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Abstract. We show that in finitely or countably generated Hilbert
C*-module E every frame can be represented as a linear combina-
tion of three orthonormal basis and also it can be represented as a
linear combination of two orthonormal bases if it is a Riesz basis.
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1. Introduction

Hilbert C*-modules arose as generalization of notion of Hilbert space.
The basic idea was to consider modules over C*-algebras instead of linear
spaces and to allow the inner product to take values in the C*-algebra of
coefficients being C*-(anti)linear in its arguments. We give only a brife
introduction to the theory of Hilbert C*-modules to make our explana-

tions self-contained.
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Definition 1.1. Let A be a C*-algebra and E be a (left) A-module.
Suppose that the linear structures given on A and E are compatible. i.e
Maz) = (Aa)z = a(Az) for every A\ € C, a € A and x € E. If exists a
mapping (xz,y) — (x,y) : E x E — A with the properties:
(7) (x,z) 20 for every x € E;
(1)  (z,z) =0 ifand onlyif x=0;
(iii) (z,y) = (y,z)*  for every uz,y€ E;
(iv) (az,y) = alz,y) for every a€ A,z,y € E;
(v) (r+y,2)=(x,2)+y,z) forevery z,y,z€E.
Then the pair {E, (.,.)} is called a (left) per-Hilbert A-module.

If the per-Hilbert A-module {E, (.,.)} is complete with respect to the
1

norm ||z|| = ||{x, :.-:)||§ then it is called a Hilbert A-module. The Hilbert
A-module E is said to be finitely generated if there exists a finite set
{z;}}_, C E such that x = Zajﬂ:j for every x € E and some coef-
ficients {a;} C A and E is cafled countably generated if there exists a
countable set {zj}je; C H such that the set of {Zajl'j,aj € A} is

i
norm-dense in H.

Example 1.2. If A is a C*-algebra , then A itself is a Hilbert A-module

If we define (a,b) = ab* for a,b € A.

Example 1.3. Denote by E = A" n € N, the set of all n-tuples with
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entries of A, where the addition is the position-wise addition derived
from A, the action of A on E is the multiplication of every entry by
a fized element of A from the left and on the A-valued inner product
is defined by the formula: (a,b) = iaﬁb;" for a = (aj,a9,--- ,ay,) ,
b= (bisba,- -+ ,bn) € E, then E is a Hilbert A-module.

This kind of examples plays a crucial rule in Hilbert C*-module theory.

It allows to characterize finitely generated C*-modules.

Theorem 1.4. Let A be a unital C*-algebra. Every algebraically finitely
generated A-module E is an orthogonal summand of some Hilbert A-

module A for a finite number n.
Proof: [1. Cor.15.4.8]. O

Example 1.5. ([6]) Let H be a Hilbert space then the algebric ten-
sor product A ®qig H (which is a left A-module) has an A-valued inner
product given on simple tensor by (a ® h,b® g} = ab*(h,g)y; a,b € A;
h,g € H then A ®44 H becomes a pre-Hilbert A-module and we denote
its completion by A@ H= Hy. O

Naturally A" =2 A ® C" for any n € N, Moreover set £3(A) to be the
norm-completed algebraic tensor product W‘Z(C’) that possesses as
alternative description as :

l3(A) = {a = {aj}jen the sum Zaja; converges w.r.t ||}
J



16 S. H. HOSSEINI

with A-valued inner product ({a;}, {b;}) = Zajb;.
J
The Hilbert A-module £3(A) serves as an universal environment for
countably generated Hilbert A-modules that can be described as orthog-

onal summands. This fact was first observed by G.G. Kasparov([5].

Theorem 1.6.([5]). (The Kasparov Stabilization theorem,).

Let A be a C*-algebra, unital or not, If E is a countably generated
Hilbert A-module, then E@® Hy = H 4.

It follows from Stabilization Theorem that every countably generated
Hilbert A-module F possesses an embedding into #3(A) as an orthog-
onal summand in such a way that the orthogonal complement of it is
isometrically isomorphic to f2(A) again, i.e. E @ fa(A) = l5(A).

The Hilbert A-module A", n € N and f3(A) possess canonical or-

thonormal bases.
2. Perturbation of Operators
Definition 2.1. Let E and I be Hilbert A-modules. A mapT : E — F
is adjointable if there is a map T* : F — FE such that
(T(z),y) = (&, T*(y)) for alle € E,y € F

Let A be a C*-algebra and E, F are Hilbert C*-modules. The set of

bounded adjointable A-linear operators from E onto F is denoted by
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L(E,F), or L(E) if E=F.

Proposition 2.2. Let T € L(E) with ||T|| < 1 then for every unitary
operator U of E there are unitaries operators V and W such that T+U =
V+W.

Proof: Replacing, if necessary, 7" with U*T we may assume that
U = 1I. Since ||T|| < 1, both operators I + T and I + T* are bounded
away from zero, so I + T is invertible and so by polar decomposition,
I+T = R|I+T| with R unitary operator (see [7]) and since || I+T|| < 2 so
|1 T+T||| < 2,it follows |T'+I| = S+ S* for some unitary operators ([6]).

With U = RS and V = RS* the lemma follows. [

Proposition 2.3. If T € End}(E) is surjective and possesses a polar

decomposition then it is a multiple of the sum the of two partial isome-

T
tries Wi and Ws. i.e. T = @(Hﬁ + Wa).

Proof: If T is adjointable bounded A-linear map of E onto itself

that has a polar decomposition 7' = V|T'| inside End’(E) which, V is

1
= —(U + U*) where, U =

<1
S0 5

a partial isometry. Since

T T
17| 17|
2

is unitary ([4]). Now we have the representation

i 4|
— % — —
I T

T
T= Q(VU + VU*) with partial isometries VU, VU*. O
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3. Application to Frames

Frames serve as a replacement for bases in Hilbert spaces that guarantee
canonical reconstruction of every element of the Hilbert space by the
reconstruction formula and the following result is satisfies in Hilbert
spaces. Let us being with a short introduction to the part of frame
theory which we need. For more information about general frame theory

we refer to ([2]).

Definition 3.1. Let A be a unital C*- algebra and J be a finite or
countable index set . A sequence {x;,j € J} of elements in a Hilbert A-
module E is said to be frame if there are real canstants C,D > 0 such
that
C.z,z) < Z{x,xj)(a:j,:z:) < Dz, x)
JjeJ

for every x € E. The optimal constants (i.e. mazimal for C and min-
imal for D ) are called frame bounds. The frame {x;,5 € J} is said
to be a tight frame if C = D and said to be normalized tight frame if
C=D=1.

If {2}, is a frame , one can define bounded operator (frame trans-
form) 0 : E — {3(A); 60(z) = {(z,z;)}i=100. The adjoint operator is
0% : lo(A) — E; 0*(e;) = z; [1], which, £3(A) = {a = {a;}jen the sum

Zaja} converges w.r.t |.|[4} and {e;}i=100 is an orthonormal basis of
J
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¢5(A). The operator S = #*0 is called frame operator. Conversely , the
image of a normalized tight frame {x;,j € J} of E under an invertible
adjointable bounded A-linear operator 7" on E is frame of E[1].

So since there exist a equivalence between frames and onto operators
that is, if we have a theorem about onto operator on Hilbert C*-modules

then we have theorem about frames.

Example 3.2. ([2]). Suppose that {x;,j € J} is a sequence in Hilbert

space H such that the equation x = Z(x, xj)x; holds for all x € H.
Jjed

Then {z;,j € J} is a normalized tight frame H since every x € H we

have:

(x,z) = nli_r)nc>0 <Z(:r,:cj)xj,:r>

= lim Z T,Tj)Tj,T)

n—=00
n 00
= lim Z:s zi)(z; E T, TiT
At 00 ( ] j’ j: j ( j".!
Jj=1 Jj=1

Example 3.3. ([2]). For a special case let {e;1, ez, e3} be an orthonor-
mal basis for a 3- dimensional Hilbert space K. Another orthonormal

basis for K is then

1 1 1
{E(el + ez +e3), —6(81 — 2e2 + e3), E(el —e3)}
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thus from example 3.2. the set

— 2e39), L

1 1
{ﬁ(el +82):%(61 E(el)}

is a normalized tight frame for H = span{e1,ea}.

Example 3.4. Every sequence {z;,7 € J} of a finitely or countably
generated Hilbert A-module for which every element x € E can be rep-
resented as © = Z($,$j>$j is a normalized tight frame in E.

The decompogition of elements of E is norm-convergent if and only

if it is a standard normalized tight frame . Indeed,
n
Z($,$1)$j1$>

=1

n—00

(z,z) = W— lim <

T

= W- lim > (z,a;)z;,x)

n—00
i=1
n oo
= W lim 3w 3)(5,2) = Y (@ 25)(5, ).

Example 3.5. Let H be an infinite-dimensional Hilbert space and
{P;,j € J} be a mazimal set of pair wise orthogonal minimal orthogonal
projections on H. Consider the C*-algebra A = B(H) of all bounded
linear operators on H and Hilbert A-modules E = B(H). The set
{Pj,j € J} is a normalized tight frame for E, since {Pj,j € J} is a
basis for E so for each x € E we have x = Z(:::, P;)Pj in the a sense

JjE
of w*- convergence in A.
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Recalling the standard identifications A" = A ® C™ and f3(A) =
A ® ly(C).we observe that for every( normalized tight) frame {z;}; of a
Hilbert space H the sequence {1,4®ux;}, is a standard (normalized tight)
module frame of the Hilbert A-module E = A ® f5(C) with the same
frame bounds. So standard module frames exist in abundance in the
canonical Hilbert A-modules. To show the existence of module frame in
arbitrary finitely or countably generated Hilbert A-modules we have the

following fact:

Proposition 3.6. Let {z;,j € J} normalized tight frame of Hilbert
A-module E. For every partial isometry V € End’(E) the sequence

{V(x;),j € J} becomes a normalized tight frame of V(E)4.
Proof:see [4]. O

Proposition 3.7. Let A be a unital C*-algebra and E = {3(A). If
{zj,j € J} is a frame for E then there exist orthonormal bases {f;j,j €
J},{9j,7 € J},{hj,j € J} for E such that z; = \(fj+g;+h;) for every

j € J and some A € R.

Proof: Let {ej,j € J} be an orthonormal basis of E. By Propo-
sition 2.2 for the operator #* defined by 6*(e;) = x; we can write
0% = ||0*||(U1 + Uz + Us) where, each Uj; 1 < j < 3 is unitary op-

erator. Setting f; = Ui(e;), g; = Uz(e;), hj = Us(e;) we are done.[]



22 S. H. HOSSEINI

Example 3.8. There is a normalized tight frame for a Hilbert A-module
E = {5(A) which can not be written as any linear combination of two

orthonormal basis in E.

Solution: Let {ej,j € J} be an orthonormal basis for /3(C') and
consider the normalized tight frame z; = 04, and for all 1 < 4, z;41 =
14 ®e; for £o(A) = W We proceed by way of contradiction.

If we can find orthonormal sequences {f;,j € J}, {g;.j € J} in

A ® l3(C) and numbers «, 3 so that z; = af; + Bg;, for all j € J then

ry =0=afi + Bg

Hence, if o # 0 # 3, then span(f1) = span(g;) and orthogonality imply

span{ fi}52, = span{g;}72, # A ® £2(C)

while

span{afig;}32, = spanf{a; )2, = A® 6(C)

This contradiction completes the proof of the example . [J

Proposition 3.9. Let A be a unital C*-algebra and E be a finitely or
countably generated Hilbert A-module . Every frame of E is (a multiple

of ) the sum of two normalized tight frames of E.
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Proof: Let {z;,j € J} is a frame for E and consider the adjoint 6* :
l5(A) — E of the frame transform 6.

By Theorem 4.1 in [1], 6* is surjective and possesses a polar decom-
position and z; = 6*(e;), where {e;,j € J} is a standard orthonormal
basis of £2(A). So by Proposition 2.3, 8* = @(Wl + W) where, W
and Wy are partial isometry. Setting f; = Wi(e;), h; = Wal(e;) by

Proposition 3.6 we get the desired result. [J

Definition 3.10. A Riesz basis is a family of the form {z;}52,
{T(f;)}521, where {fj}j=100 is a orthonormal basis for E and T is a

bounded adjointable invertible A-linear operator on E.

In fact we can to prove that([7]): {z;}32, is a Riesz basis <=
{z;}52, is a frame and ifZaJ-a:j =0 with {aj,j € J} C Aand J €N,
i=j
then a;x; =0, Vj € J.
Proposition 3.11. A frame {z;,j € J} of a Hilbert A-module E =
lo(A) can be written as a linear combination of two orthonormal bases

of E if it is a Riesz basis.

Proof: By Definition 3.10, there is adjointable invertible bounded A-
linear operator T" on E and the orthonormal basis {e;,j € J} of E such

that T'(ej) = x; (in fact T = 6*). Since T is invertible so it is a linear

7]

combination of two unitary operators Uy and Us, i.e. T = T(Ul +Us)
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by Proposition 2.3 Setting f; = Ui(e;), hj = Ua(e;) we get the desired

result. O
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