An Application of Linear Algebra over Lattices

M. Hosseinyazdi
Payame Noor University(PNU)

Abstract

In this paper, first we consider L^{n} as a semimodule over a complete bounded distributive lattice L. Then we define the basic concepts of module theory for L^{n}. After that, we proved many similar theorems in linear algebra for the space L^{n}. An application of linear algebra over lattices for solving linear systems, was given.

AMS Subject Classification: 06DXX; 15A03; 16D10; 06F05.
Keywords and Phrases: Lattices, semimodule, linear algebra, linear system.

1. Introduction

Fuzzy linear systems of equations and inequalities over a bounded chain have been studied by many authors [6], [8], [7]. To extend this concept to L-fuzzy linear systems over a bounded distributive lattice L, we need some basic definitions of linear algebra over lattices such as linearly independent subset, a subsemimodule generated by a set and so on. For more details see [3], [2]. By defining subsemimodule generated by a set, we can find a theoretical necessary and sufficient condition for
consistency of the linear system of equations $A * X=b$ over a bounded distributive lattice.

Definition 1.1. Let $(H, *)$ be a commutative semigroup (monoid) with a reflexive and transitive order \leqslant on $i t .(H, *, \leqslant)$ is called an ordered commutative semigroup (monoid) if

$$
a \leqslant b \Longrightarrow a * c \leqslant b * c \quad \forall a, b, c \in H .
$$

Definition 1.2. Let $(H, *)$ be a commutative group (resp. semigroup, monoid) with a partial order \leqslant. $(H, *, \leqslant)$ is called a lattice-ordered commutative group (resp. semigroup, monoid), if

$$
a \leqslant b \Longrightarrow a * c \leqslant b * c, \quad \forall a, b, c \in H .
$$

For simplicity, we call it l-group (resp. l-semigroup, l-monoid).

Example 1.3. Every lattice (L, \leqslant) is a l-semigroup, by letting $*=\wedge$. Clearly a bounded lattice is a 1 -monoid in this way.

Definition 1.4. Let $\operatorname{Mat}_{n \times m}(L)$ be the set of all $n \times m$ matrices over the lattice (L, \leqslant). Define a partial order relation on $M a t_{n \times m}(L)$ as follows: $X \leqslant Y \Leftrightarrow x_{i j} \leqslant y_{i j} ; \quad$ for all $i=1,2, \ldots, n$ and $j=1,2, \ldots, m$, where $X, Y \in \operatorname{Mat}_{n \times m}(L)$. One can see that $\left(\operatorname{Mat}_{n \times m}(L), \leqslant\right)$ is a lattice where its supremum and infimum are defined componentwise on $M a t_{n \times m}(L)$ induced by the supremum and infimum of lattice L, respectively.

Definition $1.5([10])$. Let (R, \oplus) be a commutative monoid with neutral element 0 and (R, \otimes) be a monoid with neutral element 1 where $0 \neq 1$. Then, (R, \oplus, \otimes) is called a semiring with unity 1 and zero 0, if for all $a, b, c \in R$, the following conditions hold:
(a) $a \otimes(b \oplus c)=(a \otimes b) \oplus(a \otimes c)$,
(b) $(b \oplus c) \otimes a=(b \otimes a) \oplus(c \otimes a)$,
(c) $0=a \otimes 0=0 \otimes a$.

Example 1.6. Let L be a bounded distributive lattice. Then, (L, \vee, \wedge) and (L, \wedge, \vee) are semirings.

Definition $1.7([10]) .(R, \oplus, \otimes, \leqslant)$ is called an ordered semiring if
(a) (R, \oplus, \otimes) is a semiring,
(b) (R, \oplus, \leqslant) is an ordered commutative monoid,
(c) for all $a, b, c, d \in R$,
(i) $a \leqslant b$ and $c \geqslant 0 \Longrightarrow a \otimes c \leqslant b \otimes c$ and $c \otimes a \leqslant c \otimes b$,
(ii) $a \leqslant b$ and $d \leqslant 0 \Longrightarrow a \otimes d \geqslant b \otimes d$ and $d \otimes a \geqslant d \otimes b$.

Definition $1.8([10])$. Let $(H, *, \leqslant)$ be a commutative ordered monoid with neutral element e and let (R, \oplus, \otimes) be a semiring with unity 1 and zero 0.

Moreover, suppose that. : $R \times H \longrightarrow H$ is a scalar multiplication such that for all $\alpha, \beta \in R$ and for all $a, b \in H$:
(a) $(\alpha \otimes \beta) \cdot a=\alpha \cdot(\beta \cdot a)$,
(b) $(\alpha \oplus \beta) \cdot a=(\alpha \cdot a) \oplus(\beta \cdot a)$,
(c) $\alpha \cdot(a * b)=(\alpha . a) *(\alpha . b)$,
(d) $0 . a=e$,
(e) $1 . a=a$,
then, $(R, \oplus, \otimes, H, *,$.$) is called an ordered semimodule over R$.

Remark 1.9. Let L be a bounded distributive lattice.

Then, $(L, \vee, \wedge, L, \vee, \wedge)$ and $(L, \wedge, \vee, L, \wedge, \vee)$ are semimodules over (L, \vee, \wedge) and (L, \wedge, \vee), respectively.

Upward and downward sets, as important notions in optimization (see [4], [5]), are used in [9] as in the following definition.

Definition 1.10. Let (L, \leqslant) be a lattice.
(i) A subset $U \subseteq L$ is called upward set if $(a \in U, x \geqslant a) \Longrightarrow x \in U$.
(ii) A subset $D \subseteq L$ is called downward set if $(a \in D, x \leqslant a) \Longrightarrow x \in D$.

Example 1.11. Let (L, \leqslant) be a lattice and $a \in L$. Then $\{x \in L \mid x \geqslant a\}$ is an upward set and $\{x \in L \mid x \leqslant a\}$ is a downward set.

We can easily prove the following proposition.

Proposition 1.12. Let (L, \leqslant) be a lattice and $M_{i} \subseteq L$ for $i \in I$. Then $\bigcup_{i \in I} M_{i}$ is an upward (resp. downward) set if each $M_{i} ; i \in I$ is upward (resp. downward) set.

2. Basis For Semimodules

In this section we need to extend some basic definition of linear algebra to concepts of lattices. In this case suppose L is a complete distributive lattice and consider L^{n} as $\operatorname{Mat}_{n \times 1}(L)$, the set of all $n \times 1$ matrices over L. By Definition 1.4., L^{n} is a lattice. Clearly L^{n} is a distributive complete lattice if L is so. For every bounded distributive lattice L, (L, \vee, \wedge) is a semiring by Example 1.6. and hence $\left(L^{n}, \wedge, \leqslant\right)$ is a latticeordered commutative monoid, by Example 1.3. So we can construct a semimodule as follows.

Theorem 2.1. Let L be a distributive complete lattice. Then $\left(L^{n}, \vee, \leqslant\right)$ is a semimodule over (L, \vee, \wedge).

Proof. Let L be a bounded distributive lattice. Then $\left(L^{n}, \vee, \leqslant\right)$ is a semimodule over (L, \vee, \wedge) with scalar multiplication $\bar{\wedge}$ defined by $\bar{\wedge}: L \times L^{n} \longrightarrow L^{n}$ such that

$$
\alpha \bar{\wedge}\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\cdot \\
\cdot \\
\cdot \\
a_{n}
\end{array}\right)=\left(\begin{array}{c}
\alpha \wedge a_{1} \\
\alpha \wedge a_{2} \\
\cdot \\
\cdot \\
\cdot \\
\alpha \wedge a_{n}
\end{array}\right)
$$

which for simplification, we write it as \wedge.
In this way $\left(L^{n}, \vee, \leqslant\right)$ satisfies all conditions of Definition 1.8. Note that
the identity element of $\left(L^{n}, \vee\right)$ is a column matrix which all of its entry are equal to 0 .

Definition 2.2. Let $(H, *, \leqslant)$ be a semimodule over semiring (R, \oplus, \otimes) and K be a subset of H such that $(K, *, \leqslant)$ is a monoid. Then $(K, *, \leqslant)$ is called a subsemimodule of $(H, *, \leqslant)$ if it is a semimodule over (R, \oplus, \otimes) and it is denoted by $K \leqslant_{m} H$.

The following theorem can be proved easily.

Theorem 2.3. Let $(H, *, \leqslant)$ be a semimodule over semiring (R, \oplus, \otimes) and K be a subset of H. Then $K \leqslant_{m} H$ if and only if
(i) $e \in K$
(ii) $x * y \in K \quad$ for all $\quad x, y \in K$,
(iii) a.x $\in K$ for all $a \in R$, and $\quad x \in K$.

Corollary 2.4. Let L be a distributive complete lattice and K be a sublattice of L which contains 0 . Then $\left(K^{n}, \vee, \leqslant\right)$ is a semimodule over (L, \vee, \wedge) if and only if for every elements $x \in L$ and $y \in K$, we have $x \wedge y \in K$.

Example 2.5. Let $L=\{1,2,3,4,6,9,12,18,36\}$ and $x \leqslant y$ if x divides y. Consider the sublattice $K=\{1,2,3,6\}$. Then, L and K satisfy on Corollary 2.4. Hence $\left(K^{n}, \vee, \leqslant\right)$ is a semimodule over (L, \vee, \wedge).

Definition 2.6. Let $(H, *, \leqslant)$ be a semimodule over (R, \oplus, \otimes) and X be
a subset of H.
(i) The subsemimodule hull of (or subsemimodule generated by) X is the intersection of all subsemimodules of H which contains X and denoted by $\langle X\rangle$. Hence

$$
<X>=\bigcap_{X \subseteq K \leqslant H} K
$$

In the other words, $\langle X\rangle$ is the smallest subsemimodule of H which contains X.
(ii) The upward hull of (or upward set generated by) X is defined as the intersection of all upward subsets of H which contains X and is denoted by $<X^{*}>$. So, $<X^{*}>=\bigcap\{K: X \subseteq K$ and K is an upward subset of $H\}$. In the other words, $\left\langle X^{*}\right\rangle$ is the smallest upward subset of H which contains X.
(iii) The downward hull of (or downward set generated by) X is defined as the intersection of all downward subsets of H which contains X and is denoted by $\left\langle X_{*}>\right.$. So, $\left\langle X_{*}\right\rangle=\bigcap\{K: X \subseteq K$ and K is a downward subset of $H\}$. In the other words, $\left\langle X_{*}\right\rangle$ is the smallest downward subset of H which contains X.

Lemma 2.7. Let $(H, *, \leqslant)$ be a semimodule over (R, \oplus, \otimes) and $x \in H$.
Then,
(i) $<\{x\}^{*}>=\{a \in H: a \geqslant x\}$, and
(ii) $<\{x\}_{*}>=\{a \in H: a \leqslant x\}$.

Definition 2.8. Let $(H, *, \leqslant)$ be a semimodule over semiring (R, \oplus, \otimes) with scalar multiplication "." and X be a subset of H. By a linear combination of elements $x_{1}, \ldots, x_{m} \in X$, we mean $\left(a_{1} \cdot x_{1}\right) * \ldots *\left(a_{m} \cdot x_{m}\right)$ where $a_{1}, \ldots, a_{m} \in R$ and m is a positive integer.

Theorem 2.9. Let $(H, *, \leqslant)$ be a semimodule over (R, \oplus, \otimes) and X be a subset of H.
(i) Consider $M=\left\{\left(a_{1} \cdot x_{1}\right) * \ldots *\left(a_{m} \cdot x_{m}\right) \mid x_{1}, \ldots, x_{m} \in X, a_{1}, \ldots, a_{m} \in R\right.$ and m is a positive integer $\}$; as the set of all finite linear combinations of elements of X. Then, $<X>=M$.
(ii) $<X^{*}>=\bigcup_{x \in X}<\{x\}^{*}>$.
(iii) $<X_{*}>=\bigcup_{x \in X}<\{x\}_{*}>$.

Proof. The proofs of (i)-(iii) follow from Lemma 2.7. Definition 2.8. and Proposition 1.12.

Example 2.10. Let $L=[0,10]$; the bounded chain of real numbers between 0 and 10. Consider semimodule $\left(L^{2}, \vee, \wedge\right)$ over (L, \vee, \wedge), where \leqslant is usual partial order on L. For $X_{1}=\left\{(2,3)^{T},(5,1)^{T}\right\}$ the subsemimodule generated by X_{1} is shown in Fig. 1.

Fig. 1. Subsemimodule hull of X_{1}

The upward hull of X_{1} is shown in Fig. 2.

Fig. 2. Upward hull of X_{1}

The downward hull of X_{1} is shown in Fig. 3.

Fig. 3. Downward hull of X_{1}

Now consider $X_{2}=\left\{(2,4)^{T},(5,9)^{T}\right\}$. The subsemimodule hull of X_{2} is shown in Fig. 4.

Fig. 4. Subsemimodule hull of X_{2}
The subsemimodule $<X_{3}>$, where $X_{3}=\left\{(3,1)^{T},(5,2)^{T},(2,4)^{T}\right\}$,
is as follows:

Fig. 5. Subsemimodule hull of X_{3}

Definition 2.11. Let $(H, *, \leqslant)$ be a semimodule over (R, \oplus, \otimes) with zero 0. A subset X of H is called linearly independent if for all finite subset $\left\{x_{1}, \ldots, x_{m}\right\} \subseteq X$, and elements $a_{1}, \ldots, a_{m} \in R ;\left(a_{1} \cdot x_{1}\right) * \ldots *\left(a_{m} \cdot x_{m}\right)=$ e imply $a_{1}=\ldots=a_{m}=0$. If the subset X is not linearly independent, it is called linearly dependent.

Example 2.12. Let $L=\{1,2,3,6\}$ and $x \leqslant y$ means that x divides y. Clearly (L, \vee, \leqslant) is a semimodule over (L, \vee, \wedge) with zero 1 . Since $2 \wedge 3=1$, the set $\{3\}$ is not linearly independent.

Remark 2.13. By the previous example, it is not true that if $x \neq 0$ then $\{x\}$ is linearly independent. But if L is a chain, then for every
non-zero element x, the set $\{x\}$ is linearly independent.

Definition 2.14. Let $(H, *, \leqslant)$ be a semimodule over $(R, \oplus, \otimes) . \quad A$ linearly independent subset B of H is called a basis for H over R, if $=H$.

Example 2.15. Let L be as in Example 2.5. (see Fig. 6).
In this lattice the following subsets of L are linearly independent:
$K_{1}=\{6\}, \quad K_{2}=\{6,12\}, \quad K_{3}=\{12,18\}$
$K_{4}=\{6,12,36\}, \quad K_{5}=\{6,12,18,36\}$
But the following subsets are linearly dependent:
$K_{6}=\{9\}, \quad K_{7}=\{2,3\}, \quad K_{8}=\{4,9\}, \quad K_{9}=\{6,9\}$
Some sublattices generated by above subsets of L are as follows:

$$
\begin{aligned}
& <K_{9}>=\{1,2,3,6,9,18\}, \quad<K_{3}>=<K_{4}>=<K_{5}>=<K_{8}>=L \\
& <K_{6}>=\{1,3,9\}
\end{aligned}
$$

Clearly K_{3}, K_{4} and K_{5} are bases of L. Also

$$
\begin{aligned}
& <\left(K_{9}\right)_{*}>=\{1,2,3,6,9\},<K_{9}^{*}>=\{6,9,12,18,36\} \\
& <\left(K_{5}\right)_{*}>=L,<K_{5}^{*}>=K_{5}
\end{aligned}
$$

Fig. 6. The relationship between elements of L

Remark 2.16. (i) Note that although $\left\langle K_{8}\right\rangle=L$, but K_{8} contains no linearly independent subset.
(ii) For the basis K_{3} we have $6=(6 \wedge 12) \vee(6 \wedge 18)=(2 \wedge 12) \vee(3 \wedge 18)=$ $(3 \wedge 12) \vee(2 \wedge 18)$. Therefore, representation of any elements of L in terms of a linear combination of elements of a basis is not unique.

Example 2.17. Suppose (L, \leqslant) be a bounded distributive lattice. Clearly, $\{1\}$ is a basis for (L, \wedge, \leqslant) over (L, \wedge, \vee). Note that in semimodule $\left(L^{2}, \wedge, \leqslant\right)$, the set $\left\{(1,1)^{T}\right\}$ is linearly independent but $\left.<\left\{(1,1)^{T}\right\}\right\rangle \neq$ L^{2}.

3. Consistency of $\mathbf{A} * \mathbf{X}=\mathbf{b}$.

In this section we consider semimodule $(H, *, \leqslant)$ over semiring (R, \oplus, \otimes). By a linear system of equations $A * X=b$ over R we mean the following equations:

$$
\left\{\begin{array}{c}
\left(a_{11} \cdot x_{1}\right) *\left(a_{12} \cdot x_{2}\right) * \ldots *\left(a_{1 n} \cdot x_{n}\right)=b_{1} \tag{*}\\
\left(a_{21} \cdot x_{1}\right) *\left(a_{22} \cdot x_{2}\right) * \ldots *\left(a_{2 n} \cdot x_{n}\right)=b_{2} \\
\cdot \\
\cdot \\
\cdot \\
\left(a_{m 1} \cdot x_{1}\right) *\left(a_{m 2} \cdot x_{2}\right) * \ldots *\left(a_{m n} \cdot x_{n}\right)=b_{m}
\end{array}\right.
$$

where $a_{i j} \in R$ and $x_{i}, b_{j} \in H$ for all $i=1,2, \ldots, n$ and $j=1,2, \ldots, m$.

Theorem 3.1. Let L be a bounded distributive lattice. Consider ($\left.L^{n}, \vee, \leqslant\right)$ as a semimodule over semiring (L, \vee, \wedge) with scalar multiplication " \wedge ". Let A, X and b are $m \times n, n \times 1$ and $m \times 1$ matrices over L, respectively. The linear system $A \vee X=b$ has a solution if and only if b belongs to the subsemimodule generated by columns of A.

Proof. If we show the columns of A by $A_{1}, A_{2}, \ldots, A_{n}$; then the linear system $A \vee X=b$ can shown by

$$
\left(x_{1} \wedge A_{1}\right) \vee\left(x_{2} \wedge A_{2}\right) \vee \ldots \vee\left(x_{n} \wedge A_{n}\right)=b
$$

and clearly the linear system has a solution if and only if $b \in<\left\{A_{1}, \ldots, A_{n}\right\}>$ by Theorem 2.9.

Example 3.2. Let L, K_{9} and K_{8} be as in Example 2.15. consider the linear equation

$$
\begin{equation*}
\left(6 \wedge x_{1}\right) \vee\left(9 \wedge x_{2}\right)=3 \tag{1}
\end{equation*}
$$

Then the set of all solutions of (1) is
$\left\{(1,3)^{T},(1,6)^{T},(1,12)^{T},(3,1)^{T},(3,3)^{T},(3,6)^{T},(3,12)^{T},(3,2)^{T},(3,4)^{T}\right.$, $\left.(9,1)^{T},(9,3)^{T},(9,6)^{T},(9,12)^{T},(9,2)^{T},(9,4)^{T}\right\}$.

Linear equation (1) has solution since $3 \in<K_{9}>$; the subsemimodule generated by $\{6,9\}$. But if we change right hand side of (1) to 12 we have:

$$
\begin{equation*}
\left(6 \wedge x_{1}\right) \vee\left(9 \wedge x_{2}\right)=12 \tag{2}
\end{equation*}
$$

Clearly (2) doesn't have any solution since $12 \notin K_{9}$. Now consider

$$
\begin{equation*}
\left(4 \wedge x_{1}\right) \vee\left(9 \wedge x_{2}\right)=b \tag{3}
\end{equation*}
$$

Since $\langle\{4,9\}\rangle=\left\langle K_{8}\right\rangle=L$, so (3) has solution for all $b \in L$.

Remark 3.3. Note that Theorem 3.1. gives a theoretical necessary and sufficient condition for consistency of (*). A computational necessary and sufficient condition for consistency of (${ }^{*}$) over a bounded chain was given in [6]. Finding such a condition(s) over a bounded distributive lattice is still an open problem.

References

[1] G. Gratzer, General lattice theory, Academic Press, New York San Francisco, 1978.
[2] M. Hosseinyazdi, The optimization problem over a distributive lattice, Journal of Global Optimization, 41 (2008), 283-298.
[3] M. Hosseinyazdi, A. Hassankhani and M. Mashinchi, Linear systems and optimization over lattices, Intrnational Review of Fuzzy Mathematics, 2 (1) (2007), 27-50.
[4] H. Mohebi, Downward sets and their best simultaneous approximation properties with applications, Numer. Funct. Anal. Optim., 25 (7-8) (2004), 685-705.
[5] H. Mohebi and A. Rabinov, Best approximation by downward sets with applications, Anal. Theory Appl, 22 (1) (2006), 1-22.
[6] K. Peeva, Fuzzy linear systems, Fuzzy Set and Systems, 49 (1992), 339355.
[7] K. Peeva, Universal algorithm for solving fuzzy relational equations, Ital. J. Pure Appl. Math. 19 (2006), 9-20.
[8] K. Peeva and Y. Kyosev, Fuzzy relational calculus, Advances in fuzzy systems-aplications and theory, Vol. 22, World scientific publishing Co. Pte. Ltd, Singapore, 2004.
[9] I. Singer, Abstract convex analysis, John Wiley \& Sons, INC. New York, 1997.
[10] U. Zimmermann, Linear and combinatorial optimization in ordered algebraic structures, North-Holland Publishing Company, Amesterdam, 1981.

Mahboobeh Hosseinyazdi
Department of Mathematics
Payame Noor University(PNU)
Shiraz, Iran
E-mail: myazdi@spnu.ac.ir

