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Abstract. Let S be matrix of residual sum of square in linear
model Y = A3 + e where matrix e is distributed as elliptically
contoured with unknown scale matrix 3. In present work, we con-
sider the problem of estimating X with respect to squared loss
function, L(3, ) = tr(XX ' —I)2. It is shown that improvement
of the estimators were obtained by James, Stein [7], Dey and Sri-
vasan [1] under the normality assumption remains robust under an
elliptically contoured distribution respect to squared loss function.
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1. Introduction and Summary
Consider the multivariate linear model
Y =A3+e,

where Y is an N X p random matrix, A is a known N x m matrix with
full rank, B is an m x p matrix of unknown parameters and e is an
N x p matrix of random errors. We assume that the error matrix e is

distributed as an elliptically contoured distribution with its density
-x -1/
=72 f(tr(=7 ee)), (1)

where f(-) is a differentiable and nonnegative real-value function on R*
and X is a positive-definite matrix. In this article |B|, B’ and tr(B) used
for the determinant, the transpose and the trace of a square matrix B,
respectively. The model (1) is called elliptically contoured distribution
which we refer to as the ECD model in this paper.

There were many studies to robust improvement estimation of a
covariance matrix and precision matrix under elliptically contoured dis-
tribution. For the estimation of the covariance matrix and precision
matrix see [7,5], respectively. Kubokawa and Srivastava [7] Hisayuki
Tsukuma [5] showed that improvement of a minimax estimator for a
covariance matrix and the precision matrix obtained under normality

assumption remains robust under an elliptically contoured distribution



ROBUST IMPROVEMENT IN ESTIMATION OF A COVARIANCE ... 15

respect to Stein’s loss function, respectively. In this paper, the problem
of estimating the scale matrix of an elliptically contoured distribution
with respect to squared loss function is investigated.

The identity for the elliptically contoured distribution which was
derived by Kubokawa and Srivastava [7] known in the literature as the
”Stein-Haff identity”, is applied to compute risk functions. We define

the risk functions as the expected value of the loss functions, i.e.

R(2, %) = E[L(Z,%)[%].

Let 3 and X, be two estimators of 3, 3% dominates X, if R(3,%) <
R(%,,%)(VE) ([3, 4)).

The unbiased estimator fJUB = n~!8 is the best estimator in the
estimators of the kind aS where a is scalar that it has the minimum risk
for squared loss defined above. James and Stein [6] obtained a minimax

estimator of the form

3,5 =TDT,

where D = diag(dy, -+ ,dp) with d; = (n+p+1—2i)"1 i =1,2,--
and T is a p X p lower triangular matrix with positive diagonal elements
such that S = TT’. Stein [9, 10], Dey and Srinivasan [1] obtained an

orthogonally invariant estimator

Ysps = Hdiag(dl, -, dpl,)H,
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where H is a p x p orthogonal matrix and [q,---,l, are the ordered
eigenvalues of the random matrix S such that S = Hdiag(ly,--- ,1,)H’
[8]. Kubokawa and Srivastava [7] showed that James-Stein estimator
) Js dominates the unbiased estimator fJUB and Orthogonally invari-
ant estimator ﬁ}SDS dominates 3 Js under Stein’s loss for any possible
function of f in (1). Our objective is to establish that the above dom-
inance results hold for every ECD model under squared loss. Based on
Haff-stein identity we prove the robustness of the two dominance result,

ﬁ]JS improving ﬁ]UB and ﬁ]SDS improving ﬁ]JS.

2. Expected Values

Let S be matrix of residual sum of square, i.e.,
S=Y (Iy —AA'A)'A)Y.

Under the normality and ECD assumption, the expected values for var-
ious function of S have been derived. see [2,5], respectively. According

to the same notation used in [5], let f©)(z) = f(z),

@) = 5 [P k=01,

and

ED(S)] = [ oS) 12175 10 (1r(2 v - A8 (5 - AB)) )ay.
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where v(S) is an integrable function of S. Moreover, we use the trans-

formation to polar coordinates to get

E(k)m_ (k) = 2rVP/2 * prlf(k)( 2)d k=01
> =7 _F(NP/2) 0 r r r, — Y 4

and assume (i) < oo, for more details see [5].

2.1. The Stein-Haff Identity

Let T(S) = (t;;(S)) be a p x p matrix whose elements are the function
of S = (s;;). Denote

"1 Otaj(S)

{DsT(S)}ij =) 5 (L 8ia) =5 =,
i=1 wa

where 6;, is Kronecker’s delta. From Lemma 1 in [7], for suitable choice
of a matrix 7T'(S), the Stein-Haff identity is given by
BY lu{='T(8)}] =
B (0= p— 1) tr{STIT(S)} + 2 trDsT(S)] .
(2)
3. The Main Results

The following two theorems are the main results of this paper. The
proofs are postponed to section 4.

Theorem 3.1. for any f(-) in (1), the James-Stein estimator 3 ;g
dominates unbiased estimator Xy under squared loss if n —p+1 > 0

and p=1.



18 Z. KHODADADI AND B. TARAMI

Theorem 3.2. gpg is better than 35 uniformly for every unknown

f() under squared loss if
ny(2)tr(S"THDH'SHDH') < 48[ %]. (3)
i>j 0T
4. Mathematical Details

4.1. Preliminaries

The latter calculations depends on Lemmas below:

Lemma 4.1 | Hisayuki Tsukuma 2005]. Let Q be a p X p matriz of
constants. Under the conditions of Lemma 2.1. in [5], we have

o (0

i) BY[S] = ny(1)E,

i) EQ[SQS] = 7(2){n?EQS + nZQ'S + n tr(QX)S}.

Lemma 4.2. Under the conditions of Lemma 1. in [7], we have
i) By [ir(n1S7)] = py(1),

i) EY [tr(n'SE)2] = n24(2)[(n® + n)p + np?].
Proof. (i): Using Lemma 4.1. we obtain

EQ[tr(n'S27)] = B [tr(n~'S)] = py(1).
(ii): Taking Q =T in Lemma 4.1. we have

Eg) [tr(n*18271)2] = EI(O) [tr(n*18)2]

= n*y(2)[(n* + n)p + np?].
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Lemma 4.3. Let D = diag(dy,...,dp) withd; = (n+p+1—2i)"1i=
1,2,...,p and T is a p X p lower triangular matrix with positive diagonal
elements such that S = TT’. Under the conditions of Lemma 2.1. in
[5], we have

i) BY [nTDT'S ! = pER (1] = py(1),

i) EY [tr(TDT)?] = 7(2)[(n2 + n) X0, d? +n(S0, d;)?)-

7

Proof. (i): By using the equation EI(O)(T’T) = D~ 1y(1) [7], we arrive

at

EQrTDT'S Y] = EO[TDT
= EuDT'T
= py(1),

which gives the desired result.

(ii): From Lemma 4.1. with Q = D and S = T'T, we can see that

EQr(TDT'E"")? = B[tr(TDT)?
= E”tr(TDT'TDT')]
— E9ty(T'TDT'TD)]
— E[tr(SDSD)]
= 7(2)[n’trD? + ntrD? + n(trD)’]

= ~(2)[(n® +n) Z d? + n(z d;)?). O
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Lemma 4.4 ([7]). Let S = HLH', L = diag(l1,...,l,) and l; > --- >
l,. Also, consider the estimator 3(®) = H diag(®1(L),...,®,(L))H'.
Then, under suitable conditions corresponding to those of Lemma 2.2.

in [7], we have

0 _ 1 i 0 i
BY [uS(@)5!] = By 2%, PP + 2%, 250

+n—-p-1)3 éil(iL)}

1 J(L)—®;(L) )
_E()[QZDJ lz—lgj( +225 (D(L

+n—p—1)>; q)il(iL)} .0

Lemma 4.5. Let S = HLH', L = diag(ly,...,l,) and l; > --- >
l,. Moreover, let H be p x p, orthogonal matriz and also, consider the
estimator Xgpg = HDLH' and D = diag(dy,...,dp). In addition, let

HDH' be a p x p matriz of constant, under the conditions of Lemma

2.2. in [7], we have

)EY [tr(ESDsz ] 22 L 7lj +py(1),

1>]

2Z:dz—i-n Z
=1

Hntr(2~ 1HDH SHDH/)|.

i) £ [tr(ﬁ)SDSE_l)Q] -

Proof. Under the given condition, using Lemma 4.4. with ®(L) = DL.
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We can also see that

EQrEDLE'S Y = B [2 I =L
2T 1Y, 4]
L) 4l
= by, {22 zfz

1>7
+23 0 di+(n—p—1)377di].

Additionally, by using

l; — lj li=l;

_ didj;. .
- ll'flj ll + d.]’

we arrive at

EQ[r(HDLH'S )] = EYRY,.; 4=k,
+23 5 di+ (n—p+1) 37 di].

By using the equation

p -1 P
ED S ED DD XD SIS
1>] i=1 j=1 Jj=1li=75+1 Jj=1

we have

EQtr(HDLH'S )]

21

= g 22 . _ljl +Z (n+p+1—2i)d;
L i>7
= g 22 . _ljl +p
L i>7
= By 22 L] 4 )
E l—l Z b
L 1>7

which completes the proof.
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Proof. Using the equation S = HLH'andHH' =1,,, we arrive at
tr(gspszfly = tT(ESD,gE ESDsz )
= tr(HDLH'YX'HDLH'®™!)
= tr(HDH'HLH'S'HDH'HLH'Z ™)
= tr(HDH'SE'HDH'S® ™)
= tr(Z"'HDH'SY'HDH'S).
Now, using Lemma 4.1. with Q = X 'HDH', we arrive at
EY  jtr(SspsE)? = EQtr(S - 'HDH'SE 'HDH'S))
=7(2)[n?’tr(E"'HDH'HDH'Y) + ntr(X'HDH'SHDH')
+ntr(D) tr(ETTHDH'E)] = v(2) [n*tr(HD?H'EX 1)
+ntr(ST'HDH'SHDH) + ntr(D)tr(HDH'EX )]
= v(2)[n?tr(D*H'H)
+ntr(ST'HDH'SHDH') + ntr(D) tr(DHH)]
= 7(2)[n*tr(D?) + ntr(E"'HDH'SHDH') + ntr(D?)]
=7(2)[n? >0 d? + n(XF d;)? + ntr(Z"'HDH'SHDH')]. O

4.2. Proofs of the Results in Section 3

Proof of Theorem 3.1. The risk difference of the estimators 2.]5 and

> s relative to squared loss is written as

Ay = R(Zpp =) —R(Zs,X%)

N Eg) [tr(SvpE1)? — 20(EypET") — (ST + 2t0(SysB )]

= EOtr(n"'S)? - 2te(n'S) — tr(TDT')? + 2tr(TDT')]

1 2
= EEI(O) [trS?] — EEI(O) (trS) — E[tr(TDT’)?] + 2E [tr(TDT’)].

From Lemmas 4.2. and 4.3., we have

Ay =v@)[E(n+p+1) = (n® +n) 30, dF —n(X di)?].
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To complete the proof, it is enough to show that

p p

En+p+1)— (2 +n) > d? —n()_ di)?

=1 i=1

0.

WV

Fromi<p<n+1l,i=1,...,p,wehave d; < (n —p+1)71,

i d;  <pn-p+1)7?
O di)? <pP(n—p+1)72
Therefore,
slntp+1) =@ +n)
P 4 (X di)? = E(n+p+1)

—np(n—p+1)"2(n+p+1)
> Bn o+ 11— (=2 ).

The assumption p < 1 or p = 1 completes the proof. [
Proof of Theorem 3.2. Using Lemmas 4.3. and 4.5., we can write

the risk difference of estimators 25[)5 and 3 JS as

Ay = R(Zsps, ) — R(Zss, %)
= EQtr(SepsE)? - 2tr(Bgps D) — tr(B 981>

+ 2tr(Zys27Y)]
p p

= 7(2)[*> d} +n(d>_di)? +ntr(X"'HDH'SHDH)]
=1

= i=1
d; —d;
- 4ES)[Z l‘_l.j]
i>j
P P

= 2py(1) = (2)[(n? + 1) Y dF +n(Ydi)*] +2py(1)
i=1 =1

= ny(2)tr(S'HDH'SHDH) — 4E5 [

i>j

di — d; =
ﬁ] - ”7(2);di'
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For ¢ > j, d; > d; and [; < lj, we infer that

d; — d;
—4EY (Y - ljJ] > 0. (4)

i>j

Finally, from (3) and (4), we have Ay < 0, where the proof is complete. J
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