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1.

The problem of discriminating between two classes of time series is of
great theoretical and practical interest. Shumway ([30]) and Shumway
and Stoffer ([33]) summarized some of important areas with applications

in various disciplines. Shumway ([30]) reviewed many different methods
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for stationary time series discrimination in both time domain and fre-
quency domain approaches. Some more and newer references are [2, 11,
12, 21, 32] in frequency domain and [7,8,9,29] in time domain.

Suppose a realization of time series, x = (z1,z2,...,27) has to be

allocated to one of H; models, i = 1,2 where

H; @ x ~ p;i(x)

and p;(x) is probability density function of x under H;. The likelihood
ratio-based discriminant rule is to classify x to H; if pi(x)/p2(x) = ¢
and to Hy otherwise. Threshold value of ¢ is dependent on prior proba-
bilities in Bayesian methodology and to one of two error probabilities in
nonBayesians. The likelihood ratio approaches are optimal to discrim-
ination and classification ([3,13]). In this approach usually Gaussian
specific assumption has been made to processes in addition to station-
arity and linearity assumptions.

However, in many practical problems, the series are non-stationary
and/or nonlinear. For example, Shumway [32] showed the data set con-
structed by Blandford [5] were non-stationary. Kakizawa et al([21]) in-
troduced some seismic data which are nonlinear (see also, e.g. [28]). Al-
though various nonstationary time series processes have been developed,
little attention has been paid to extend the methodology. For example,

Priestley [27] was the first to give time-varying transfer function using
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Cramer representation. Following this idea [10] established framework
for time series with evolutionary spectrum as a locally stationary time
series. Subsequently, Shumway ([32]) suggested a mixed frequency and

time domain approach to discrimination of time series, (see also [29]).

Recently, Chinipardaz and Cox ([4]) have proposed the likelihood
ratio discrimination based on kernel estimated density functions. In
this paper a new approach has been suggested to bilinear models which
are, in general, nonstatioanary and nonlinear. The method is based on
a new look at the Cumulative Sum Control Chart (CUSUM) and is used

to discriminate between two bilinear time series.

The paper has been organized as follows; in section two the log-
likelihood function for state space models (SSM) is given using Kalman
filter (KF) algorithm. The discrimination of Gaussian SSM is consid-
ered in third section. The new method is also suggested in this section.
Section four is devoted to the discrimination between two moving av-
erage models of order one using both the classical method, as given in
Chan et al (1996), and the suggested method given in the third section
of the present paper. A comparison has also been made to show the
performance of the new method. In the fifth section the bilinear models
are viewed as SSM. Finally, in the last section, the discrimination of
the two bilinear models with employing SSM is presented. A numerical

simulation has been made to investigate the performance of the method.
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2. State Space Models

Consider the following state space models (SSM) for a random process

O,

o = Groy—y + Rimy, (1)

where o is a m x 1 state vector, Gy is a m X m matrix, R; isam X g
matrix and 7, is a g x 1 vector of serially uncorrelated disturbances.
Suppose we cannot observe the process {a;} directly, but instead we

observe a related measurement process {y;};
Yt :ZtO:t—i-Er, t:l,g,...,T. (2)

where y; is the vector of N observed variables at time ¢, Z; is an N xm
matrix, the m x 1 state vector and €; a N x 1 vector of serially uncor-
related disturbances. Thus y;, observable at time ¢, is a known linear
transformation of e; plus a random noise €;. We want the best least
square of a; base on previous observations yi,...,y:—1. For univariate
observations design matrix Z; reduces to a design vector z; and the co-
variance matrix and the covariance matrix of S; to variance s;. In the
transition equation (1), Gy a m xm matrix, R; is a m x g matrix and n; a
g1 vector of serially uncorrelated disturbances. This notation of SSM is
what is required in the present paper. A more general setup can be found

in [17] and [18]. Let E(€) = 0, Var(e;) = Sy, E(n,) = 0, Var(n,) = Q.
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Let E(ap) = ag, Var(ag) = Py and assume €;, n, are uncorrelated for
all tq, 9.
The Kalman filter is used to optimally estimate the state vector, oy,
using the observed variables up to the present time t. Let the estimate
of a; be a;, and the mean square error (MSE) matrix of a; be FP;. Let
the subscripts t|t — 1 attached to a vector or matrix give its value at time
t, given all information up to time t — 1. Let Y; = (¥4, ¥t-1,---.¥1) -
The prediction equations are
a1 = E(aYi1) = Grar (3)
Py = E[(a— o) (ar—ay) [Yi] (4)
= GiP1Gy + RiQiR;.

The estimator of yy is
5’:|t—1 = Ztat|t—1-

The prediction error is

Vi =Yt — Viji—1 = Zi(ar — agy_1) + €,
which has MSE matrix

F = Zt.Pt“_lZ; + 5;.

The updating equations are then

ag = a1+ Pt|t_1Z£F¢_l (ye - Ztat|t~1) (5)

P, = Py_y— Py 1Z{F, ' ZPy,_,. (6)
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The KF algorithm requires an estimate of the initial state vector and the
variance of the error in this estimate, ag, P, as well as a known state
vector. The latter can be derived from the using model. For stationary
time series models the usual initialization uses the unconditional mean
and variance of the initial state, ay, ([1,20]). For nonstationary time
series models this approach is not available because unconditional means
and variances change over time. Various approaches have been suggested
to initialize the KF for nonstationary time series models (see [4,6,22]).
In this paper following [4] the variance of the initial state is let to be
large for nonstationary bilinear time series models. It is equivalent to

diffuse or non-informative prior. Let

€4 ~ N(O} S;) y
e ~ N(O, Qt):

ap ~ N(0,Qo),

assuming that € and 7; are uncorrelated with the initial state vector
o make the mean and covariance structure of the model fully specified.
Let parameters of the models be placed in a vector ¥. Then the log-
likelihood based on observations up to present time T can be written
-T 1 & 1o
L) = - log 27 — 3 ; log | Fy| — 3 gv'tﬂ_lvt. (7)

where vy and F} are given as before. (See [18] for further details).
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3. Discrimination of Gaussian State Space Mod-
els

Suppose an observed time series, y1, y2, ..., yr, is to be allocated at time
T to one of two Gaussian state space models, H; and Hy described by
their own measurement and transition equations as in the previous sec-
tion. The log-likelihood ratio for the two models, giving the discriminant
DFr(y), is from (7)

Li(3)
La(v)

1 |[Foel 1 N ro—1
- 3 S (gt i)
=1 ’ =1

where the suffices 1 and 2 refer to the models H; and Hj respectively.

DFp(y) = log

If necessary, classification of a series to H; or H» can be treated like
a sequential probability ratio test where an optimal decision is to be
made as soon as possible. However, in other situations the decision can
be left until the end of the series has been reached. For the former case
the theory of sequential probability ratio tests (e.g. [25]) cannot easily
be applied to the problem. This is because the distribution of DFp(y)
will usually be impossible to find analytically, hence the probabilities of
misclassification cannot be calculated. However, if H; is the appropriate
model rather than Hs, then the more observations used in the discrimi-
nation, the larger the value of DFr(y). Likewise if Hy is the appropriate
model, then the smaller the value of DFp(y). Indeed DFp(y) can be



32 R. CHINIPARDAZ

updated with every new observation so that

DFri(y) = DFr(y) + Ara

where

L |Fyr
A = Zlog—=-T
T+1 9 og |F1‘T+1|

1 ' -1 ! -1
3 ( L+ FL Vi — VZ,T+1F2?T+IV2‘T+1) :

Each value A7 can be considered as discriminant information in favour
of Hy or Hy and DFp(y) is then the CUSUM of the A%s. However,
CUSUM methodology in the area of statistical process control is not
appropriate since the A%.s are not independent. In practice a plot of
the CUSUM DFp(y) may give overwhelming evidence in favour of H;
or Hs, if it continually increases or decreases, respectively. When the
situation is not so clear the percentage of the A’.s supporting H; can
be noted. As soon as this reaches a certain level (95% say) the series is
allocated to H; or at another level (5% say) allocated to Hy. Otherwise
a further observation is taken. If the end of the series is reached without
a decision being made, a final subjective decision will have to be made

about H; and H3 based on the A’.s.
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4. Discrimination between two MA (1) Models
in Classical Method and New Method

Chan et al, ([7])obtained the classical method to discrimination between

two moving average processes of order one. Consider
Hi:y =01+, (i=1,2) n~ N(0,0%)
The discrimination leads to allocating y to H; if

(61— 02) (61 + 02 + 2 cos 777 ) 22

; (1 + 62, + 264 cos 7\%) (1 + 625 + 205 cos 71-%)

(1)

1+ 625 + 265 cos %

< In ,
; 1+ 6% + 261 cos 775

i (2 AT T
and to Hy otherwise, where z; = (757)% D> _—; Tk sin 477, (Chan et al

[7]). Now, we review this example using the method given in the previous

section. Define the state vector according to H; as

!
L Yt
Xt = [ i ] '

The measurement equation is

1
yi.:[o]ai,f t=1$2s"':T

where the state equation is

o 01 ‘ n 1
Ot = 0 0 O p—1 0; Tt
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The initial state vector is 0 with unconditional covariance matrix (see
[18] for more detail)

1462 0,
rao= 50

01 1
0 U]andR;—[O

time invariant, process is stationary and fi1 = ZF; 102" = [P; 1011 =

In this case [ [1] ] , Gy = [ ] All matrices are
1+ 62, where [P, 1 0]k, stands for (k,1) th element of matrix P; ;9. The
innovation

0;

Vit = Yt — s I‘Uz',t-l
T

has normal distribution with zero mean and variance f;;. After some

algebraic manipulation
6‘21‘.

[Pi,tlt—llj,k:{ 1—%—1%% ey J=k

0; otherwise

where
o2t
f',t = 1 + )
' 1+62 4+ +6)07Y
o z Jt k
i = J**qu ey
and
1— 6%
figm1 figmk = ——7—-
B 1 62(5 k)

i

Then the updating DF;_(y) after observing new data, y;, is

DFj(y) = DFj-1(y) + 4; (2)
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where

1 —62)(1 — 6%)
2" (1 _93)(1_333
o~
Lo(—

{E 02)™(1 — 629" Yy, }2 _
P

00)™(1 = 07" )y, m
4.1 Comparison between Two Approaches

35

The classical method, led to([8])and the new method given in ([9])and

([10]) were compared with the simulation. One thousand time series each

with the length 200 was simulated and allocated to Hy or Hs according

to the two methods. Results are given in Table 1. As can be seen both

methods work well with the classical method slightly superior.

Table 1: Misclassification table for 1000 time series

of length 200 for MA(1) processes

01 | 02 I II
—-0.2 | 0.2 1.4 0.1
0.2 0.4 6.5 2.0

—-0.5 | 0.5 0.0 0.0
0.4 0.7 1.4 0.1
—-0.3 | -0.5 5.1 2.2
0.1 0.8 0.0 0.0

I: Percentage misclassified with the state space method

II: Percentage misclassified with the classical method
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5. Adopting Bilinear Models in SSM

Consider a univariate time series {y;},t = 1,2,...,T generated by a
bilinear model, BL (p, q. k, 1),

P q kv

Y = Zﬁf)@yt—a‘ + Z Oine—; + Z Zﬁz‘,jm—if‘h—j + N, (1)

i=1 j=1 i=1 j=1
where {n;} is a white noise process and {¢;}, {6;} and {3;;} are real
valued constants. General form of a bilinear model has been studied
by many authors, including Granger and Anderson ([16]), Pham ([26]),
Subba Rao and Gaber ([34]), Liu and Brockwell ([23]) and Grahn ([15]).
These models have successfully been used for real data as economics and
control theory ([24]).

The discrimination between two bilinear models can be motivated
with these two reasons. Firstly, as noted by some authors (e.g. [34]),
these models may give a reasonably good approximation to seismolog-
ical data. Theses data are most interested in discrimination when an
unknown observation has to be allocated to one of the known cate-
gories, namely explosion or earthquake. Secondly, these models have
advantages that they include ARMA models as special case. Unfortu-
nately, so far the discrimination between two bilinear models has not
been considered by authors. The main reason is that the discrimination
based on log-likelihood ratio leads to a very complicated equation and

distribution of the discriminant function is unknown and subsequently
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misclassification rate cannot be obtained theoretically. In this section
the method is adopted to a bilinear model. Note that in this section
BL(1, 1, 1, 1) models will be considered. But it can be extended to
more complex models of BL(p, q, k, r).

Consider the BL(1, 1, 1, 1) model

Yt = GYr—1 + g1 + Brp—1ye—1 + e

where 7; ~ N(0,0%) and ¢,0 and 3 are unknown parameters. This

model can be put into the state space form

1
[
oy | | @ 04 By |1
a=la]=[8 ] ==[h]

The model is not stationary, nor time invariant. The initial distribution
of ag will be in terms of a diffuse or non-informative prior, i.e. Py = &/,
where k is a positive scalar with the diffuse prior being observed as
Kk — 00 (see [14] and [17]). Now

k[0 + (0 + Byo)?] + 0% o2
02 o2

Pyjg = G1 PG + RiQ1 R} =

¥

and

Fi = ZIP1|OZ! = [P1|0]1,1 =K [(}52 + (0 + ,8'9‘0)2] + 0'2,
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which becomes infinite as k — oo and hence the variance of the first
error prediction is infinite. Combine (4) and (6) to obtain the recursion

formula for the error covariance matrix which is

Pii1jp = Gy1 (Pyp—1 — Pyy1 ZiF, ' ZiPyy 1) Giyy + Res1Qusa Ry

t=1,...,T.

After some algebra

(Pry1jilie = { o {l + (0 + Bye-1)* (1 - IWU_);F)} j=k=1

0 otherwise.

The recursion for the variance of the error prediction is

ft = ZiPy1Z{+ S = [Ptlt—l]l,l

2
02{14—(64—,63;3_1)2 (1—;—)} t=1,...,T,
t—1

since Var(n;) = s; = 0.

Now because f; — 0o as k — 00, fo can be taken as

o? {1+ (04 Bye-1)*} .

and since T" will be finite, subsequent values of f; can be found starting
with fo. Let the estimate of the state vector a; at time ¢ — 1 be a;;_;.

The recursion for a;,_; is given by

ap1 = (Gra1 — KiZe) ag 1 + Ky,
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where
Ki = G Py Z{F .

After some algebra

a¢+1|z=l(9+ﬁyt){ (yt;a”‘l ))}+¢y‘], t=1,...,T.

where a(m) means the mth element of vector a. As f — o0, ag; — 11

as k — 00. The error prediction is therefore obtained as

V41 = Y1 — Zt+12¢41¢
Y2 — oY1 t=1
Y1 — (0 + Byz) {f Yt — ag—1(1 ))}"‘(ﬁyt, t=2,...,T-1

The error prediction at step k,wvg, has a normal distribution with zero

mean and variance f;. Thus the log-likelihood function for the kth step

is
Li(y) = L(y2, ..., k) =

k k 2
1
— 2:1 z;—f ——1 2 k=2,....T.
2 [t=2 ngf =3 f] 2 e J 1

6. Discrimination of Bilinear Models

The log-likelihood ratio for Hy : @ = (61, ¢1,31) and Hs : ¢ = (02, ¢, B2)

reduces to

k k 2 2
1 1 v v
17Fk(y)=§§jlog@+§ { 2 _ "’5} k=2,...,T.

=
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where
0'2{1-5-(9@'—}-6{%_1)2} t=2
fi,t = 9
02{1+(9¢+61-y¢_1)2 (1_ fg_l)} t=3....T
and
Y2 — Giy1 t=2
2
vig = Ye — (0i + Biye—1) {f,.‘;_l (-1 — ai,t—1|t—2(1))}
+¢’1'yt—la t=3!"'!T}

for i = 1,2 and a; 4,1 (1) is given in (3).
Then as before the log-likelihood ratio can be used sequentially to

discriminate between H; and Hs.

6.1 Simulation Study

A simulation exercise was carried out to assess the discrimination of
some bilinear processes using CUSUM approach. Models were chosen
for Hy and Hs respectively. One thousand time series, which with the
length 500 were simulated from each of the models. Every series was
then allocated to Hy or Hy but with the possibility of no decision. A 95%
decision level was chosen as discussed in section 3. Results are shown in
Table 2. The various models chosen are shown together with the number
of correct and incorrect allocations. Also shown is the average number
of points needed before a decision was made. These results show that

the method works well.
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Table 2: The number of correct allocations and wrong allocations

for 1000 time series of length 500

Models:  Hy: 9y +0.1y;—1 + 0.1e—1 + 0.1ys—160-1 = €
Hy: yp +02y;1 +0.2¢p-1 + 0.2y 161 = €

Series generated | No. allocated to | No final | Av. No. of points
from Hiq Hs allocation until decision
H,y 704 71 225 120
Hy 96 640 264 131.95

Models: Hy:y — 0.2y,—1 — 0.24—1 — 0.2y;—16,—1 = €
Ho:y: +02y;1 4+ 0261+ 02y, 161 = &

Series generated | No. allocated to | No final | Av. No. of points
from Hiq Hs allocation until decision
Hy 989 4 7 78.6
Hs 3 987 10 80.27

Models: Hj @y +0.2y;—1 +0.2¢4—1 + 0.2y 1601 = €
Hy iy +04yi—1 + 0461 + 0. 4dyi161 = €

Series generated | No. allocated to | No final | Av. No. of points
from H; H, allocation until decision
H, 923 22 55 116.68
H, 25 914 61 108.43

Models: Hy:yr —05y-1 +02¢1 +0.1ys_160-1 = &
Hy :y +0.5y-1 +0.2¢—1 + 0.1yp—160-1 = ¢

Series generated | No. allocated to | No final | Av. No. of points
from H; H, allocation until decision

Hy 995 3 2 69.76
H, 4 994 2 61.24
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Models: Hy:y + 01y —0de—1 + 0.2yp—16-1 = €
Hy:yp +0.1ys—1 + 0461 + 0.2y 161 = &

Series generated | No. allocated to | No final | Av. No. of points
from Hy Hoy allocation until decision
Hy 994 5 1 7
Ho 5 988 7 77.33

Models: Hy:yr +01y;—1 +0.1e,1 — 0.5y 1601 = €
Hg S + 0.1yg_1 + 0.16;_1 —+ 0-5yt—1€t—1 = €¢

Series generated | No. allocated to | No final | Av. No. of points
from H, H allocation until decision
H, 993 2 5 75.39
Hy 0 991 9 73.47
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