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Abstract. Our aim in this work is to deal with the discrete-time
multiserver retrial queue with finite population and fuzzy parame-
ters.At first,we have described this system and mentioned its effec-
tive characteristics in a crisp case.Then,we apply the concepts of
a-cuts and extension principle to construct membership functions
of the system characteristics by the use of paired NLP models in
the fuzzy case.
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1. Introduction

Many queuing situations have the feature that customers who find all
the servers busy will have to leave the service area and repeat their
request after some random time. During trials, the blocked customers
join a pool of unsatisfied customers called orbit. The most obvious ap-
plication of retrial queues arise in telephony where customers receiving a
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busy signal are not allowed to queue and have to try again later. Many
other application include communication protocols, local area networks
and queues arising in daily life situations. [1,14] Retrial literature was
initially focused on continuous-time systems. Yang and Li in [14] were
the first to study a discrete-time model of Geo/G/1 type with geomet-
ric retrial times. Since the publication of this pioneering paper, several
authors have investigated a variety of single-server discrete - time retrial
queues. For this (see Artaleja et al ([5]); Atencia and Moreno ([6,7]);
Choi and Kim ([9]); Li and Yang ([10,13]), and Takahashi, etal ([3])).
Recently Artalejo and Lopez ([11]) computed the steady-state distribu-
tion of a discrete-time multisever retrial queue with finite population
in which the primary arrivals, service times and retrials made by each

blocked customer follow geometric independent random variables.

In the queue described above, the primary arrivals service and re-
trials times are required to follow certain probability distributions with
fixed parameters. However, in many real-world applications, the pa-
rameter distribution may be fuzzy. Thus, fuzzy retrial queues would be
potentially much more useful and realistic than the commonly used crisp

retrial queues ([12,8]).
Jau and Hsin in [8] developed FM/FM/1/1-(FR) fuzzy system,
where F represents fuzzy time and FM represents fuzzified exponential

distribution and FR represents the fuzzified exponential retrial time. In
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this work, we develop an approach that provides system characteristics
for the discrete-time multi server retrial queue with finite population and
fuzzy parameters. Through a-cuts and extension principle, we transform
the fuzzy retrial queues to a family of crisp retrial queues. As a varies,
the NLP solutions completely and successfully yield the membership

functions of the system characteristics.

2. Fuzzy Retrial Queues

We consider an FGeo/ FGeo/c/N-(FR) queuing system in which cus-
tomers arrive at a service facility from outside at rate a geometric inde-
pendent random variables with fuzzy parameter p. An arriving customer
enters the service facility if the facility is not occupied, otherwise he/she
enters the orbit and attempts service after an uncertain amount of time,
called retrial time. The number of servers is denoted by c. we deal
with a finite population of size N(N > ¢) where each individual cus-
tomer generates requests independently of the rest of population. Retri-
als and service times made by each blocked customer follow geometric
independent random variables with fuzzy parameters §, ¢, in addition,
various stochastic processes involved in the system are independent of
each other.

In this model the arrival p, 5, ¢, are approximately known and can

be represented by convex fuzzy sets. Let pz(x), ps(v), pg(y) denote the
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membership functions of p, 3, § respectively. Then, we have the following

fuzzy sets:

p = {(z,pp(x))|r e X} (1)
5 = {(v,ps(v)|v eV} (2)
i = {(y,m(w)ly €Y} (3)

where X, V, Y are the crisp universal sets of the arrival, retrial and
service rates, respectively. Let f(z,v,y) denote the system characteristic
of interest, Since p, § and ¢ are fuzzy numbers, f(p, $,q) is also a fuzzy
number. Following Zadehs extension principle ([3,11]), the membership
function of the system characteristic f(p, 3, q) is defined as
Hipsd = _ S min{p5(z), ps(v), ng(y)lz = f(x,v,9)}.

Assume that the system characteristic of interest is the expected number
of busy servers and the expected numbers of customers in the orbit. In
this work,at first, consider the system characteristic for a crisp retrial
queuing system. Then solve the problem for fuzzy parameters by using

them.

3. System Characteristics in the Crisp Case

We consider a multiserver discrete-time retrial queue where the time

axis is divided into equal intervals, of width one, called slots. It is
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assumed that all queuing activities occur around the slot boundaries.
For mathematical convenience, we suppose that departures occur in the

interval (h™, h) while primary arrivals and retrials occur in the interval

(h, ).

Events occurring in (h~, h'), i.e., primary arrivals, service times and
retrials made by each blocked customer follow geometric independent

random variables with parameters z, v, y, respectively.

The system state at time h+ can be described by the process X =
(Ch,Op), where Cj, represents the number of fuzzy servers and Oy, de-
notes the numbers of customers in orbit. We note that the process
{Xp;h > 0} is a Markov chain with state space S = {0,---,¢c} x
{0,---, N—c}. Our main objective is to compute the steady-state prob-
abilities m;; = limy 00 P{(Ch,Op) = (3,4)}; (4,4) € S. The key point
for computing {7;;, (¢,7) € s} is to obtain the one step transition prob-
abilities P(; j)(m,n), Which describe the evaluation of the Markov chain.
At this point we observe that given the initial state (7, j) the following

events can occur during the next slot:
(i) N —i — j primary arrivals.
(ii) 7 departures
(iii) j retrials.

Depending on how many of these events occur, we have transition
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from (i, 7) to any state (m,n) in the subset

c—1
Sig) = H; U (U D?)

k=0

where

H; = {(mn)eS;j<n<N-¢cm=c}
DY = {(mmn)€Sim+n=j+k0<n<j}.
We also notice that the cardinality of these subsets is
#(Hj) = N—-c—j+1

#(DF)

min{c—k,j}+1; 0<j<N-c¢0<k<c—k.

Thus we find that

N+1+w if 0<j<ec
#(Si) = '
Na1—j+ 39 4 s

we notice that S(,-,j) represents the set of accessible states in one step

from the initial state (i, 7).

Theorem. The transition probabilities p(; j)imn) are as follows:
(a) if (m,n) € H; then

min {i,N—e—n}

N—i—j
p(i,j)(m,n) = Z (l-{-c-{-n-g-j)
=0

m!-ﬁ-c-ﬁ-n—i—j(l _ CB)N—I—c—n ( ; ) yl(l _ y)i—t
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for0<i<e, 0<j<n<N-c
(b) if (m,n) ED;?, then
p{d—a=i—k,r=j—n} if 0<m<e—1

P,y (mm) =
pld—a=i—k,j—n<r<j} if m=c

where
p{d—a:z’—k,r:j—n}:p{d—a:i—k}(jin )'Uj_“(l—v)”

J .
p{d—a=i—k,j—n$’réj}=p{d—a=i—k}2(i)v’(l—’u)j_"
=j_

™ ]

miniN—k=j ,

. —i-

aaminy =S (V)
i=max{0,i—k}

—i —G— 3 i—
xl+k (l—ﬂ,“)N j—l+k ( , )yi(l_y) i )

The steady-state probabilities satisfy the system

NP =T, > mj=1,m;>0
(i)

where P is the one step transition probabilities matrix and a vector IT is
IT = (). For instance, we have

(i) the expected number of busy servers

Ele] = Z iTij (3a)
(i.5)es
(ii) the expected number of customers in orbit
E[N]= ) jmj . (3b)

(i,4)eS
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4. Fuzzy Retrial Queues and Solution Proce-
dure

Following (2),(3a),(3b), the membership function for the expected num-
ber of fuzzy servers E|[¢| and the membership function for the expected

number of customers in the orbit E[?] can be obtained from

~(2) = su min s(x), us(v), wus(y)lz = 2T 4da
hpo)(?) = sup  miny pip(a). us(v). wal) (éJZES ¢ (o)
pp(z) = sup  ming (), mus(v), pa(y)lz = Y gmig o - (4b)

reXveVyeY (i,5)€s

From now on we represent the subject about F[¢] and the same for E[N].
To reexpress the membership function () gg of E|¢] in an understand-
able and usable form we adopt Zadeh's approach which relies on a-cuts

of E[é].

Definitions for the a-cuts of , § and ¢ as crisp intervals are as follows:

pla) = [z5 2] = [min{z|u;(z) > o}, max{z|us(z) > o}]
s(a) = [k v]] = [min{v|ps(v) > a}, max{v|us(v) > a}]
g@) = [yh Y] = [min{ylpg(y) > o}, max{y|uz(y) > o}] -

As a result, the bounds of these intervals can be described as functions
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of @ and can be obtained as

zh =minp; (), z] =max ;' (@)

ok = minps(a), o¥ = max ;" ()

= minp (@), 3 = maxpi7'(a)
Thus, for all a € [0, 1]
z € [LCé',iI:g],y € [yg,yg],v € [Ugsvg :

Now, we can use the a-cuts of F[¢] to construct it’s membership func-
tion since the membership function E|[¢] dependents with z, v, y addition
on these variables dependent with o parameters thus the member ship

function E[é¢] dependent with o parameter. If
(Elda) = (Bl)s, (Ele)g] a € [0,1]

we objective is found the (E[c])%, (E[c])Y that o and z satisfies in this

conditions:
be@E(2) =, z= Z iTij -

Therefore we must solved the following programming:
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(Ele)l = min Z iy
(i,5)es

s.t. pEE(2) =

e =11

Zﬂij:l mij = 0 (i,j)ES.

(52)

(5b)

Since ,uE[@](z) is the minimum of pz(x), pug(y), ps(v) thus to satisfies

0ote) (z) = a, at least we need one of the following cases to hold:

(i) (wp(x) 2, pa(v) =, pg(y) 2 @)

(iii) (pp(z) > @, ps(v) =a,  pgly) =a).

With using of these cases instead of pgg(2) = a, Problem (5a), (5b)

transform as follow:
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(Eld)sr =min ) imy (6a)

s.t. P =11

(El)Y =max Y im (6b)

s.t. [P =11

(Bl =min Y im, (6¢)
(i,7)ES
st. TP =TI
Z ;=1
(i,5)€S
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(E[)Y: =max Y imy (6d)
(i,5)eS

s.t. P =11

(Elc))E = min Z imij (6e)

s.t. [P =11

(Bl)Y? =max Y im, (6f)
(i,5)eS
st.  IP=II
Z mij =1
(i.j)es
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The a-cuts form a nested structure with respect to a given 0 < an <

a1 < 1 we have:

[:E(‘E‘Il?xg]] g [$£2,$22 ?

["{‘Jél ? Ugll g [.»Ué'21 vgg

e, u5,] S [k, va,)-

Therefore (6a), (6b), (6¢) have the same optimum value and the problem
(6f), (6d), (6e) have a same optimum value too. Therefore; instead of

solving six problems.it suffices to solve the set of following problems:
(.E[C])éz = min Z ’i’?rgj (7&)

s.t. P =11

(Bl)Y =max Y imy (7b)

s.t. P =11
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Optimum value in (7a)and(7b)obtained with respect to a.This model
is a set of mathematical programs with boundary constraints and lends
itself to the systematic study of how optimal solution changes with
xk 2¥ vl WU gL yU as a varies over (0, 1. The model is a special
case of parametric NLPS. (none linear programing) The result inter-
val [(E[d))E, (E[C))Y] obtained from (7a) and (7b) represents the a-cuts
of E[¢].We know that (E[c))%, > (Elc])4,. (E[))Y, < (E[d]))Y, where
0 < as < a; < 1,in other words, (E[c])% increases and (E[c])Y decreases
as « increases. Consequently, the membership function ,uE[(—,](z) can be
found from (7). If both (E[c])%, (E[c])Y in equation (7) are invertable
with respect to a, then, a left shape function L(z) = [(E[c])k]~! and a
right shape function R(z) = [(E[c])¥]~! can be derived from which the

membership function ppz(2) is constructed:

L(z)  (Elc)g=o <z < (Elc)g

a=1
pER(z) =4 1 (Eld)i= < 2 < (B,
R(z) (Bl <2 < (Bld)i, .
Since the Yagers ranking index method possesses the property of area
compensation, we adopt this method for transforming the fuzzy values

of system characteristic into a crisp one to provide suitable values for

system characteristics,

0Eld) = [ (Bl + (Ble)Y}da
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we can use all steps for E[N] too.
5. Conclusion

In this work,we have applied concepts of a-cuts and Zadehs extension
principle to construct membership functions of the expected number of
customers in the orbit and the expected number of busy server by the
use of paired NLP models.In this approach, a-cuts of the membership
functions are determined and their interval limits inverted to get ex-
plicit closed-form expressions for the system characteristics.In case the
membership function intervals can not explicitly be inverted, one can
also specify the system effective characteristics,and perform numerical
results to examine the corresponding a-cuts, and finally use this infor-

mation to improve system processes.
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