Cyclicity of the Shift Operator on Analytic Function Spaces

B. Yousefi

Payame-Noor University

S. Foroutan

Shiraz University

J. Doroodgar

Islamic Azad University-Shiraz Branch Shiraz Farzanegan Pre-University

Abstract. In this paper we characterize some sufficient conditions for a vector in the Hilbert spaces of analytic functions to be cyclic for the backward shift operator.

AMS Subject Classification: Primary 47B37; Secondary 47A25. Keywords and Phrases: Hilbert space of analytic functions, Reproducing kernels, Cyclic vector, Backward shift operator.

1. Introduction

Let H be a Hilbert space of complex-valued analytic functions on the open unit disc \mathbb{D} such that point evaluations are bounded linear functionals on H. Then for every $w \in \mathbb{D}$ there exists a function k_w in H such that $f(w) = \langle f, k_w \rangle$ for all $f \in H$. Now if we define $K : \mathbb{D} \times \mathbb{D} \longrightarrow \mathbb{C}$ by $K(z, w) = k_w(z)$, then K is a positive definite function with the

reproducing property

$$f(w) = \langle f(\cdot), K(\cdot, w) \rangle$$

for every $w \in \mathbb{D}$ and $f \in H$. The function K is called the *reproducing* kernel for H.

Recall that a function $K: \mathbb{D} \times \mathbb{D} \longrightarrow \mathbb{C}$ is positive definite (denoted $K \gg 0$) provided

$$\sum_{j,k=1}^{n} a_j \bar{a}_k K(w_j, w_k) \geqslant 0$$

for any finite set of complex numbers a_1, \ldots, a_n and any finite subset w_1, \ldots, w_n of \mathbb{D} . Conversely, if $K : \mathbb{D} \times \mathbb{D} \longrightarrow \mathbb{C}$ is positive definite then

$$\{\sum_{j=1}^n a_j K(\cdot, w_j) : a_1, \dots, a_n \in \mathbb{C} \text{ and } w_1, \dots, w_n \in \mathbb{D}\}$$

has dense linear span in a Hilbert space H(K) of functions with

$$\|\sum_{j=1}^{n} a_j K(\cdot, w_j)\|^2 = \sum_{j,k=0}^{n} a_j \bar{a}_k K(w_j, w_k)$$

and

$$f(w) = \langle f(\cdot), K(\cdot, w) \rangle$$

for every w in \mathbb{D} and f in H(K). Thus evaluation at w is a bounded linear functional for each w in \mathbb{D} . Note also that convergence in H(K) implies uniform convergence on compact subsets of \mathbb{D} .

Now if K is a kernel on $\mathbb{D} \times \mathbb{D}$ which is analytic in the first variable and consequently coanalytic in the second variable, then $K(z, \bar{w})$ is an

analytic function on $\mathbb{D} \times \mathbb{D}$ in the two variables z and w. Hence K(z, w) can be represented by the double power series

$$\sum_{j,k=0}^{\infty} a_{jk} z^j \bar{w}^k.$$

If C denotes the matrix $[a_{jk}]$, then such a K can be written more compactly in the form

$$K(z, w) = \bar{\mathbf{Z}}^* C \bar{\mathbf{W}} = \langle C \bar{\mathbf{W}}, \bar{\mathbf{Z}} \rangle_{l^2_\perp},$$

where \mathbf{Z} denotes the column vector whose transpose is $(1, z, z^2, \ldots)$. (Here l_+^2 denotes the usual space of all square sumable sequences.) It is well known that $K \gg 0$ if and only if C > 0. Henceforth for positive matrices C, H(C) will denote the space H(K) where $K = \bar{\mathbf{Z}}^* C \bar{\mathbf{W}}$. For more information about reproducing kernels the reader is referred to [2]. Some sources on spaces of analytic functions are [3;4;5;7;8;9;10;11].

Theorem 1.1([1]). If $C = B^*B$ for some bounded operator B on l_+^2 , then the operator V from $(\ker B^*)^{\perp}$ into H(C) defined by

$$V(f)(z) = \langle B^*f, \bar{\mathbf{Z}} \rangle_{l^2_{\perp}}$$

is unitary.

Corollary 1.2. If $C = B^*B$ and $\{f_n\}$ is an orthonormal basis for $(\ker B^*)^{\perp}$, then $\{\langle B^*f_n, \bar{\mathbf{Z}} \rangle_{l_+^2}\}$ is an orthonormal basis for H(C).

We can construct a basis for H(C) by using the Cholesky decompo-

sition of the nonnegative matrix C into the product U^*U , where U is upper triangular. For more details the reader is referred to [6].

Throughout this paper H is a Hilbert space of analytic functions on \mathbb{D} such that $1 \in H$, $zH \subset H$ and point evaluations are bounded for every $w \in \mathbb{D}$. If the set $\{1, z, z^2, \ldots\}$ is an orthogonal basis for H and

$$f = \sum_{n=0}^{\infty} f_n z^n \in H,$$

then by boundedness of point evaluations, the power series expansion of f can be written as

$$f(z) = \sum_{n=0}^{\infty} f_n z^n.$$

The backward shift operator on H is denoted by L that is defined by

$$L(\sum_{n=0}^{\infty} f_n z^n) = \sum_{n=0}^{\infty} f_{n+1} z^n.$$

We assume that L is a bounded operator on H.

We say that a vector f in a Hilbert space H is a cyclic vector of a bounded operator A on H if

$$H = \overline{span} \{ A^n f : n = 0, 1, 2, \ldots \}.$$

Here $\overline{span}\{\cdot\}$ is the closed linear span of the set $\{\cdot\}$.

2. Main Result

In the main theorem of this paper we give sufficient conditions for a vector f in H(K) to be cyclic for the backward shift operator on H(K).

Theorem 2.1. Let H have the reproducing kernel

$$K(z, w) = \frac{1 - z\bar{w}}{(1 - z)(1 - w)} \sum_{i=0}^{\infty} a_i (z\bar{w})^i,$$

where $\{a_i\}_i$ is a nondecreasing sequence of positive numbers. Suppose that for sufficiently large positive integer N,

(i)
$$J_m = \sup\{(a_{k+n} - a_{k+n-1})/[(a_{m+n} - a_{m+n-1})(a_{k+N} - a_{k+N-1})] : k \ge N + m, n \ge 1\} < \infty$$
 for any positive integer m and

(ii)
$$\{(k+N+1)(a_{k+N}-a_{k+N-1})/(a_k-a_{k-1})\}_k \in \ell^1$$
.

If f is a vector in H with infinitely many $f^{(n)}(0) \neq 0$, then f is a cyclic vector of L.

Proof. We have

$$K(z,w) = \left(\frac{z}{1-z} + \frac{1}{1-\bar{w}}\right) \sum_{i=0}^{\infty} a_i (z\bar{w})^i$$
$$= \sum_{i=0}^{\infty} \sum_{m=1}^{\infty} a_i z^i \bar{w}^{i+m} + \sum_{i=0}^{\infty} \sum_{n=0}^{\infty} a_i z^{i+n} \bar{w}^i.$$

If we denote the matrix of K(z, w) by $A = (a_{ij})_{i,j=0}^{\infty}$, then

$$a_{i,i+m} = a_i$$
, $i = 0, 1, 2, \dots$, $m = 1, 2, \dots$,

$$a_{i+n,i} = a_i$$
, $i = 0, 1, 2, \dots$, $n = 0, 1, 2, \dots$

Hence $a_{ij}=a_i$ for $j\geqslant i$ and A is symmetric. Now by Corollary 1.2 we can see that the set $\{e_n\}_{n=0}^{\infty}$ is an orthogonal basis for H where $e_n=z^nw_0$ and

$$w_0 = \sum_{i=0}^{\infty} z^i.$$

6

Let

$$f = \sum_{n=0}^{\infty} f_n e_n$$

and put

$$M = \overline{span}\{L^n f: n = 0, 1, 2, \ldots\}.$$

If $M \neq H$, then there is a nonzero

$$g = \sum_{n=0}^{\infty} g_n e_n$$

in H such that $\langle L^nf,g\rangle=0$ for all $n=0,1,2,\ldots$ Put

$$m = \min\{k : g_k \neq 0\}.$$

Since

$$L^n f = \sum_{k=0}^{\infty} f_{n+k} e_k,$$

we get

$$0 = \langle L^n f, g \rangle = \sum_{k=m}^{\infty} f_{n+k} \bar{g}_k ||e_k||^2.$$

Therefore

$$f_{m+n}\bar{g}_m||e_m||^2 = -\sum_{k=m+1}^{\infty} f_{n+k}\bar{g}_k||e_k||^2.$$

Now choosing N as in conditions of the theorem, we can choose g such that $g_k = 0$ for m < k < m + 2N. Hence we obtain

$$|f_{m+n}| ||e_{m+n}|| \leqslant \frac{1}{||e_m||^2 |\bar{g}_m|} \sum_{k \geqslant m+2N} [(|f_{n+k}| ||e_{k+n}||) (|\bar{g}_k| ||e_k||) \frac{||e_k|| ||e_{m+n}||}{||e_{k+n}||}].$$

Since $||e_n||^{-2} = a_n - a_{n-1}$, by condition (i) we have

$$\frac{\|e_{m+n}\|\|e_k\|}{\|e_{k+n-N}\|} = \left(\frac{a_{k+n-N} - a_{k+n-N-1}}{(a_k - a_{k-1})(a_{m+n} - a_{m+n-1})}\right)^{\frac{1}{2}} \leqslant J_m^{\frac{1}{2}}$$

for $k \ge m + 2N$. Therefore

$$|f_{m+n}| \|e_{m+n}\| \le \frac{J_m^{\frac{1}{2}} \|f\|}{|\bar{g}_m| \|e_m\|^2} \sum_{k > m+2N} \left[(|\bar{g}_k| \|e_k\|) \frac{\|e_{k+n-N}\|}{\|e_{k+n}\|} \right].$$

By the Hölder inequality we have

$$|f_{m+n}| ||e_{m+n}|| \leqslant \frac{J_m^{\frac{1}{2}} ||f|| ||g||}{|\bar{g}_m| ||e_m||^2} \left(\sum_{k \geqslant m+2N} (\frac{||e_{k+n-N}||}{||e_{k+n}||})^2 \right)^{\frac{1}{2}}.$$

Now if

$$h = L^i f = \sum_{n=0}^{\infty} h_n e_n,$$

then

$$h_n = (L^i f)_n = f_{n+i}$$

and $\langle L^n h, g \rangle = 0$ for all $n = 0, 1, 2, \dots$ By the same manner as we used in the above calculations, by replacing f by h, we obtain

$$|h_{m+n}| ||e_{m+n}|| \le c_{m+n} ||h||,$$

where

$$c_{m+n} = \frac{J_m^{\frac{1}{2}} ||g||}{|\bar{g}_m| ||e_m||^2} \left(\sum_{k \geqslant m+N} (\frac{||e_{k+n-N}||}{||e_{k+n}||})^2 \right)^{\frac{1}{2}}.$$

So for any vector

$$h = \sum_{n=0}^{\infty} h_n e_n$$

in M, we have

$$|h_{m+n}| ||e_{m+n}|| \le c_{m+n} ||h||,$$

where the constants c_{m+n} do not depend upon the choice of h in M. If

$$\alpha_i = \left\{ \begin{array}{ll} c_i & i \geqslant m \\ 1 & i < m \end{array} \right.,$$

then

$$|h_i|||e_i|| \leqslant \alpha_i ||h|| \tag{*}$$

for all

$$h = \sum_{i=0}^{\infty} h_i e_i$$

in M. Now we prove that $\{\alpha_i\} \in \ell^2$. Note that for $i \geq m$,

$$\alpha_i = \frac{J_m^{\frac{1}{2}} ||g||}{|\bar{g}_m| ||e_m||^2} \left(\sum_{k \geqslant 2N} \left(\frac{||e_{k+i-N}||}{||e_{k+i}||} \right)^2 \right)^{\frac{1}{2}}.$$

Put

$$\gamma_i = \left(\sum_{k \geqslant 2N} \left(\frac{\|e_{k+i-N}\|}{\|e_{k+i}\|} \right)^2 \right)^{\frac{1}{2}}, \quad i \geqslant m.$$

It is sufficient to show that

$$\sum_{i\geqslant m}\gamma_i^2<\infty.$$

We have

$$\sum_{i \geqslant m} \gamma_i^2 = \sum_{i \geqslant m} \sum_{k \geqslant 2N} \left(\frac{\|e_{k+i-N}\|}{\|e_{k+i}\|} \right)^2$$

$$= \sum_{k=0}^{\infty} (k+1) \left(\frac{\|e_{m+k+N}\|}{\|e_{2N+m+k}\|} \right)^2$$

$$= \sum_{k \geqslant 2N+m} (k+1-2N-m) \left(\frac{\|e_{k-N}\|}{\|e_k\|} \right)^2$$

$$\leqslant \sum_{k \geqslant 2N} (k+1) \left(\frac{\|e_{k-N}\|}{\|e_k\|} \right)^2.$$

But $||e_n||^{-2} = a_n - a_{n-1}$, thus

$$\sum_{i \geqslant m} \gamma_i^2 \leqslant \sum_{k \geqslant N} (k+1) \frac{a_k - a_{k-1}}{a_{k-N} - a_{k-N-1}}$$
$$= \sum_{k=0}^{\infty} (k+N+1) \frac{a_{k+N} - a_{k+N-1}}{a_k - a_{k-1}}$$

that is finite by condition (ii). Now, by inequality (*), we can see that M is finite dimensional, which contradicts our assumption that $f^{(n)}(0) \neq 0$ for infinitely many n. This implies that M = H and so f is a cyclic vector of L. This completes the proof. \square

Acknowledgment The third author, thanks the Research council of Islamic Azad University-Shiraz Branch.

References

- [1] G. T. Adams, P. J. McGuire and V. I. Paulsen, Analytic reproducing kernels and multiplication operators, *Illinois J. Math.*, 36 (1992), 404-419.
- [2] N. Aronszjan, Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404.
- [3] J. B. Conway, The Theory of Subnormal Operators, Math. Surveys Monographs 36, Amer. Math. Soc., 1991.
- [4] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
- [5] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- [6] S. Power, The Cholesky decomposition in Hilbert space, Inst. Math. Appl. Conf. Ser., 22 (1986), 186-187.
- [7] K. Seddighi, Operator acting on Hilbert spaces of analytic functions, a series of lectures, Dept. of Math., Univ. of Calgary, Alberta, 1991.
- [8] K. Seddighi, S. M. Vaezpour, Commutants of certain multiplication operators on Hilbert spaces of analytic functions, *Studia Mathematica*, 133 (2) (1999), 121-130.
- [9] B. Yousefi, Multiplication operators on Hilbert spaces of analytic functions, *Archiv der Mathematik*, 83 (6)(2004), 536-539.
- [10] B. Yousefi and S. Foroutan, On the multiplication operators on spaces of analytic functions, Studia Mathematica, 168 (2)(2005),187-191.
- [11] K. Zhu, Operator theory in function spaces, Marcel Dekker, New York, 1990.

Bahmann Yousefi

Payame-Noor University Shiraz, Moallem Square South Iman Street Shiraz Payame-Noor University

P.O.Box: 71345-1774

Shiraz, Iran

Email: byousefi@shirazu.ac.ir

Sedigheh Foroutan

Department of Mathematics College of Sciences, Shiraz University Shiraz 71454, Iran

Email: foroutan@shirazu.ac.ir

Jinalo Doroodgar

Department of Mathematics Islamic Azad University-Shiraz Branch Shiraz, Iran Farzanegan Pre-University Fars Educational Organization Shiraz, Iran Email: jinalollo-dorodgar@yahoo.com