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Abstract. This paper introduces a two-parameter family of distri-
butions which includes the ordinary exponential distribution as a
special case. This distribution exhibits monotone hazard rate and
may be a competitor to the families of two parameter gamma and
Weibull distributions. Various statistical and reliability aspects
of this model is explored. Several numerical examples based on
real data show the flexibility of the new distribution for modeling
proposes.
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1. Introduction

There are many lifetime distributions that have been proposed in the
literature. Exponential distributions because of their useful properties
and convenient theory, play a central role in analyses of lifetime data. In
situations where the ordinary exponential distribution is not sufficiently
broad, a number of wider families such as the gamma and Weibull mod-
els are in common use. Both distributions have the increasing as well as
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the decreasing failure rate. This gives an extra edge over the exponential
distribution which has only constant failure rate. A complete treatment
of these distributions is given by Johnson et al. [12, Chapters 17, 19
and 21]. In recent years, there have been some attempts to provide
exponential-based alternatives to the gamma and Weibull distributions
to increase the flexibility for modeling purposes; see, e.g., Mudholkar
and Srivastava [15], Marshall and Olkin [14], Adamidis and Loukas [1],
Gupta and Kundu [10], Adamidis et al. [2] and Nadarajaha & Kotz
[16]. In this paper we introduce a family of two-parameter univariate
distributions having both decreasing and increasing failure rate which
includes the exponential distribution as a special case. This model is
obtained using a certain mixture of the order statistics of a sample of
size 2 from ordinary exponential distribution. The study examines var-
ious properties of this distribution. The paper is organized as follows:
Section 2, discusses a general system of univariate distributions. Section
3, introduces the new generalization of the exponential distribution and
presents its basic properties including the behavior of the density and
hazard rate functions, expressions for the moments and related mea-
sures, the distribution of the sums and a characterization based on its
mean residual life function. Section 4, devoted to the estimation of the
parameters. We also provided several numerical examples in this sec-

tion, where the new two-parameter exponential distribution fits better



ON A NEW GENERALIZATION OF THE EXPONENTIAL... 29

than the ordinary exponential, gamma and Weibull models.

2. A General System of Univariate Distribu-
tions

Let X; and X5 be two independent and identically distributed random
variables having the survival function F = 1 — F. For -1 < a < 1,

consider the random variable U defined by

(1)

U X1.1, with probability H‘?"‘
" | Xa2, with probability 152,

where X7, = min(X;, X2) and X2.0 = max(X1, X9) are the correspond-
ing order statistics of X1 and X5. Since the distribution functions of Xs.o
and X1.1 are given by Fho(z) = F2(z) and F1.1(z) = 2F(x) — F?(x), it
is then a simple exercise to show that the random variable U has the

distribution function
G(z;a) = F(){1+aF(z)}, —oco<z<oo, —1<a<l. (2

Clearly, for a = 0, we get G = F. When o = —1, G = F5.9, and when

a =1, G = Fy;. Since G(.; ) is increasing in a, we have the inequality
Fyo(x) < G(z;0) < Fra(x),

for all x and —1 < o < 1.
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Remark 1. Note that if H is a distribution function, by solving the

equation F(x){1 + aF(x)} = H(x) for F, we obtain

_ l+a—+/(1+a)?—4aH(z)

F(z; ) o ,

which is also a distribution function for any —1 < a < 1.

Remark 2. The equation constitute the system of distributions defined
by (2), could be seen as a univariate version of the well-known Farlie-
Gumbel-Morgenstern (FGM, for short) family of bivariate distributions,

which is usually written as

H(z,y) = Fi(2)Fa(y){1 + aFi(z) Fa(y)},

with o € [—1,1]; see, Drouet-Mari and Kotz ([8, Chapter 5]) for a good

review.
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Fig.1. Density function of ME distribution for # = 2 and a =
-1,-0.6,-0.3,0,0.3,0.6, 1.
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3. A Family of Two-Parameter Exponential Dis-
tributions

The particular case that F' is an exponential distribution with the pa-
rameter 6, (2) yields a new two-parameter family of distributions given

by
Glr;0,0) = (1—e )14+ ae™), 2,6>0, —1<a<1. (4
The corresponding density function is
g(z;0,0) = e {1 + (279 — 1)}. (5)

We say that the random variable X has a 'mixture exponential’ (ME)
with the shape parameters a and the scale parameter 6, denoted by

X ~ME(a, 0), if X has the density function defined by (5).

3.1. Shape of the Density Function

Proposition 1. The function log g(.; a,0), is concave for —1 < a < 0

and convex for 0 < a < 1.

Proof. The result follows by observing that the second derivative of the

logarithm of the density function with respect to x is

d? 20(1 4 a)f?e 0"

—~ 1 c.0) = .
22089 0 0) = 0 e e e
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As a result of Proposition 1, for 0 < a < 1, g(z.; o, 0) is decreasing, and
for -1 < a <0, g(x.;,0) is unimodal. By solving dlog g(z; o, 0)/dx =
0, it is readily verified that a random variable X with the density
g(.; a, 0) has the mode

0,

«
mode(X) =<¢ _ o
{911“(4011)7 o

-1
-1 (6)
3

NV

ME probability density functions are displayed in Fig. 1, for selected

values of o and 6. O

3.2. Moments and other Measures

If X ~ME(a,0), then the generating function (m.g.f.) of X defined by
M(t) = E(e'X), is given by

020 - (1+ )}
M) ==g—pea-t

(7)

By straightforward integration the raw moments of X about the origin

are found to be
(14277 —1))r!

E(XT) = HT Y

(8)

k
for r € N. By using the identity E(X — p)* = Y () E(X")(—p)*,
r=0
the central moments can be obtained. In particular:

4— 20 —a?

VaI'(X) = T,
8 —3a—3a? — a3
E(X —u)? =
( N) 463 ’
E(X )t = 144 — 720 — 480* — 120° — 3a*

1604
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The coefficient of variation (y), skewness (1//1) and kurtosis (f2) of X

are given by

V4 —2a —a?
L ®)
2(8 = 3a — 30?2 — a?
Vb = ( 3 ), (10)
(4—2a—a?):z
144 — 7200 — 482 — 1203 — 3a*
_ . 11
P2 (4—2a—a3)? (11)

The coefficients 7, /31 and 2, are independent of the scale parameter
0, and for the exponential distribution they are given by 1, 2 and 9,
respectively. The coefficient of variation is less than 1 for o < 0 and is
greater than 1 for a > 0.

By using the relation (3), we obtain the gth quantile z, of ME distribu-

tion as
-1 a—14++/(14+«a)?—4aq

o ——

0.0 0.5 1.0 15 2.0 2.5

Fig2. Hazard rate function of ME distribution for § = 2 and o =
-1,-0.6,-0.3,0,0.3,0.6.
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In particular, the median of X is given by

~1 (a—l—i—\/l—i—az)
711’1 .

med(X) = 50

(13)

Note that if o — 0, then 24 — 771 In(1 — ¢), which is the gth quantile of
the exponential distribution.
It is easy to see that med(X ), mode(X) and F(X) are all decreasing in

a and 6. It also follows that mode(X) < med(X) < E(X).

3.3. Reliability Properties

The reliability (or survival) function corresponding to the ME distribu-

tion is given by
G0, 0) = {1+ a(e™" — 1)}, (14)

and thus the ME failure rate (also known as hazard rate ) function is

ha;e,0) = g(z;a,0){G(z;0,0)} (15)
{1+ a(2e — 1)}
N 1+alef—1)

Proposition 2. The function h(.;a,0) is increasing in x for —1 < a <

0, constant for o = 0 and decreasing for 0 < o < 1.

Proof. The proof follows using the log-convexity and the log-concavity

of the density function of the ME distribution [4]. O
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It can be verified that h(., «, 0) is increasing in a and decreasing in 6.
Thus, the ME distribution is positively, (resp, negatively) ordered with
respect to a (resp, #) according to the hazard rate ordering. Note that,
iii% h(z;a,8) = (14 «a)f. Therefore, at the origin this hazard rate varies
continuously with the parameters. This is in contrast with the families
of Weibull or gamma distributions; for both of those families, h(0) = 0,
or h(0) = oo, so that h(0) is discontinuous in the parameters. For
ME distribution, wlgglo h(z;,0) = 6, is bounded and continuous in the
parameters, like gamma distribution but unlike the Weibull distribution.
From Proposition 2., it follows that

(I1+a)f <h(z;0,0) <0 (-1 <a<0),

and
0 <h(z;a,0) <(1+a)f (0<a<l).

Fig 2. shows the hazard rate function of the ME(«, 6), for selected values
of @ and 6.

Given that there was no failure prior to time ¢, the residual life
distribution of the random variable X, distributed as ME distribution

with the parameters « and 6, has the survival function

Gi(z;a,0) = P{X>zx+t]|X >t} (16)
6—9(ac+t){1 + a(e—e(x+t) _ 1)}
e {1+ ale 1)}
= e 48 -1)}

= G(x;4,0),
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where 8 = B(t) = ae {1 + a(e™? — 1)}~!. Thus, the residual life
distribution of a random variable X distributed as ME(a, 0) at time ¢,
is another ME distribution with the shape parameter depending upon
time ¢. The limit distribution as ¢ — oo is an ordinary exponential
distribution because the limit of 5(t) is 0.

Since distributions with an increasing (decreasing) hazard rate are
‘new better (worse) than used’ ([4, page 159)), it follows that, when X
distributed as ME(«, ), we have

0)
) -

<
a

— /A

= < G(ZL‘;O&,H), (_1

(0%
,0), (0 <

By using the equality (16) and that E(X;a,0) = 22_—00‘, when X dis-

tributed as ME(«, 6), the mean residual life function, i.e., the mean of

the residual life distribution could be obtained as

m(t;a,0) = E(X —t|X >1t)
2—B()

20

1+a(ze -1
- Jirebelm Y ")
01+ a(e?—1)

It is easy to see that m(t;«,0), is increasing in t for 0 < a < 1 and
decreasing for —1 < o < 0, with 1tlim m(t;a,0) =1/0 = E(X;0,6) and
— 00

}iné m(t;a,0) = (2 —«)/20 = E(X;a,0). It also follows that
2—-a

< : <
~ m(ta «, 9) ~N 20

(_1<O‘<0)7

Sl
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and

3.4. A Characterization

The following result provides a characterization for ME distribution.

Proposition 3. The mean residual life function, given by (17), char-

acterizes the ME distribution.

Proof. The derivation of (17), established the necessity. To prove the

sufficiency, it is seen that (17) may be written as

—% In tOO G(z)dr = %ln %efet{l +a27le™ —1)}
= M{1+ae™®—DHl+a2 e —1)}1
_ 1
m(t;,0)’

and therefore by solving for j;oo G(r)dx, differentiating the result with
respect to x and using G(0) = 1, to determine the constant, the same sur-

vival function given by (14) is obtained, which completes the proof. [

3.5. Distribution of Sums

The following result provides a mixture representation for the distribu-

tion of the sum of two independent random variables distributed accord-
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ing to ME distribution.

Proposition 4. Let X7 and X9 be two independent random variables
from ME(«;, ), fori=1,2. Let T = X1+ Xs. Then the density function
of T is given by

(1+a1)(1+a)

fr(t) = 1 fi(t)+ (1—o1)( = a9)

e 0]

(1 — OélOéQ)
2

where, fi(z) = 40%xe=20%, fo(x) = 40e79"{1 — (0z + 1)e "} and

f3(z) = 4079 {(0x + 2)e™ %% + Gz — 2}.

Proof. The proof is straightforward using the fact that ME random

variables have representation (1). [J

4. Estimation

4.1. Maximum Likelihood Estimators

Assuming a random sample of n observations, z1, ..., T, from ME(«, ),

the log-likelihood function, I(a, #), is given by

I, 0) = nlog(6) — 0> a;+ Y log(l+ a(2e i —1)).
=1 =1

Differentiating with respect to a and 6 and equating to zero we obtain

n

ol -1 - —0x; —bz; =1
55 = " ;xiza;mie {1+a@e7™ -1)}7 =0,

o _ En:(Qe—@xi ~D{l+ae ™ -1} =0.

Ooa ,
=1
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The solution of the two non-linear equations must be found using a
numerical method.

The density function of ME distribution satisfies all the regularity
conditions [3, pp. 86-87] and therefore applying the usual large sam-
ple approximation, the estimators (&, é) treated as being approximately
bivariate normal with the mean vector («,#) and variance-covariance

matrix 1!, where

2 2
E(5e2)  E(giag)

1 da?
I=— ,
n 2 2
E5555)  B(55)

is the inverse of the Fisher information matrix. After some algebra

operations, the elements of I are given by

Bl = —har-a+ 6 0t
(a(zze) = _201a2 (1= O‘)d(i f§> +20),
2
E(galz) = S 4l (;Z)
where p(r,t) = il t"n~", |t < 1, and d(t) = fg 1?Eg;)alx, are the poly-

logarithm and dilogarithm functions, respectively (]9, page 27]), which

are available in standard software such as Mathematica or Maple.

4.2. Data Analysis

Two sets of real data are considered. The first set of data involves the in-

tervals in days between successive coal-mining disasters in Great Britan
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for the period 1875-1951. A disaster is defined as involving the death
of 10 or more men. They were originally discussed by Maguire et al.
[13] and analyzed by Cox & Lewis [6, page 4] and Adamidia & Loukas
[2]. The second set of data, are survival times of 43 patients suffering
from chronic granulocytic leukaemia. This data set reported by Bryson
& Siddiqui [5] and reanalyzed in Hollander & Proschan [11]. In addition
to the exponential and ME distributions, the gamma and Weibull dis-
tributions with respective densities fi(z) = 0%z* e~ {T'(a)} ', and
fo(z) = a2z e (92" were fitted to the data sets. The maximum
likelihood estimates, the log-likelihood and the Kolmogrov-Smirnov (K-
S) statistic presented in Table 1. It is observed that, the ME distribution
fits marginally better than usual exponential distribution and two pop-

ular alternatives the gamma and Weibull models in both cases.

TABLE 1.

Estimates, log-likelihood and Kolmogrov-Smirnov statistic

Data Set  Distribution o 0 LL K-S
Exponential - 0.0043 -703.3133 0.0776
ME 0.7126  0.0028 -700.9823 0.0667

1(n =109) gamma 0.8560 0.0037 -702.4007 0.0796
Weibull 0.8847 0.0046 -701.7724 0.2965
Exponential — 0.0010 -336.6865 0.1162
ME -0.6103 0.0014 -335.2714 0.0678

2(n=43) gamma 1.3027 0.0014 -335.8229 0.0852

Weibull 1.2400 0.0010 -335.3089 0.6082
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