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1. Introduction

We will first introduce the concept of differential entropy which is the

entropy of a continuous random variable. Let X be a random variable

with cumulative distribution function FX(x) = P (X 6 x) and density

43



44 J. BEHBOODIAN AND S. TAHMASEBI

fX(x) = F ′
X(x) . The differential entropy H(X) of a continuous random

variable X with a density fX(x) is defined as

H(X) = −
∫ ∞

−∞
fX(x) log fX(x)dx = −

∫ 1

0
log fX(F−1

X (u))du, (1)

where u = FX(x) . Now, let us consider the exponentiated Pareto

distribution (EPD) with probability density function (pdf)

fX(x) = θλ
[
1− (x + 1)−λ

]θ−1
(x + 1)−(λ+1), x > 0, λ > 0, θ > 0,

(2)

and cumulative distribution function (cdf)

FX(x) =
[
1− (x + 1)−λ

]θ
, x > 0, λ > 0, θ > 0, (3)

where θ and λ are two shape parameters. When θ = 1, the above dis-

tribution corresponds to the standard Pareto distribution of the second

kind.

Analytical expression for the entropy of univariate continuous dis-

tributions are discussed by Cover and Thomas [3], Lazo and Rathie [8],

Nadarajah and Zagrafos [9]. Also, the information properties of order

statistics have been studied by a few authors. Among them Wong and

Chen [15], Park [10], Ebrahimi et al. [5] provided several results and

some characterizations of shannon entropy for order statistics.

The rest of this paper is organized as follows. In Section 2, we de-

rived the exact form of the entropy for exponentiated pareto distribution
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(EPD). In Section 3, we present shannon entropy for jth order statis-

tic of EPD, some properties of the entropy, and mutual information for

order statistics of EPD.

2. Entropy for EPD

Suppose X is a random variable with EP (θ, λ) and density function

(2). Now using (1), the log-density of (2) is

log fX(x) = log(θλ)+(θ−1) log
(
1− (x + 1)−λ

)
−(λ+1) log(x+1), (4)

and the entropy is

H(X) = E (− log fX(x))

= −
∫ ∞

0
fX(x) log fX(x)dx

= − log(θλ) + (1− θ)E
[
log

(
1− (x + 1)−λ

)]

+ (λ + 1)E [log(x + 1)] . (5)

So, we need to find E
[
log

(
1− (x + 1)−λ

)]
and E [log(x + 1)]to obtain

the Shannon entropy.

Derivation of these two expectations are based on the following strategy:

k(r) = E [(x + 1)r] =
∫ ∞

0
θλ(x + 1)r−(λ+1)

[
1− (x + 1)−λ

]θ−1
dx. (6)
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By the change of variable
[
1− (x + 1)−λ

]
= t, 0 < t < 1, we obtain:

k(r) = E [(x + 1)r]

=
∫ 1

0
θ(t)θ−1 (1− t)−

r
λ dx

= θ.
Γ(θ)Γ(1− r

λ)
Γ(θ + 1− r

λ)
, 1− r

λ
6= 0,−1,−2, ... . (7)

Differentiating both sides of (7) with respect to r we obtain:

kŕ = E [(x + 1)r log(x + 1)]

=
θΓ(θ)

[−1
λ Γ′(1− r

λ)Γ(θ + 1− r
λ) + 1

λΓ(1− r
λ)Γ′(θ + 1− r

λ)
]

(
Γ(θ + 1− r

λ)
)2 (8)

From relation (8), at r = 0 we obtain

E [log (x + 1)] =
1
λ

[ψ(θ + 1)− ψ(1)] , (9)

where ψ is the digamma function defined by ψ(θ) =
d

dθ
ln Γ(θ).

Now we calculate

t(r) = E
[(

1− (x + 1)−λ
)r]

=
∫ ∞

0
θλ

(
1− (x + 1)−λ

)r+θ−1
(x + 1)−(λ+1)dx

=
θ

θ + r
(10)

dt(r)
dr

∣∣∣∣
r=0

= E
[
log

(
1− (x + 1)−λ

)]
=
−1
θ

. (11)

Putting (9) and (11) in relation (5) we have:

H(X) = − log (λθ) +
λ + 1

λ
[ψ(θ + 1)− ψ(1)] +

−1 + θ

θ
, (12)

where −ψ(1) = 0.5772... is the Euler constant.
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3. Some Properties of Entropy Based on Order
Statistics EPD

Let X1, ..., Xn be a random sample from a distribution FX(x) with den-

sity fX(x) > 0. The order statistics of this sample is defined by the

arrangement of X1, ..., Xn from the smallest to the largest, by Y1 <

Y2 < ... < Yn. The density of Yj , j = 1, ..., n, is

fYj (y) =
n!

(j − 1)!(n− j)!
fX(y) [FX(y)]j−1 [1− FX(y)]n−j . (13)

Now, let U1, U2, ..., Un be a random sample from U(0, 1) with the order

statistics W1 < W2 < ... < Wn. The density of Wj , j = 1, ..., n, is

fWj (w) =
1

B(j, n− j + 1)
wj−1 [1− w]n−j , 0 < w < 1, (14)

where B(j, n− j + 1) =
Γ(j)Γ(n− j + 1)

Γ(n + 1)
=

(j − 1)!(n− j)!
n!

.

The entropy of the beta distribution is

Hn(Wj) = −(j − 1) [ψ(j)− ψ(n + 1)]− (n− j)

[ψ(n + 1− j)− ψ(n + 1)] + log B(j, n− j + 1),

where ψ(t) =
d log Γ(t)

dt
, ψ(n + 1) = ψ(n) +

1
n

.

Using the fact that Wj = FX(Yj) and Yj = F−1
X (Wj), j = 1, 2, ..., n,

are one to one transformations, the entropies of order statistics can be

computed by
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H(Yj) = Hn(Wj)− Egj

[
log fX(F−1

X (Wj))
]

(15)

= Hn(Wj)−
∫

fj(y) log fX(y)dy, (16)

Now, we can have an application of (16) for the EPD. Let X be a random

variable having the EPD(θ, λ). For computing H(Yj), we have

F−1
X (Wj) =


1− (Wj)

1
θ



−

1
λ
− 1,

and the expectation term in (15) is obtained as follows:

Egj [log fX(F−1
X (Wj))] = Egj [log(θλ) +

λ + 1
λ

log(1− (Wj)
1
θ ) +

(θ − 1) log((Wj)
1
θ )]

= log(θλ) +
λ + 1

λ
Egj [log(1− (Wj)

1
θ )]

+θEgj [log(Wj)]

= log(θλ) +
λ + 1

λ
[

n!
(j − 1)!

n−j∑

k=0

(−1)k(ψ(1)− ψ(θk + jθ + 1))
k!(n− j − k)!(k + j)

]

+
θ − 1

θ
(ψ(j)− ψ(n + 1)). (17)

Therefor, by (15) and (17) the entropy of j th order statistic is

H(Yj) = Hn(Wj)− log(θλ) +
λ + 1

λ[
n!

(j − 1)!
.

n−j∑

k=0

(−1)k(−ψ(1) + ψ(θk + jθ + 1))
k!(n− j − k)!(k + j)

]

+
1− theta

θ
(ψ(j)− ψ(n + 1)). (18)
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For the sample minimum j = 1, Hn(W1) = 1− log n− 1
n

and

H(Y1) = 1− log n− 1
n
− log(θλ) +

λ + 1
λ

×
[

n∑

u=1

(−1)u−1

(
n

u

)
(ψ(θu + 1) + γ)

]

+
θ − 1

θ

(
ψ(n) +

1
n

+ γ

)
, (19)

where γ = −ψ(1) = 0.5772... is the Euler constant.

The distribution function of Yn is Fn(y) =
[
1− (y + 1)−λ

]nθ
I(0,∞)(y)

and the density is fn(y) = nθλ
[
1− (y + 1)−λ

]nθ−1 (y+1)−(λ+1)I(0,∞)(y).

Noting that Hn(Wn) = 1− log n− 1
n

, the formula (18) gives

H(Yn) = 1− log n− 1
n
− log(θλ) +

λ + 1
λ

[ψ(nθ + 1) + γ] +
θ − 1

θ
(
1
n

). (20)

For any random variable X with H(X) < ∞, Ebrahimi et al.[10] showed

that the entropy of order statistics Yj , j = 1, 2, ..., n, is bounded as

follow:

H(Yj) > Hn(Wj)− log M, (21)

and

H(Yj) 6 Hn(Wj)− log M + nBj(H(X) + log M), (22)

where M is the mode of the distribution and Bj denotes the j th term

of binomial probability Bin(n − 1,
j − 1
n− 1

). Therefore, we can compute
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the bounds for the entropies of the sample minimum and maximum for

EPD with parameters λ and θ. We have M =
(

λθ + 1
λ + 1

) 1
λ − 1. So,

1− log n− 1
n
− log




(
λθ + 1
λ + 1

) 1
λ − 1


 6 H(Y1), (23)

and

H(Yn) 6 1− log n− 1
n

+ (n− 1) log




(
λθ + 1
λ + 1

) 1
λ − 1




(24)

+n

(
− log (λθ) +

λ + 1
λ

[ψ(θ + 1)− ψ(1)] +
1 + θ

θ

)
.

The lower bound and upper bound for the entropies of the sample min-

imum and maximum for EPD are useful when n is small.

Information theory provides some concepts of extensive use in statis-

tics, one of which is mutual information of two random variables. It is a

generalization of the coefficient of determination, for a bivariate random

vector (X, Y ) with joint density function f(x, y) and marginal density

functions, fY (y) and fX(x). The mutual information is defined as

I(X, Y ) =
∫

S
f(x, y) log

f(x, y)
fY (y)fX(x)

dxdy

= H(X) + H(Y )−H(X, Y ), (25)

where S is the region f(x, y) > 0 and H(X,Y ) is the entropy of (X,Y ).

Mutual information for order statistics have an important role in statis-
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tical sciences. In view of Ebrahimi et al. [10], the degree of dependency

among Y1, ..., Yn is measured by the mutual information between con-

secutive order statistics, defined by

In(Yj , Yj+1) = − log
(

n

j

)
+ nψ(n)− jψ(j)− (n− j)ψ(n− j)− 1. (26)

For given n, In(Yj , Yj+1) is symmetric in j and n− j ; increases in

j for j <
n

2
, and decreases for j >

n

2
. In(Yj , Yj+1) is increasing in n.

Thus, In(Yj , Yj+1) is maximum at the median and is symmetric about

the median. Now, suppose Y1, ..., Yn denote the order statistics of a

random sample X1, ..., Xn from EPD,Then we can calculate the mutual

information between Y1 and Yn. Thus, we have

I(Y1, Yn) = H(Y1) + H(Yn)−H(Y1, Yn)

= − log n(n− 1)− (n− 2)
n(n− 1)2

+ 4(1− 1
n

)− 2− 2 log(θλ)

+
λ + 1

λ

[
n∑

u=1

(−1)u−1

(
n

u

)
(ψ(θu + 1) + γ) + ψ(nθ + 1) + γ

]

+
θ − 1

θ

(
ψ(n) +

2
n

+ γ

)
. (27)

Noting that H(Y1, Yn) can be computed by
∫ ∞

0

∫ z

0
−fY1,Yn(y, z) log fY1,Yn(y, z)dydz.

Conclusion

We have derived the exact form of shannon entropy for the Exponen-

tiated Pareto Distribution(EPD) and its order statistics. This distribu-
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tion is applied in reliability, actuarial sciences, economics, and telecom-

munications. We have also presented some properties of the entropy and

mutual information for order statistics of EPD.
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