonsingular R-module.
- (ii) Every essential submodule of any R-module M is a P-dense submodule.

Proof. (i) \Rightarrow (ii) Let M be a right R-module and $K \subseteq_{ess} M$. Let $m \in M$ and $p \in P \setminus \{0\}$. Since K is an essential submodule of M, then $(K : m) \subseteq_{ess} R$. If p(K : m) = 0, then $(K : m) \subseteq ann_r(p) \subseteq R$. Since $(K : m) \subseteq_{ess} R$, then $ann_r(p) \subseteq_{ess} R$ and hence $p \in Z(P)$, a contradiction.

 $(ii) \Rightarrow (i)$ Let $p \in Z(P)$. Then $ann_r(p) \subseteq_{ess} R$. By (ii), $ann_r(p) \subseteq_P R$. If $p \neq 0$, then there exists $r \in R$ such that $pr \neq 0$ and $1.r \in ann_r(p)$, a contradiction. \square

Definition 2.7. For two R-modules M and P, we define $\tilde{E}_P(M) = \{x \in E(M) : \forall f \in Hom_R(E(M), E(P)), f(M) = 0 \Rightarrow f(x) = 0\}.$

Lemma 2.8. Let P and M be R-modules and N be any submodule of E(M) containing M. Then $M \subseteq_P N$ if and only if $N \subseteq \tilde{E}_P(M)$.

Proof. For the "if" part, it suffices to show that $Hom_R(N/M, E(P)) =$

0. Assume that, $f \in Hom_R(N, E(P))$ such that f(M) = 0. Since E(P) is an injective R-module, then f can be extended to $\bar{f} \in Hom_R(E(M), E(P))$. Since $\bar{f}(M) = f(M) = 0$ and $N \subseteq \tilde{E}_P(M)$, then $f(N) = \bar{f}(N) = 0$. Hence f = 0. For the "only if" part, assume that $M \subseteq_P N$ and consider $f \in Hom_R(E(M), E(P))$ such that f(M) = 0. If $f(N) \neq 0$, then there exists $n \in N \setminus \{0\}$ such that $f(n) \in E(P) \setminus \{0\}$. Since $P \subseteq_{ess} E(P)$, there exists $r \in R$ such that $f(n)r = f(nr) \in P \setminus \{0\}$. For $nr \in N$ and $f(nr) \in P \setminus \{0\}$, $M \subseteq_P N$ implies that $f(nr).s = f(nrs) \in P \setminus \{0\}$ and $nrs \in M$, for some $s \in R$. It is a contradiction, since f(M) = 0. \square

Proposition 2.9. For two R-modules M and P, we have

$$\tilde{E}_P(M) = \{ m \in E(M) : \forall x \in E(P) \setminus \{0\}, x(M:m) \neq 0 \}.$$

Proof. Let $m \in \tilde{E}_P(M)$ and $x \in E(P) \setminus \{0\}$. Since P is an essential submodule of E(P), there exists $r \in R$ such that $xr \in P \setminus \{0\}$. By Lemma 2.8. $M \subseteq_P \tilde{E}_P(M)$ and hence there exists $s \in R$ such that $xrs \neq 0$ and $mrs \in M$, hence $x(M:m) \neq 0$. Conversely, assume $m \in RHS$ and $f \in Hom_R(E(M), E(P)) \neq 0$ such that f(M) = 0. If $f(m) \neq 0$, then by hypothesis, $f(m)(M:m) \neq 0$. Thus there exists $r \in R$ such that $f(m)r = f(mr) \neq 0$ and $mr \in M$. It is a contradiction, since f(M) = 0. \square

Definition 2.10. An R-module M_R is called rationally P-complete if

 $\tilde{E}_P(M) = M.$

Theorem 2.11. For any R-modules M and P, the following are equivalent.

- (i) M is rationally P-complete.
- (ii) For any R-modules $A \subseteq B$ such that $Hom_R(B/A, E(P)) = 0$, any R-homomorphism $f : A \to M$ can be extended to B.

Proof. $(i) \Rightarrow (ii)$. Let $A \subseteq B$ be R-modules such that $Hom_R(B/A, E(P))$ = 0, and let $f \in om_R(A, M)$. Since E(M) is an injective R-module, We can extended f to $g: B \to E(M)$. We claim that

$$M \subseteq_P M + g(B)$$
.

Once we have proved this, then lemma 2.8. and (i) imply that $g(B) \subseteq M$ and we are done. By theorem 2.4. it suffices to prove that

$$Hom_R((M+g(B))/M, E(P)) = 0.$$

Suppose $h \in Hom_R((M+g(B))/M, E(P))$. Define R-homomorphism $\acute{h} \in Hom_R(B/A, (M+g(B))/M)$ by $\acute{h}(b+A) = g(b) + M$ $(b \in B)$. Since $Hom_R(B/A, (M+g(B))/M)$

E(P) = 0, $h\dot{h} = 0$. Hence for each $m \in M$ and $b \in B$,

$$h((m+g(b)) + M) = h(g(b) + M) = hoh(b + A) = 0.$$

Therefore h=0. $(ii)\Rightarrow (i)$ By theorem 2.4. $M\subseteq_P \tilde{E}_P(M)$, and so $Hom_R(\tilde{E}_P$

(M)/M, E(P)) = 0. By (ii), the identity map $id : M \to M$ can be extended to an R-module $g : \tilde{E}_P(M) \to M$ such that gi = id, where $i : M \to \tilde{E}_P(M)$ is an inclusion map. Therefore $\tilde{E}_P(M) = \ker g \oplus Im i$. Since $\ker g \cap M = 0$ and M is an essential submodule of E(M), then $\ker g = 0$. Hence

$$\tilde{E}_P(M) = Im \ i = M.$$

3. Right Kasch R-modules

If S is a simple right module and P is a right module over a ring R, it is of interest to know whether S can be embedded in P. Consideration of this issue leads to the notion of right Kasch R-modules.

Definition 3.1. Let P be a right module over a ring R. We say that P is right Kasch R-module if every simple right R-module S can be embedded in P.

Theorem 3.2. Let P be a right module over a ring R. For any maximal right ideal m of R, the following are equivalent.

- (i) R/m embeds to P_R .
- (ii) $m = ann_r(x)$ for some $x \in P$.
- (iii) m is not a P-faithful right ideal.
- (iv) $m = ann_r(ann_P(m))$.
- (v) m is not P-dense in R_R .

Proof. (i) \Rightarrow (ii) Let $f \in Hom_R(R/m, P)$ be a monomorphism and $0 \neq x = f(1+m)$. For each $r \in m$,

$$xr = f(1+m)r = f(r+m) = f(m) = 0.$$

Therefore $r \in ann_r(x)$. Hence $m \subseteq ann_r(x)$. Since $ann_r(x) \neq R$, then $m = ann_r(x)$.

 $(ii) \Rightarrow (iii)$ Let $m = ann_r(x)$ for some non-zero element $x \in P_R$. Then xm = 0, therefore m is not a P-faithful right ideal of R.

 $(iii) \Rightarrow (iv)$ We know that $ann_P(m).m = 0$, then $m \subseteq ann_r(ann_P(m))$. If $ann_r(ann_P(m)) = R$, then $ann_P(m) = 0$. Hence m is a P-faithful, a contradiction. Therefore $ann_r(ann_p(m))$ is a proper right ideal of R and hence

$$m = ann_r(ann_P(m)).$$

 $(iv) \Rightarrow (v)$ Since $ann_P(m) \neq 0$, there exists $0 \neq p \in ann_P(m)$. For $1 \in R$, (m:1) = m, and hence

$$pm = p(m:1) = 0.$$

Therefore m is not P-dense in R_R , by Lemma 2.1.

 $(v) \Rightarrow (i)$ By Theorem 2.4. since m is not P-dense in R_R , then Hom_R $(R/m, E(P)) \neq 0$. Let f be a non-zero element of $Hom_R(R/m, E(P))$. Since R/m is a simple R-module, f is a monomorphism and hence $Im\ f \simeq R/m$. Since P is an essential submodule of E(P), then $Im\ f \cap$

 $P \neq 0$. Since $Im\ f$ is a simple R-module, then $Im\ f \cap P = Im\ f$. Therefore $Im\ f \subseteq P$. This show that $f:R/m \to P$ is a monomorphism. \square

Corollary 3.3. For any right R-module P, the following are equivalent.

- (i) P is a right Kasch module.
- (ii) Any maximal right ideal in R has the form $ann_r(x)$ for some $x \in P$.
- (iii) The set of P-faithful right ideals of R does not contain any maximal right ideal of R.
- (iv) For any maximal right ideal m of R, $ann_r(ann_P(m)) = m$.
- (v) The only P-dense right ideal in R is R itself.
- (vi) For any proper right ideal I of R, $ann_P(I) \neq 0$.
- **Proof.** $(i) \Rightarrow (ii)$ Let m be a maximal right ideal of R, then the simple R-module R/m embeds in P. By Theorem 3.1, $m = ann_r(x)$ for some $x \in P$.
- $(ii) \Rightarrow (iii) \Rightarrow (iv)$ By Theorem 3.1.
- $(iv) \Rightarrow (v)$ Let J be a proper P-dense right ideal of R_R . There exists a maximal right ideal m containing J. By Proposition 2.5. m is a P-dense in R_R . By Theorem 3.1. $m \neq ann_r(ann_P(m))$, a contradiction.
- $(v) \Rightarrow (i)$ For each maximal right ideal m of R, m is not P-dense in R. By Theorem 3.2. R/m embeds in P. Which implies that P is a right Kasch R-module.
- $(ii) \Rightarrow (vi)$ Let I be a proper right ideal of R. There exists a maximal

right ideal m contains I. By (ii), $m = ann_r(x)$ for some $0 \neq x \in P$. Then $I \subseteq m = ann_r(x)$, and so xI = 0. It implies that $ann_P(I) \neq 0$. $(vi) \Rightarrow (iii)$ For any maximal right ideal m of R, $ann_P(m) \neq 0$. Then m is not P-faithful. \square

References

- [1] T. Albu and R. Wisbauer, Kasch modules, in: Advances in ring theory (Granville, OH, 1996), *Trends in mathematics*, Birkhavser, Boston, 1997, 1-16.
- [2] F. W. Anderson and K. R. Fuller, *Rings and categories of modules*, Springer-Verlage, New York, 1974.
- [3] H. Khabazian, Like-annihilator submodules and weakly polyform modules, *Preprint*.
- [4] T. Y. Lam, *Lectures on modules and rings*, Graduate Texs in Math., Springer-Verlage. New York, 1999.
- [5] R. Wisbauer, Foundations of module and ring theory, Philadelphia: Gordon and Breach, 1991.

Hossein Khabazian

Department of Mathematical sciences Isfahan University of Technology Isfahan,Iran E-mail: khabaz@cc.iut.ac.ir

Saeid Safaeeyan

Department of Mathematical sciences Isfahan University of Technology Isfahan, Iran E-mail: ssafaee2008@yahoo.com