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Abstract. In this paper, first we consider Ln as a semimodule
over a complete bounded distributive lattice L. Then we define
the basic concepts of module theory for Ln. After that, we proved
many similar theorems in linear algebra for the space Ln. An
application of linear algebra over lattices for solving linear systems,
was given.
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1. Introduction

Fuzzy linear systems of equations and inequalities over a bounded chain

have been studied by many authors [6], [8], [7]. To extend this concept

to L-fuzzy linear systems over a bounded distributive lattice L, we need

some basic definitions of linear algebra over lattices such as linearly

independent subset, a subsemimodule generated by a set and so on.

For more details see [3], [2]. By defining subsemimodule generated by

a set, we can find a theoretical necessary and sufficient condition for
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consistency of the linear system of equations A ∗X = b over a bounded

distributive lattice.

Definition 1.1. Let (H, ∗) be a commutative semigroup ( monoid) with

a reflexive and transitive order 6 on it. (H, ∗, 6) is called an ordered

commutative semigroup ( monoid) if

a 6 b =⇒ a ∗ c 6 b ∗ c ∀a, b, c ∈ H.

Definition 1.2. Let (H, ∗) be a commutative group (resp. semigroup,

monoid) with a partial order 6. (H, ∗, 6) is called a lattice-ordered com-

mutative group (resp. semigroup, monoid), if

a 6 b =⇒ a ∗ c 6 b ∗ c, ∀a, b, c ∈ H.

For simplicity, we call it l-group (resp. l-semigroup, l-monoid).

Example 1.3. Every lattice (L,6) is a l-semigroup, by letting ∗ = ∧.

Clearly a bounded lattice is a l-monoid in this way.

Definition 1.4. Let Matn×m(L) be the set of all n×m matrices over the

lattice (L,6). Define a partial order relation on Matn×m(L) as follows:

X 6 Y ⇔ xij 6 yij ; for all i = 1, 2, ..., n and j = 1, 2, ..., m,

where X, Y ∈ Matn×m(L). One can see that (Matn×m(L), 6) is a lat-

tice where its supremum and infimum are defined componentwise on

Matn×m(L) induced by the supremum and infimum of lattice L, respec-

tively.
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Definition 1.5 ([10]). Let (R,⊕) be a commutative monoid with neutral

element 0 and (R,⊗) be a monoid with neutral element 1 where 0 6= 1.

Then, (R,⊕,⊗) is called a semiring with unity 1 and zero 0, if for all

a, b, c ∈ R, the following conditions hold:

(a) a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c),

(b) (b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a),

(c) 0 = a⊗ 0 = 0⊗ a.

Example 1.6. Let L be a bounded distributive lattice. Then, (L,∨,∧)

and (L,∧,∨) are semirings.

Definition 1.7 ([10]). (R,⊕,⊗, 6) is called an ordered semiring if

(a) (R,⊕,⊗) is a semiring,

(b) (R,⊕, 6) is an ordered commutative monoid,

(c) for all a, b, c, d ∈ R,

(i) a 6 b and c > 0 =⇒ a⊗ c 6 b⊗ c and c⊗ a 6 c⊗ b,

(ii) a 6 b and d 6 0 =⇒ a⊗ d > b⊗ d and d⊗ a > d⊗ b.

Definition 1.8 ([10]). Let (H, ∗, 6) be a commutative ordered monoid

with neutral element e and let (R,⊕,⊗) be a semiring with unity 1 and

zero 0.

Moreover, suppose that. : R ×H −→ H is a scalar multiplication such

that for all α, β ∈ R and for all a, b ∈ H :

(a) (α⊗ β).a = α.(β.a),
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(b) (α⊕ β).a = (α.a)⊕ (β.a),

(c) α.(a ∗ b) = (α.a) ∗ (α.b),

(d) 0.a = e,

(e) 1.a = a,

then, (R,⊕,⊗,H, ∗, .) is called an ordered semimodule over R.

Remark 1.9. Let L be a bounded distributive lattice.

Then, (L,∨,∧, L,∨,∧) and (L,∧,∨, L,∧,∨) are semimodules over

(L,∨,∧) and (L,∧,∨), respectively.

Upward and downward sets, as important notions in optimization ( see

[4], [5]), are used in [9] as in the following definition.

Definition 1.10. Let (L,6) be a lattice.

(i) A subset U ⊆ L is called upward set if (a ∈ U, x > a) =⇒ x ∈ U.

(ii) A subset D ⊆ L is called downward set if (a ∈ D, x 6 a) =⇒ x ∈ D.

Example 1.11. Let (L,6) be a lattice and a ∈ L. Then {x ∈ L|x > a}
is an upward set and {x ∈ L|x 6 a} is a downward set.

We can easily prove the following proposition.

Proposition 1.12. Let (L,6) be a lattice and Mi ⊆ L for i ∈ I. Then
⋃

i∈I Mi is an upward (resp. downward) set if each Mi; i ∈ I is upward

(resp. downward) set.
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2. Basis For Semimodules

In this section we need to extend some basic definition of linear algebra

to concepts of lattices. In this case suppose L is a complete distributive

lattice and consider Ln as Matn×1(L), the set of all n × 1 matrices

over L. By Definition 1.4., Ln is a lattice. Clearly Ln is a distributive

complete lattice if L is so. For every bounded distributive lattice L,

(L,∨,∧) is a semiring by Example 1.6. and hence (Ln,∧, 6) is a lattice-

ordered commutative monoid, by Example 1.3. So we can construct a

semimodule as follows.

Theorem 2.1. Let L be a distributive complete lattice. Then (Ln,∨, 6)

is a semimodule over (L,∨,∧).

Proof. Let L be a bounded distributive lattice. Then (Ln,∨, 6) is

a semimodule over (L,∨,∧) with scalar multiplication ∧̄ defined by

∧̄ : L× Ln −→ Ln such that

α∧̄




a1

a2

.

.

.
an




=




α ∧ a1

α ∧ a2

.

.

.
α ∧ an




,

which for simplification, we write it as ∧.

In this way (Ln,∨, 6) satisfies all conditions of Definition 1.8. Note that
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the identity element of (Ln,∨) is a column matrix which all of its entry

are equal to 0. ¤

Definition 2.2. Let (H, ∗, 6) be a semimodule over semiring (R,⊕,⊗)

and K be a subset of H such that (K, ∗,6) is a monoid. Then (K, ∗, 6)

is called a subsemimodule of (H, ∗, 6) if it is a semimodule over (R,⊕,⊗)

and it is denoted by K 6m H.

The following theorem can be proved easily.

Theorem 2.3. Let (H, ∗, 6) be a semimodule over semiring (R,⊕,⊗)

and K be a subset of H. Then K 6m H if and only if

(i) e ∈ K

(ii) x ∗ y ∈ K for all x, y ∈ K,

(iii) a.x ∈ K for all a ∈ R, and x ∈ K.

Corollary 2.4. Let L be a distributive complete lattice and K be a

sublattice of L which contains 0. Then (Kn,∨,6) is a semimodule over

(L,∨,∧) if and only if for every elements x ∈ L and y ∈ K, we have

x ∧ y ∈ K.

Example 2.5. Let L = {1, 2, 3, 4, 6, 9, 12, 18, 36} and x 6 y if x divides

y. Consider the sublattice K = {1, 2, 3, 6}. Then, L and K satisfy on

Corollary 2.4. Hence (Kn,∨, 6) is a semimodule over (L,∨,∧).

Definition 2.6. Let (H, ∗, 6) be a semimodule over (R,⊕,⊗) and X be
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a subset of H.

(i) The subsemimodule hull of ( or subsemimodule generated by) X is the

intersection of all subsemimodules of H which contains X and denoted

by < X >. Hence

< X > =
⋂

X⊆K6H

K.

In the other words, < X > is the smallest subsemimodule of H which

contains X.

(ii) The upward hull of (or upward set generated by) X is defined as the

intersection of all upward subsets of H which contains X and is denoted

by < X∗ >. So, < X∗ > =
⋂{K : X ⊆ K and K is an upward subset

of H}. In the other words, < X∗ > is the smallest upward subset of H

which contains X.

(iii) The downward hull of (or downward set generated by) X is defined

as the intersection of all downward subsets of H which contains X and

is denoted by < X∗ >. So, < X∗ > =
⋂{K : X ⊆ K and K is

a downward subset of H}. In the other words, < X∗ > is the smallest

downward subset of H which contains X.

Lemma 2.7. Let (H, ∗, 6) be a semimodule over (R,⊕,⊗) and x ∈ H.

Then,

(i) < {x}∗ >= {a ∈ H : a > x}, and

(ii) < {x}∗ >= {a ∈ H : a 6 x}.
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Definition 2.8. Let (H, ∗, 6) be a semimodule over semiring (R,⊕,⊗)

with scalar multiplication ”.” and X be a subset of H. By a linear

combination of elements x1, ..., xm ∈ X, we mean (a1.x1) ∗ ... ∗ (am.xm)

where a1, ..., am ∈ R and m is a positive integer.

Theorem 2.9. Let (H, ∗, 6) be a semimodule over (R,⊕,⊗) and X be

a subset of H.

(i) Consider M = {(a1.x1)∗. . .∗(am.xm)|x1, . . . , xm ∈ X, a1, . . . , am ∈ R

and m is a positive integer }; as the set of all finite linear combinations

of elements of X. Then, < X >= M .

(ii) < X∗ >=
⋃

x∈X < {x}∗ >.

(iii) < X∗ >=
⋃

x∈X < {x}∗ >.

Proof. The proofs of (i)-(iii) follow from Lemma 2.7. Definition 2.8.

and Proposition 1.12. ¤

Example 2.10. Let L = [0, 10]; the bounded chain of real numbers

between 0 and 10. Consider semimodule (L2,∨,∧) over (L,∨,∧), where

6 is usual partial order on L. For X1 = {(2, 3)T , (5, 1)T } the subsemi-

module generated by X1 is shown in Fig. 1.
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Fig. 1. Subsemimodule hull of X1

The upward hull of X1 is shown in Fig. 2.

-

6
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Fig. 2. Upward hull of X1

The downward hull of X1 is shown in Fig. 3.
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Fig. 3. Downward hull of X1

Now consider X2 = {(2, 4)T , (5, 9)T }. The subsemimodule hull of X2 is

shown in Fig. 4.
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Fig. 4. Subsemimodule hull of X2

The subsemimodule < X3 >, where X3 = {(3, 1)T , (5, 2)T , (2, 4)T },
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is as follows:

-

6

¡
¡

¡¡
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(1,1)

(2,2)

Fig. 5. Subsemimodule hull of X3

Definition 2.11. Let (H, ∗, 6) be a semimodule over (R,⊕,⊗) with zero

0. A subset X of H is called linearly independent if for all finite subset

{x1, . . . , xm} ⊆ X, and elements a1, . . . , am ∈ R; (a1.x1)∗. . .∗(am.xm) =

e imply a1 = . . . = am = 0.

If the subset X is not linearly independent, it is called linearly dependent.

Example 2.12. Let L = {1, 2, 3, 6} and x 6 y means that x divides

y. Clearly (L,∨, 6) is a semimodule over (L,∨,∧) with zero 1. Since

2 ∧ 3 = 1, the set {3} is not linearly independent.

Remark 2.13. By the previous example, it is not true that if x 6= 0

then {x} is linearly independent. But if L is a chain, then for every
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non-zero element x, the set {x} is linearly independent.

Definition 2.14. Let (H, ∗, 6) be a semimodule over (R,⊕,⊗). A

linearly independent subset B of H is called a basis for H over R, if

< B >= H.

Example 2.15. Let L be as in Example 2.5. ( see Fig. 6).

In this lattice the following subsets of L are linearly independent:

K1 = {6}, K2 = {6, 12}, K3 = {12, 18}
K4 = {6, 12, 36}, K5 = {6, 12, 18, 36}
But the following subsets are linearly dependent:

K6 = {9}, K7 = {2, 3}, K8 = {4, 9}, K9 = {6, 9}
Some sublattices generated by above subsets of L are as follows:

< K9 >= {1, 2, 3, 6, 9, 18}, < K3 >=< K4 >=< K5 >=< K8 >= L,

< K6 >= {1, 3, 9}
Clearly K3, K4 and K5 are bases of L. Also

< (K9)∗ >= {1, 2, 3, 6, 9}, < K∗
9 >= {6, 9, 12, 18, 36}

< (K5)∗ >= L, < K∗
5 >= K5.

36
↗ ↖

12 18
↗ ↖ ↗ ↖

4 6 9
↖ ↗ ↖ ↗

2 3
↖ ↗

1
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Fig. 6. The relationship between elements of L

Remark 2.16. (i) Note that although < K8 >= L, but K8 contains no

linearly independent subset.

(ii) For the basis K3 we have 6 = (6∧12)∨(6∧18) = (2∧12)∨(3∧18) =

(3 ∧ 12) ∨ (2 ∧ 18). Therefore, representation of any elements of L in

terms of a linear combination of elements of a basis is not unique.

Example 2.17. Suppose (L,6) be a bounded distributive lattice.

Clearly, {1} is a basis for (L,∧,6) over (L,∧,∨). Note that in semimod-

ule (L2,∧, 6), the set {(1, 1)T } is linearly independent but < {(1, 1)T } >6=
L2.

3. Consistency of A ∗X = b.

In this section we consider semimodule (H, ∗,6) over semiring (R,⊕,⊗).

By a linear system of equations A∗X = b over R we mean the following

equations:





(a11.x1) ∗ (a12.x2) ∗ . . . ∗ (a1n.xn) = b1

(a21.x1) ∗ (a22.x2) ∗ . . . ∗ (a2n.xn) = b2

.

.

.
(am1.x1) ∗ (am2.x2) ∗ . . . ∗ (amn.xn) = bm

(∗)

where aij ∈ R and xi, bj ∈ H for all i = 1, 2, . . . , n and j = 1, 2, . . . , m.
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Theorem 3.1. Let L be a bounded distributive lattice. Consider (Ln,∨,6 )

as a semimodule over semiring (L,∨,∧) with scalar multiplication ”∧”.

Let A, X and b are m×n, n×1 and m×1 matrices over L, respectively.

The linear system A ∨X = b has a solution if and only if b belongs to

the subsemimodule generated by columns of A.

Proof. If we show the columns of A by A1, A2, ..., An; then the linear

system A ∨X = b can shown by

(x1 ∧A1) ∨ (x2 ∧A2) ∨ ... ∨ (xn ∧An) = b

and clearly the linear system has a solution if and only if

b ∈< {A1, . . . , An} > by Theorem 2.9. ¤

Example 3.2. Let L, K9 and K8 be as in Example 2.15. consider the

linear equation

(6 ∧ x1) ∨ (9 ∧ x2) = 3 (1)

Then the set of all solutions of (1) is

{(1, 3)T , (1, 6)T , (1, 12)T , (3, 1)T , (3, 3)T , (3, 6)T , (3, 12)T , (3, 2)T , (3, 4)T ,

(9, 1)T , (9, 3)T , (9, 6)T , (9, 12)T , (9, 2)T , (9, 4)T }.
Linear equation (1) has solution since 3 ∈< K9 >; the subsemimodule

generated by {6, 9}. But if we change right hand side of (1) to 12 we

have:

(6 ∧ x1) ∨ (9 ∧ x2) = 12 (2)
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Clearly (2) doesn’t have any solution since 12 6∈ K9. Now consider

(4 ∧ x1) ∨ (9 ∧ x2) = b (3)

Since < {4, 9} >=< K8 >= L, so (3) has solution for all b ∈ L.

Remark 3.3. Note that Theorem 3.1. gives a theoretical necessary and

sufficient condition for consistency of (*). A computational necessary

and sufficient condition for consistency of (*) over a bounded chain was

given in [6]. Finding such a condition(s) over a bounded distributive

lattice is still an open problem.
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