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Abstract. In this note we study the double point manifolds of
immersions of seven dimensional manifold into nine dimensional
Euclidean space. The method is to evaluate the Stiefel-Whitney
numbers of these manifolds.
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1. Introduction

Classifying the manifolds and maps is a very difficult problem. R. Thom
has classified the manifolds up to cobordism. Two n-dimensional man-
ifold M and N are called cobordant if there is another manifold W of
dimension (n+ 1) such that OW = M U N, where LI denotes the disjoint
union. The un-oriented cobordism ring M, is isomorphic to polynomial
algebra

Lo[V" im # 2 —1]

where V2¥ can be chosen to be 2k-dimensional real projective space R P2

and V21 can be chosen to odd dimensional Dold manifold. Since the
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manifolds are not classified for n > 2, then we will look the problem
up to cobordism. Although this problem classifies the immersions up
to multiple point manifolds, but it is also closely related to Hopf and
Karwiare invariant one problems; in codimension one see [5]. Let f :
M™% o R™ be a self-transverse immersion of a compact closed smooth
(n—k)-dimensional manifold in n-dimensional Euclidean space (0 < k <
n). A point of R™ is an r-fold self-intersection point of the immersion
if it is the image under f of r distinct points of the manifold. The self-
transversality of f implies that the set of r-fold self-intersection points

is itself the image of an immersion

0r-(f) : Ar(f) = R

of a compact manifold A,(f), the r-fold self-intersection manifold, of
dimension n — rk. If n — kr < 0, then A,(f) is empty. If n — kr =0,
then A, (f) is finite number of points. In this problem since n = 9 and
k =2, then n — kr = 9 — 2r therefore, if r = 2,3,4 then A,(f) have the
positive dimension. But if » = 3,4 then A,(f) is of dimension 3 and 1
respectively. Since by Thom'’s theorem the cobordism groups of 1 and 3
dimensional manifolds are trivial, then A,.(f) are boundary. As a result
it is enough to look the problem when r = 2, i.e. to detect Ay(f) for the
immersions M7 9+ RY. We use the algebraic topology and in particular

the correspondence between cobordism groups and homotopy groups of
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Thom complexes to evaluate the Stiefel-Whitney numbers of As(f). In
fact two manifolds are cobordant if and only if their tangent or normal
Stiefel-Whitney numbers are equal, see for details [8]. In the next section
we will explain how we can detect the double point manifolds by these

numbers. The main result of this note is the following.

Theorem 1.1. There is an immersion of a T7- dimensional boundary
into nine dimensional Euclidean space whose double point manifold is

cobordant to 5-dimensional Dold manifold V.

2. The Double Point Manifolds

Let Imm(n — k, k) denote the group of bordism classes of immersions
M"F a5 R™ of compact closed smooth manifolds in Euclidean n-space.
Details of cobordism in this setting have been given by R. Wells in
[10]. By general position every immersion is regularly homotopic and so
bordant to a self-transverse immersion and so each element of Imm(n —
k,k) can be represented by a self-transverse immersion. In the same
way bordism between self-transverse immersion can be taken to be self-
transverse; it is clear that such a bordism will induce a bordism of the

immersions of the double point self-intersection map

0o : Imm(n — k, k) — Imm(n — 2k, 2k).
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Let MO(k) denote the Thom complex of the universal O(k)-bundle ~* :
EO(k) — BO(k). Using the Pontrjagin-Thom construction, Wells in

[10] describes an isomorphism
¢ : Imm(n — k, k) = 75 MO(k).

But the stable homotopy group 75 M O(k) is known to be isomorphic to
homotopy group 7, QM O(k), where the QX stands for the direct limit
QXEXX = 1limOQ"¥X" X, and ¥ denotes the reduced suspension functor
and  denotes the loop space functor. We consider the Zs-homology

Hurewicz homomorphism
h:7SMO(k) = 1,QMO(k) — H,QMO(k) = Hpy(QMO(k); Zs).

The main result of [1] describes how, for a self-transverse immersion
f: M™% a5 R™ corresponding to o € w5 MO(k), the Hurewicz image
h(a) € H,QMO(k) determines the normal Stiefel-Whitney numbers of
the self-intersection manifold As(f). The case r = 2, may be outlined
as follows:

The 2-adic construction on X denoted by D2 X is defined as follows:
Do X = Wg x5, X AN X = (Wg x5, X A X) /(W23 x5, {*}).

Here ¥5 denotes the permutation group on tow elements and Ws is
a contractible space with a free ¥s-action. The group ¥, acts on the

smash product X A X by permuting the factors. There is a natural map
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h? : QX — QD2 X known as a stable James-Hopf map which induces
stable Hopf invariant h2 : 75X — 75 Do X see [3]. If the self-transverse
immersion f : M™% 95 R” corresponds to the element a € 75 MO(k),
then the immersion of the double point self-intersection manifold s( f) :
As(f) &+ R™ corresponds to the element h2(a) € 75 Do MO(k) given by

the stable Hopf invariant (see [6] and [9]). The map
&v : TS Do MO(K) — w5 MO(2K)

induced by the map of Thom complexes & : DoMO(k) — MO(2k) make

the following commutative diagram.

S h% S & S
T W MO(k) T D2MO(k) o MO(2k)
h hS RS
h2 &
H, QMO(k) H, 1D MO(k) Hp 1 MO(2k)
Diagram (1)

In this diagram the second and third vertical maps are stable Hurewicz
homomorphism defined by using the fact that the Hurewicz homomor-
phisms commute with suspension. Notice that the normal Stiefel-Whitney
numbers(and so bordism class) of the multiple point self-intersection
manifold A,(f) of an immersion f : M™% 95 R™ corresponding to

a € 5 MO(k) are determined by (and determine) the Hurewicz image



62 M.A. ASADI-G

h%(B) of the element 3 = &.hl(a) € w5 MO(rk) corresponding to the
immersion 6,.(f).

To read of these numbers we need to find the spherical elements of
H,QMO(k), so we need to have a good description of this group. Recall
that H*MO(k) = wyZo|wy,ws, - --wg], where w; denotes the Stiefel-
Whitney classes. In homology we will work with another bases rather

than dual bases, for the calculation is easier than dual one.

Homology of MO(k) and QMO(k) : Let e; € H;BO(1) = Zy be the

non-zero element (for ¢ > 0). By a counting argument we can show that
{ei €iy...€i, | 0 < iy <ip < . < i}

is a basis for H,BO(k). Since the Thom complex MO(k) is homotopy

equivalent to the quotient space BO(k)/BO(k — 1). It follows that
{eileh...eik I 1 < i] < ig < ... < ﬁk}

is a basis for H,MO(k).

Dyer and Lashof (see [4] and [7]) make use of the Kudo-Araki operations
Q' : HnQX — H, QX to describe the homology of QX. These
operations are trivial for ¢ < m and equal to the Pontrjagin square for
i = m. If I denotes the sequence (iy,is,...,i,) then we write Q'z =
Q" Q%...Q"z. The sequence I is admissible if iy <idjp for 1 <j<r

and its excess is given by e(I) = i; —ig—...—i,. With this notation we can
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give the description of H,QX as a polynomial algebra: if {z) | A € A} is
homogeneous basis for H. «X C H,QX where X is path-connected space

then
H,QX = Z|Q"xy | A € A, Tadmissible of excesse(I) > dimz,].

We may define a height function ht on the monomial generators of H.QX
by ht(z)) = 1, ht(Q'u) = 2ht(u) and ht(u-v) = ht(u)+ht(v) (where u-v
represents the pontrjagin product). The detection of spherical elements
of a homology group is another difficult problem, still open in general,
but in the case of H,QMO(k) and because of the following lemma it is
sometimes possible to find these elements by a long calculations.

lemma 2.1. (1) If an homology class w € H,X is spherical then it

is primitive with respect to the cup coproduct, that is
Pu)=u®1+1Qu,

where ¥ : H, X — H,(X x X) = 3,H; X ® H,_;X 1is the map induced
by the diagonal map.
(2) If an homology class w € Hp, X is spherical (or stably spherical,i.e.
in the image of h° : 75X — H,X ) then it is annihilated by the reduced
Steenrod algebra, i.e.

S¢i(u) =0
for all i > 0, where Sqi : H,X — H,_;X is the vector space dual of

the usual Steenrod square cohomology operation Sq' : H"'X — H"X.
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Proof. For a proof see [2].(]

Note that if S¢iu = 0 for all i > 0 in the sense of Lemma 2.1., we

say that u is As-annihilated.

3. Homology Group of HyQMO(2)

The homology group HoQMO(2) is generated by the following elements.
2 2 2
€1€8, €2€7, €3€4, €4€5, €1 €1€g, €] - €2€5, €1 - €364, €1€2-€1€5

€1€9-€2€4, 8182-8%, €1€3-€1€4, €1€3-€2€3, 8%-8184, 83-8283, Q68132

Q%cre3, Q%3, QTel, ei-ef-ejeq, ei-€i-exes, er-erex-eres, er-eien-es
i el Q%1 eies- Q%] €-Q%%, ef-Qleer
6162-Q46%, €1€3 - €163 - €1€9, e%-ef—e%-eleg

Now according to Lemma 2.1. first we are going to find the primitive
As-annihilated sub-module of HoyQMO(2). The following elements are
primitive.

eres, Q'ei, Qleres, Q%eies

To see which linear combination of non-primitive elements are primitive
we look the action of v, the cup co-product, on non-primitive elements.

The calculation is too long, therefore we just write some action of 1) on
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typical elements.

2
P(eger) = eser @ 1 + e1e6 @ €] + e1e5 @ e1ez + e1e4 ® ejeg + ejez @ ereq

+ ejes ®eres + e% ® ejeg + 1 ® eger

1!)(3% -eieg) = e% -e1eg @1+ e% ® ereg + e1eg ® e% +1® e% - e1e6

Pleres - Qled)=eres - Qe @ 14+e1e0 ® Qe +
Q‘le:l) ®ejea+1®ees Q‘lef
We add the above calculation in the following lemma.
lemma 3.1. The primitive sub  -module of HoQMO(2) is generated

by the following elements.
7.2 6 5
eres, Q'ey, Q’erez, Qere

A = e% se1ep + e1eg - ejes + ejes - ejeq + eser

B =ejes-eres-e1e9 —i—e% -ef ‘€1€e4 +€1€2 - €165 + e% c €164+ €1€3 + €2€3

+ ejes - eqeq + ef - eg€5 + €36
Cc = e% . e% . e% - €162 + €1€2 - €162 - €1€2 + e% . ef - eg€e3 + e% - ege3 +
€1€2 * €2€4 4 eye3-e1e4 + €1€3 - €9€3 + €1€9 - e% - e% - ezeq + eqes

Now we find the primitive As-annihilated sub-module. So we look the

action of S¢¢ on the above elements.

Sqi(Q7e}) =0, Sqi(eies) =erer, Sqi(Q%ies) = Qeren
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Sqi(Qr’eleg) =0, Sqi(A) = eje3 - ejez + ereyg

Sqi(B) = e% -ere9 - e1eg + e% . 6%6163 + eg -e1e3 + erez - e1€3

+ e% - €264 + €1€3 - €1€4 + €1€32 - €2€3 + €3€5

1 2. .2 2 2 2 2. .2 2
Sq.(C) = ej-ej-ej-ef+ej-erea-erea+ef-ef-eres+es5-ees+

2
e]-eaeq + ejez-ejeq+ erea - eze3 + eze;

So from the above it possible the elements Q7e?, Q%e;e3 to be spherical.

But since
S2(Q7e?) = S¢*(Q7e?) =0, S¢Z(Q%ere3) = Sqt(Q%ere3) = 0.

So we have the following corollary.

corollary 3.2. The primitive Ay-annihilated sub-module of HyQMO(2)
is generated by

QTel, Q%eres.

Proof of Theorem 1.1. The un- oriented cobordism group of 7-—
dimensional manifolds is generated by boundaries and P? x V5. From
which the manifold P? x V® does not immerse in R?, but the boundaries
immerse up to cobordism as we know the manifold S7 immerse in R® so in
R?. There is an immersion of S7 in R® € R? known as Hopf immersion
which has non trivial Hurewicz image. Represent this immersion in

m9QMO(2) by a. Since w?[S7] = 0, so necessarily we have h(a) =
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Q"e?. Therefore by Theorem 3.1 of [1] we conclude that &, Poh(a) = 0.
Therefore the multiple point manifolds of this immersion are boundary.
Note that ejes is dual to wgw%, so any manifold with Hurewicz image
Q%e1e3 must have the condition 'w% [M] # 0. On the other hand e;e3
is spherical, in fact there is an immersion of P? 9+ R?* such that its
Hurewicz image is ejes. Now by using the homotopy and stable Hopf
invariant description we can show that Q%e;es is spherical. This means
that there is an immersion of a boundary with Hurewicz image Q%e;es.
Let [ represent this immersion in mgQMO(2) then we have h(8) =

Q%e1e3. So by Theorem 3.1 of [1]

EPoh(B) = 6%(—3285 + 8?66 + elegeg + 8%8384.

This demonstrate that the double point manifold of this immersion is
cobordant to 5-dimensional Dold manifold V. To prove this let us see
what is the Hurewicz image of the immersion V° 9 R?. The Homology

group HgQMO(4) is generated by the following elements.

4 3 3 2 2 2 2 3
61 '6162, 6166, 616265, 616364, 616264, 616263, 6263

The primitive sub-module is generated by

4 3 3 3 2 2 2 2
€1 €1€2 + €9€3, €1€6, €1€2€5, €1€3€64, €1€5€4, €1€2€3
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Now the action of S¢. on these elements shows that the primitive As-

annihilated sub-module of HyQMO(4) is generated by a single element

e‘fes + efeges + 6%6384 -+ elegeg.

As a result if v denotes the immersion V° 9 R? then

h’(’}() = r3:1366 + 6%6265 + 6%6364 =+ 616263.

This is the same as & Poh(3). This proves our claim.[J
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