An Application of Linear Algebra over Lattices

M. Hosseinyazdi

Payame Noor University(PNU)

Abstract. In this paper, first we consider L^n as a semimodule over a complete bounded distributive lattice L. Then we define the basic concepts of module theory for L^n . After that, we proved many similar theorems in linear algebra for the space L^n . An application of linear algebra over lattices for solving linear systems, was given.

AMS Subject Classification: 06DXX; 15A03; 16D10; 06F05. Keywords and Phrases: Lattices, semimodule, linear algebra, linear system.

1. Introduction

Fuzzy linear systems of equations and inequalities over a bounded chain have been studied by many authors [6], [8], [7]. To extend this concept to L-fuzzy linear systems over a bounded distributive lattice L, we need some basic definitions of linear algebra over lattices such as linearly independent subset, a subsemimodule generated by a set and so on. For more details see [3], [2]. By defining subsemimodule generated by a set, we can find a theoretical necessary and sufficient condition for

consistency of the linear system of equations A * X = b over a bounded distributive lattice.

Definition 1.1. Let (H,*) be a commutative semigroup (monoid) with a reflexive and transitive order \leq on it. $(H,*,\leq)$ is called an ordered commutative semigroup (monoid) if

$$a \leqslant b \Longrightarrow a * c \leqslant b * c \quad \forall a, b, c \in H.$$

Definition 1.2. Let (H,*) be a commutative group (resp. semigroup, monoid) with a partial order \leq . $(H,*,\leq)$ is called a lattice-ordered commutative group (resp. semigroup, monoid), if

$$a \leq b \Longrightarrow a * c \leq b * c, \quad \forall a, b, c \in H.$$

For simplicity, we call it l-group (resp. l-semigroup, l-monoid).

Example 1.3. Every lattice (L, \leq) is a l-semigroup, by letting $* = \wedge$. Clearly a bounded lattice is a l-monoid in this way.

Definition 1.4. Let $Mat_{n\times m}(L)$ be the set of all $n\times m$ matrices over the lattice (L, \leqslant) . Define a partial order relation on $Mat_{n\times m}(L)$ as follows: $X \leqslant Y \Leftrightarrow x_{ij} \leqslant y_{ij}$; for all i=1,2,...,n and j=1,2,...,m,

where $X, Y \in Mat_{n \times m}(L)$. One can see that $(Mat_{n \times m}(L), \leq)$ is a lattice where its supremum and infimum are defined componentwise on $Mat_{n \times m}(L)$ induced by the supremum and infimum of lattice L, respectively.

Definition 1.5 ([10]). Let (R, \oplus) be a commutative monoid with neutral element 0 and (R, \otimes) be a monoid with neutral element 1 where $0 \neq 1$. Then, (R, \oplus, \otimes) is called a semiring with unity 1 and zero 0, if for all $a, b, c \in R$, the following conditions hold:

- (a) $a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$,
- (b) $(b \oplus c) \otimes a = (b \otimes a) \oplus (c \otimes a)$,
- (c) $0 = a \otimes 0 = 0 \otimes a$.

Example 1.6. Let L be a bounded distributive lattice. Then, (L, \vee, \wedge) and (L, \wedge, \vee) are semirings.

Definition 1.7 ([10]). $(R, \oplus, \otimes, \leqslant)$ is called an ordered semiring if

- (a) (R, \oplus, \otimes) is a semiring,
- (b) (R, \oplus, \leqslant) is an ordered commutative monoid,
- (c) for all $a, b, c, d \in R$,
 - (i) $a \leqslant b$ and $c \geqslant 0 \Longrightarrow a \otimes c \leqslant b \otimes c$ and $c \otimes a \leqslant c \otimes b$,
 - (ii) $a \leqslant b$ and $d \leqslant 0 \Longrightarrow a \otimes d \geqslant b \otimes d$ and $d \otimes a \geqslant d \otimes b$.

Definition 1.8 ([10]). Let $(H, *, \leq)$ be a commutative ordered monoid with neutral element e and let (R, \oplus, \otimes) be a semiring with unity 1 and zero 0.

Moreover, suppose that. : $R \times H \longrightarrow H$ is a scalar multiplication such that for all $\alpha, \beta \in R$ and for all $a, b \in H$:

(a)
$$(\alpha \otimes \beta).a = \alpha.(\beta.a)$$
,

(b)
$$(\alpha \oplus \beta).a = (\alpha.a) \oplus (\beta.a),$$

(c)
$$\alpha . (a * b) = (\alpha . a) * (\alpha . b),$$

- (d) 0.a = e,
- (e) 1.a = a,

then, $(R, \oplus, \otimes, H, *, .)$ is called an ordered semimodule over R.

Remark 1.9. Let L be a bounded distributive lattice.

Then, $(L, \vee, \wedge, L, \vee, \wedge)$ and $(L, \wedge, \vee, L, \wedge, \vee)$ are semimodules over (L, \vee, \wedge) and (L, \wedge, \vee) , respectively.

Upward and downward sets, as important notions in optimization (see [4], [5]), are used in [9] as in the following definition.

Definition 1.10. Let (L, \leq) be a lattice.

- (i) A subset $U \subseteq L$ is called upward set if $(a \in U, x \geqslant a) \Longrightarrow x \in U$.
- (ii) A subset $D \subseteq L$ is called downward set if $(a \in D, x \leqslant a) \Longrightarrow x \in D$.

Example 1.11. Let (L, \leq) be a lattice and $a \in L$. Then $\{x \in L | x \geq a\}$ is an upward set and $\{x \in L | x \leq a\}$ is a downward set.

We can easily prove the following proposition.

Proposition 1.12. Let (L, \leq) be a lattice and $M_i \subseteq L$ for $i \in I$. Then $\bigcup_{i \in I} M_i$ is an upward (resp. downward) set if each M_i ; $i \in I$ is upward (resp. downward) set.

2. Basis For Semimodules

In this section we need to extend some basic definition of linear algebra to concepts of lattices. In this case suppose L is a complete distributive lattice and consider L^n as $Mat_{n\times 1}(L)$, the set of all $n\times 1$ matrices over L. By Definition 1.4., L^n is a lattice. Clearly L^n is a distributive complete lattice if L is so. For every bounded distributive lattice L, (L, \vee, \wedge) is a semiring by Example 1.6. and hence (L^n, \wedge, \leqslant) is a lattice-ordered commutative monoid, by Example 1.3. So we can construct a semimodule as follows.

Theorem 2.1. Let L be a distributive complete lattice. Then (L^n, \vee, \leqslant) is a semimodule over (L, \vee, \wedge) .

Proof. Let L be a bounded distributive lattice. Then (L^n, \vee, \leqslant) is a semimodule over (L, \vee, \wedge) with scalar multiplication $\bar{\wedge}$ defined by $\bar{\wedge}: L \times L^n \longrightarrow L^n$ such that

$$\alpha \bar{\wedge} \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} \alpha \wedge a_1 \\ \alpha \wedge a_2 \\ \vdots \\ \vdots \\ \alpha \wedge a_n \end{pmatrix},$$

which for simplification, we write it as \wedge .

In this way (L^n, \vee, \leq) satisfies all conditions of Definition 1.8. Note that

the identity element of (L^n, \vee) is a column matrix which all of its entry are equal to 0. \square

Definition 2.2. Let $(H, *, \leq)$ be a semimodule over semiring (R, \oplus, \otimes) and K be a subset of H such that $(K, *, \leq)$ is a monoid. Then $(K, *, \leq)$ is called a subsemimodule of $(H, *, \leq)$ if it is a semimodule over (R, \oplus, \otimes) and it is denoted by $K \leq_m H$.

The following theorem can be proved easily.

Theorem 2.3. Let $(H, *, \leq)$ be a semimodule over semiring (R, \oplus, \otimes) and K be a subset of H. Then $K \leq_m H$ if and only if

- (i) $e \in K$
- (ii) $x * y \in K$ for all $x, y \in K$,
- (iii) $a.x \in K$ for all $a \in R$, and $x \in K$.

Corollary 2.4. Let L be a distributive complete lattice and K be a sublattice of L which contains 0. Then (K^n, \vee, \leqslant) is a semimodule over (L, \vee, \wedge) if and only if for every elements $x \in L$ and $y \in K$, we have $x \wedge y \in K$.

Example 2.5. Let $L = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$ and $x \leq y$ if x divides y. Consider the sublattice $K = \{1, 2, 3, 6\}$. Then, L and K satisfy on Corollary 2.4. Hence (K^n, \vee, \leq) is a semimodule over (L, \vee, \wedge) .

Definition 2.6. Let $(H, *, \leq)$ be a semimodule over (R, \oplus, \otimes) and X be

a subset of H.

(i) The subsemimodule hull of (or subsemimodule generated by) X is the intersection of all subsemimodules of H which contains X and denoted by < X >. Hence

$$\langle X \rangle = \bigcap_{X \subseteq K \leqslant H} K.$$

In the other words, $\langle X \rangle$ is the smallest subsemimodule of H which contains X.

- (ii) The upward hull of (or upward set generated by) X is defined as the intersection of all upward subsets of H which contains X and is denoted by $\langle X^* \rangle$. So, $\langle X^* \rangle = \bigcap \{K : X \subseteq K \text{ and } K \text{ is an upward subset of } H \}$. In the other words, $\langle X^* \rangle$ is the smallest upward subset of H which contains X.
- (iii) The downward hull of (or downward set generated by) X is defined as the intersection of all downward subsets of H which contains X and is denoted by $\langle X_* \rangle$. So, $\langle X_* \rangle = \bigcap \{K : X \subseteq K \text{ and } K \text{ is a downward subset of } H \}$. In the other words, $\langle X_* \rangle$ is the smallest downward subset of H which contains X.

Lemma 2.7. Let $(H, *, \leq)$ be a semimodule over (R, \oplus, \otimes) and $x \in H$. Then,

$$(i) < \{x\}^* > = \{a \in H : a \geqslant x\}, \text{ and }$$

(ii)
$$\langle \{x\}_* \rangle = \{a \in H : a \leq x\}.$$

Definition 2.8. Let $(H, *, \leq)$ be a semimodule over semiring (R, \oplus, \otimes) with scalar multiplication "." and X be a subset of H. By a linear combination of elements $x_1, ..., x_m \in X$, we mean $(a_1.x_1) * ... * (a_m.x_m)$ where $a_1, ..., a_m \in R$ and m is a positive integer.

Theorem 2.9. Let $(H, *, \leq)$ be a semimodule over (R, \oplus, \otimes) and X be a subset of H.

(i) Consider $M = \{(a_1.x_1) * ... * (a_m.x_m) | x_1, ..., x_m \in X, a_1, ..., a_m \in R$ and m is a positive integer $\}$; as the set of all finite linear combinations of elements of X. Then, $\langle X \rangle = M$.

(ii)
$$\langle X^* \rangle = \bigcup_{x \in X} \langle \{x\}^* \rangle$$
.

(iii)
$$\langle X_* \rangle = \bigcup_{x \in X} \langle \{x\}_* \rangle$$
.

Proof. The proofs of (i)-(iii) follow from Lemma 2.7. Definition 2.8. and Proposition 1.12. □

Example 2.10. Let L = [0, 10]; the bounded chain of real numbers between 0 and 10. Consider semimodule (L^2, \vee, \wedge) over (L, \vee, \wedge) , where \leq is usual partial order on L. For $X_1 = \{(2,3)^T, (5,1)^T\}$ the subsemimodule generated by X_1 is shown in Fig. 1.

Fig. 1. Subsemimodule hull of X_1

The upward hull of X_1 is shown in Fig. 2.

Fig. 2. Upward hull of X_1

The downward hull of X_1 is shown in Fig. 3.

Fig. 3. Downward hull of X_1

Now consider $X_2 = \{(2,4)^T, (5,9)^T\}$. The subsemimodule hull of X_2 is shown in Fig. 4.

Fig. 4. Subsemimodule hull of X_2

The subsemimodule $\langle X_3 \rangle$, where $X_3 = \{(3,1)^T, (5,2)^T, (2,4)^T\}$,

is as follows:

Fig. 5. Subsemimodule hull of X_3

Definition 2.11. Let $(H, *, \leq)$ be a semimodule over (R, \oplus, \otimes) with zero 0. A subset X of H is called linearly independent if for all finite subset $\{x_1, \ldots, x_m\} \subseteq X$, and elements $a_1, \ldots, a_m \in R$; $(a_1.x_1)*\ldots*(a_m.x_m) = e$ imply $a_1 = \ldots = a_m = 0$.

If the subset X is not linearly independent, it is called linearly dependent.

Example 2.12. Let $L = \{1, 2, 3, 6\}$ and $x \leq y$ means that x divides y. Clearly (L, \vee, \leq) is a semimodule over (L, \vee, \wedge) with zero 1. Since $2 \wedge 3 = 1$, the set $\{3\}$ is not linearly independent.

Remark 2.13. By the previous example, it is not true that if $x \neq 0$ then $\{x\}$ is linearly independent. But if L is a chain, then for every

non-zero element x, the set $\{x\}$ is linearly independent.

Definition 2.14. Let $(H, *, \leqslant)$ be a semimodule over (R, \oplus, \otimes) . A linearly independent subset B of H is called a basis for H over R, if $\langle B \rangle = H$.

Example 2.15. Let L be as in Example 2.5. (see Fig. 6).

In this lattice the following subsets of L are linearly independent:

$$K_1 = \{6\}, \quad K_2 = \{6, 12\}, \quad K_3 = \{12, 18\}$$

$$K_4 = \{6, 12, 36\}, \quad K_5 = \{6, 12, 18, 36\}$$

But the following subsets are linearly dependent:

$$K_6 = \{9\}, \quad K_7 = \{2, 3\}, \quad K_8 = \{4, 9\}, \quad K_9 = \{6, 9\}$$

Some sublattices generated by above subsets of L are as follows:

$$< K_9 >= \{1, 2, 3, 6, 9, 18\},$$
 $< K_3 >= < K_4 >= < K_5 >= < K_8 >= L,$ $< K_6 >= \{1, 3, 9\}$

Clearly K_3 , K_4 and K_5 are bases of L. Also

$$\langle (K_9)_* \rangle = \{1, 2, 3, 6, 9\}, \langle K_9^* \rangle = \{6, 9, 12, 18, 36\}$$

$$<(K_5)_*>=L, < K_5^*>=K_5.$$

Fig. 6. The relationship between elements of L

Remark 2.16. (i) Note that although $\langle K_8 \rangle = L$, but K_8 contains no linearly independent subset.

(ii) For the basis K_3 we have $6 = (6 \land 12) \lor (6 \land 18) = (2 \land 12) \lor (3 \land 18) = (3 \land 12) \lor (2 \land 18)$. Therefore, representation of any elements of L in terms of a linear combination of elements of a basis is not unique.

Example 2.17. Suppose (L, \leq) be a bounded distributive lattice. Clearly, $\{1\}$ is a basis for (L, \wedge, \leq) over (L, \wedge, \vee) . Note that in semimodule (L^2, \wedge, \leq) , the set $\{(1, 1)^T\}$ is linearly independent but $\{(1, 1)^T\} > \neq L^2$.

3. Consistency of A * X = b.

In this section we consider semimodule $(H, *, \leq)$ over semiring (R, \oplus, \otimes) . By a linear system of equations A * X = b over R we mean the following equations:

$$\begin{cases}
(a_{11}.x_1) * (a_{12}.x_2) * \dots * (a_{1n}.x_n) = b_1 \\
(a_{21}.x_1) * (a_{22}.x_2) * \dots * (a_{2n}.x_n) = b_2
\end{cases}$$

$$\vdots$$

where $a_{ij} \in R$ and $x_i, b_j \in H$ for all i = 1, 2, ..., n and j = 1, 2, ..., m.

Theorem 3.1. Let L be a bounded distributive lattice. Consider (L^n, \vee, \leqslant) as a semimodule over semiring (L, \vee, \wedge) with scalar multiplication " \wedge ". Let A, X and b are $m \times n$, $n \times 1$ and $m \times 1$ matrices over L, respectively. The linear system $A \vee X = b$ has a solution if and only if b belongs to the subsemimodule generated by columns of A.

Proof. If we show the columns of A by $A_1, A_2, ..., A_n$; then the linear system $A \vee X = b$ can shown by

$$(x_1 \wedge A_1) \vee (x_2 \wedge A_2) \vee ... \vee (x_n \wedge A_n) = b$$

and clearly the linear system has a solution if and only if $b \in \{A_1, \dots, A_n\} >$ by Theorem 2.9. \square

Example 3.2. Let L, K_9 and K_8 be as in Example 2.15. consider the linear equation

$$(6 \wedge x_1) \vee (9 \wedge x_2) = 3 \tag{1}$$

Then the set of all solutions of (1) is

$$\{(1,3)^T, (1,6)^T, (1,12)^T, (3,1)^T, (3,3)^T, (3,6)^T, (3,12)^T, (3,2)^T, (3,4)^T, (9,1)^T, (9,3)^T, (9,6)^T, (9,12)^T, (9,2)^T, (9,4)^T\}.$$

Linear equation (1) has solution since $3 \in K_9 >$; the subsemimodule generated by $\{6,9\}$. But if we change right hand side of (1) to 12 we have:

$$(6 \land x_1) \lor (9 \land x_2) = 12$$
 (2)

Clearly (2) doesn't have any solution since $12 \notin K_9$. Now consider

$$(4 \wedge x_1) \vee (9 \wedge x_2) = b \tag{3}$$

Since $\langle \{4,9\} \rangle = \langle K_8 \rangle = L$, so (3) has solution for all $b \in L$.

Remark 3.3. Note that Theorem 3.1. gives a theoretical necessary and sufficient condition for consistency of (*). A computational necessary and sufficient condition for consistency of (*) over a bounded chain was given in [6]. Finding such a condition(s) over a bounded distributive lattice is still an open problem.

References

- [1] G. Gratzer, General lattice theory, Academic Press, New York San Francisco, 1978.
- [2] M. Hosseinyazdi, The optimization problem over a distributive lattice, *Journal of Global Optimization*, 41 (2008), 283-298.
- [3] M. Hosseinyazdi, A. Hassankhani and M. Mashinchi, Linear systems and optimization over lattices, *Intrnational Review of Fuzzy Mathematics*, 2 (1)(2007), 27-50.
- [4] H. Mohebi, Downward sets and their best simultaneous approximation properties with applications, *Numer. Funct. Anal.* Optim., 25 (7-8) (2004), 685-705.
- [5] H. Mohebi and A. Rabinov, Best approximation by downward sets with applications, *Anal. Theory Appl*, 22 (1) (2006), 1-22.
- [6] K. Peeva, Fuzzy linear systems, Fuzzy Set and Systems, 49 (1992), 339-355.

- [7] K. Peeva, Universal algorithm for solving fuzzy relational equations, *Ital. J. Pure Appl. Math.* 19 (2006), 9-20.
- [8] K. Peeva and Y. Kyosev, Fuzzy relational calculus, *Advances in fuzzy systems-aplications and theory*, Vol. 22, World scientific publishing Co. Pte. Ltd, Singapore, 2004.
- [9] I. Singer, Abstract convex analysis, John Wiley & Sons, INC. New York, 1997.
- [10] U. Zimmermann, Linear and combinatorial optimization in ordered algebraic structures, North-Holland Publishing Company, Amesterdam, 1981.

Mahboobeh Hosseinyazdi

Department of Mathematics Payame Noor University(PNU) Shiraz, Iran

E-mail: myazdi@spnu.ac.ir