Linear Preservers of Chain Majorization

P. Torabian
Islamic Azad University-Jahrom Branch

Abstract

For $\left(n \times m\right.$ matrices) $X, Y \in M_{n m}(\mathbb{R})\left(=M_{n m}\right)$, we say X is chain majorized by Y and write $X \prec \prec Y$ if $X=R Y$ where R is a product of finitely many T-transforms. A linear operator $T: M_{n m} \rightarrow M_{n m}$ is said to be a linear preserver of the relation $\prec \prec$ on $M_{n m}$ if $X \prec \prec Y$ implies that $T X \prec \prec T Y$. Also, it is said to be strong linear preserver if $X \prec \prec Y$ is equivalent to $T X \nprec \prec Y$. In this paper we characterize linear and strong linear preservers of $\prec \prec$.

AMS Subject Classification: 15A04; 15A21; 15A51.
Keywords and Phrases: Doubly stochastic matrix, chain majorization, left multivariate majorization, T-transform, permutation, linear preserver, strong linear preserver.

1. Introduction

Throughout the paper, the notation $M_{n m}(\mathbb{R})$ or, simply, $M_{n m}$ is fixed for the space of all $n \times m$ real matrices; this is further abbreviated by M_{n} when $m=n$. The space $M_{n 1}$ of all $n \times 1$ real vectors is denoted by the usual notation \mathbb{R}^{n}. The collection of all $n \times n$ permutation matrices is denoted by $\mathcal{P}(n)$ and the identity matrix is denoted by I_{n} or, simply I, if the size n of the matrix I is understood from the context.

An $n \times m$ matrix $R=\left[r_{i j}\right]$ is called row stochastic if $r_{i j} \geqslant 0$ and $\sum_{k=1}^{m} r_{i k}$ is equal to 1 for all i. A square matrix D is called a doubly stochastic matrix if both D and its transpose D^{t} are row stochastic matrices. The set of all $n \times n$ doubly stochastic matrices will be denoted by $\mathcal{D S}(n)$.

Theorem 1.1 (Birkhoff's Theorem [6]). The totality of all extreme points of the collection of all doubly stochastic matrices is the set of all permutation matrices.

We can describe doubly stochastic matrices by

$$
\mathcal{D S}(n)=\left\{D \in M_{n}: D \geqslant 0, D e=e, D^{t} e=e\right\},
$$

where $e \in \mathbb{R}^{n}$ is the vector whose components are all +1 .
Let $X, Y \in M_{n m}$. By a left multivariate majorization $X \prec_{\ell m u l} Y$, we mean a relation $X=D Y$, for some $n \times n$ doubly stochastic matrix D ([17, p.430]). In this paper, by multivariate majorization we mean left multivariate majorization and show it by \prec.

Definition 1.2 ([20]). A T-transform is a special kind of linear transformation whose matrix has the form $Q=\lambda I+(1-\lambda) S$, with $\lambda \in[0,1]$ and S a permutation matrix that just interchanges two coordinates.

Definition 1.3 ([20]). Let X and Y be $n \times m$ matrices. Then X is said to be chain majorized by Y, written $X \prec \prec Y$ if $X=R Y$ where R is a
product of finitely many T-transforms.

Definition 1.4. Let $T: M_{n m} \rightarrow M_{n m}$ be a map. T is called a preserver of chain majorization (resp. multivariate majorization) if $X \prec \prec Y$ (resp. $X \prec Y$) is equivalent to $T X \prec \prec T Y($ resp. $T X \prec T Y)$.

In this paper, by S we mean a transition or a permutation matrix that just interchanges two coordinates, and by P we mean an arbitrary permutation in $\mathcal{P}(n)$. In addition, we denote the set of all T-transforms by $\operatorname{Tr} r(n)$. Which is closed under matrix multiplication.

Note that $\mathcal{P}(n) \subseteq \mathcal{P} \mathcal{T}(n) \subseteq \mathcal{D} \mathcal{S}(n)$ and this fact shows that $X \prec \prec Y$ implies $X \prec Y$ for any X and Y in $M_{n m}$. But the inverse of the above implication is not true (see [17]).

As the reader observes, there is a relation between \prec and $\prec \prec$. So the study of \prec and its preservers can lead us to a characterization of preservers of $\prec \prec$. Some important properties of \prec are stated in the following proposition and many other propositions are stated in $[1,2,3$, $4,12,16,17]$.

Proposition 1.5 ([17]). For each $X, Y, Z \in M_{n m}$ the following assertions hold.
(1) $X \prec X$.
(2) If $X \prec Y$ and $Y \prec Z$, then $X \prec Z$.
(3) If $X \prec Y$, then $X_{J} \prec Y_{J}$ for each k-tuple $J=\left(i_{1}, \ldots, i_{k}\right)$ of the set
$\{1, \ldots, m\}$, where X_{J} denotes the matrix whose columns are those of X with indices i_{1}, \ldots, i_{k}.
(4) If $X \prec Y$ and $B \in M_{m p}$ for some natural number p, then $X B \prec$ $Y B$.
(5) If $X \prec Y$ and $P, Q \in \mathcal{P}(n)$, then $P X \prec Q Y$.
(6) If $X \prec Y$, then $\operatorname{rank}(X) \leqslant \operatorname{rank}(Y)$.

Remark 1.6. It is easy to prove the above proposition for $\prec \prec$ instead of \prec.

2. Characterization of Linear Preservers

Before we state the main theorem of this section, we need to recall a theorem in [13], which characterizes the linear preservers of left multivariate majorization.

Theorem 2.1 ([13]). Let $T: M_{n m} \rightarrow M_{n m}$ be a linear map. Then T preserves left multivariate majorization if and only if T has one of the forms i) or ii) as follows:
i) There are matrices $A_{1}, A_{2}, \ldots, A_{m}$ in $M_{n m}$ such that for any X in $M_{n m}$

$$
T X=\sum_{j=1}^{m}\left(\sum_{i=1}^{n} X i j\right) A j
$$

ii) There are matrices L, M in M_{m} with $L(L+n M)$ invertible and there
is P in $P(n)$, such that for any X in $M_{n m}$

$$
T X=P X L+J X M
$$

Theorem 2.2. Let $T: M_{n m} \rightarrow M_{n m}$ be a linear operator. The following assertions are equivalent.
(a) T preserves the chain majorization $\prec \prec$.
(b) T preserves the multivariate majorization \prec.

Proof. Assume (a) holds, and let $X, Y \in M_{n m}$. Suppose $X \prec Y$. So there exists a doubly stochastic matrix $D \in \mathcal{D S}(n)$ such that $X=D Y$. Since $D \in \operatorname{co} \mathcal{P}(n)$, there are $P_{i} \in \mathcal{P}(n), \alpha_{i} \in(0,1]$, with $i=1,2, \ldots, k$ such that $\sum_{i=1}^{k} \alpha_{i}=1$ and $D=\alpha_{i} P_{i}$. In this case, we have

$$
\begin{aligned}
T X= & T(D Y)=T\left(\left(\sum_{i=1}^{k} \alpha_{i} P_{i}\right) Y\right)=\sum_{i=1}^{k} T\left(P_{i} Y\right) \\
& =\sum_{i=1}^{k} \alpha_{i} R_{i} T Y=\left(\sum_{i=1}^{k} \alpha_{i} R_{i}\right) T Y
\end{aligned}
$$

for some $R_{i} \in \mathcal{P} \mathcal{T}(n), i=1,2, \ldots, k$ which implies $T X \prec T Y$.
Now, let (b) holds and two matrices $X, Y \in M_{n m}$ be such that $X \prec \prec Y$. So there exists a matrix $R \in \mathcal{P} \mathcal{T}(n)$, where $X=R Y$. By Theorem 4.1. there are two possibility forms for the operator T. We study them separately and show that in each case we have $T X \nprec T Y$.
i) Suppose that there are m matrices $A_{1}, A_{2}, \ldots, A_{m}$ in $M_{n m}$ such that for any X in $M_{n m}$

$$
T X=\sum_{j=1}^{m}\left(\sum_{i=1}^{n} X_{i j}\right) A_{j}
$$

Then we have

$$
T X=T(R Y)=\sum_{j=1}^{m} \sum_{i=1}^{n}\left((R Y)_{i j} A_{j}\right.
$$

Since R is a doubly stochastic matrix, we see

$$
\sum_{i=1}^{n}\left((R Y)_{i j}=\sum_{i=1}^{n} \sum_{k=1}^{n} R_{i k} Y_{k j}=\sum_{k=1}^{n} Y_{k j} \sum_{i=1}^{n} R_{i k}=\sum_{k=1}^{n} Y_{k j}\right.
$$

Hence

$$
T X=\sum_{j=1}^{m} \sum_{k=1}^{n} Y_{k j}=T Y
$$

and this shows that $T X \prec \prec T Y$.
ii) Suppose that there are matrices $L, M \in M_{m}$ with $L(L+n M)$ invertible and there is $P \in \mathcal{P}(n)$ such that for any $X \in M_{n m}$,

$$
T X=P X L+J X M
$$

So

$$
\begin{aligned}
& T X=T(R Y)=P R Y L+J Y R M=P(R Y L+R J Y M) \\
& =P R(Y L+J Y M)=P R P^{t}(P Y L+J Y M)=P R P^{t} T Y
\end{aligned}
$$

Therefore $T X \prec \prec T Y$, and the proof is complete.
Now we can state the main theorem of this section which is an immediate consequence of Theorem 2.1. and Theorem 2.2.

Theorem 2.3. Let $T: M_{n m} \rightarrow M_{n m}$ be a linear map. Then T preserves chain majorization if and only if T has one of the forms i) or ii) as follows:
i) There are m matrices $A_{1}, A_{2}, \ldots, A_{m}$ in $M_{n m}$ such that for any X in $M_{n m}$

$$
T X=\sum_{j=1}^{m}\left(\sum_{i=1}^{n} X_{i j}\right) A_{j} ;
$$

ii) There are matrices $L, M \in M_{m}$ with $L(L+n M)$ invertible and there is $P \in \mathcal{P}(n)$ such that for any $X \in M_{n m}$

$$
T X=P X L+J X M
$$

3. Characterization of Strong Linear Preservers

In this section, we state a characterization of strong preservers of $\prec \prec$ in Theorem 3.4.

Proposition 3.1. Let $T: M_{n m} \rightarrow M_{n m}$ be a strong linear preserver of chain majorization. Then T is invertible.

Proof. If $T X=0=T 0$ for some $X \in M_{n m}$, then $T X \prec \prec T 0$ and so $X \prec \prec 0$, which is a contradiction.

Theorem 3.2 ([10]). The mapping $T: M_{n m} \rightarrow M_{n m}$ is a strong linear preserver of multivariate majorization if and only if $T X=P X L+J X M$ for some $P \in \mathcal{P}(n)$, and $m \times m$ matrices L, M with $L(L+n M)$ invertible.

Theorem 3.3. Let $T: M_{n m} \rightarrow M_{n m}$ be a linear operator. Then the following assertions are equivalent.
(a) T strongly preserves the chain majorization $\prec \prec$.
(b) T strongly preserves the multivariate majorization \prec.

Proof. First assume (a) holds, and $X, Y \in M_{n m}$. If $X \prec Y$, then by Theorem 4.2. it follows that $T X \prec T Y$. Now suppose that $T X \prec T Y$ and let $D \in \mathcal{D S}(n)$ be such that $T X=D T Y$. Since $D \in \operatorname{co}(\mathcal{P}(n))$, there are $P_{i} \in \mathcal{P}(n), \alpha_{i} \in(0,1]$, with $i=1,2, \ldots, k$ such that $\sum_{i=1}^{k} \alpha_{i}=1$ and $D=\sum_{i=1}^{k} \alpha_{i} P_{i}$. So

$$
T X=D T Y
$$

$$
=\left(\sum_{i=1}^{k} \alpha_{i} P_{i}\right) T Y=\sum_{i=1}^{k}\left(\alpha_{i} P_{i} T Y\right)=\sum_{i=1}^{k} \alpha_{i} T X_{i}=T\left(\sum_{i=1}^{k} \alpha_{i} X_{i}\right)
$$

where $T X_{i}=P_{i} T Y$. The last relation yields $T X_{i} \prec \prec T Y$, and the hypothesis (a) shows $X_{i} \prec \prec Y$, so there are $R_{i} \in \mathcal{P} \mathcal{T}(n)(i=1,2, \ldots, n)$ such that $X_{i}=R_{i} Y$. On the other hand, injectivity of T and the equation $T X=T\left(\sum_{i=1}^{k} \alpha_{i} X_{i}\right)$ show that

$$
X=\sum_{i=1}^{k} \alpha_{i} X_{i}=\sum_{i=1}^{k} \alpha_{i} R_{i} Y=\left(\sum_{i=1}^{k} \alpha_{i} R_{i}\right) Y
$$

And hence $X \prec Y$.
For a proof of $(b) \Rightarrow(a)$, assume (b) holds and $X, Y \in M_{n m}$. If $X \prec \prec Y$ it follows from Theorem 4.2. that $T X \prec \prec T Y$. Now, suppose that $T X \prec \prec T Y$, which implies that $T X=R T Y, T X \prec T Y, X \prec Y$ and $X=D Y$ for some $R \in \mathcal{P} \mathcal{T}(n)$ and $D \in \mathcal{D S}(n)$. On the other hand, the characterization of strong linear preservers of \prec (Theorem 3.2.) shows
that

$$
P X L+J X M=R(P Y L+J Y M)=R P Y L+J Y M
$$

for some $P \in \mathcal{P}(n)$, invertible $m \times m$ matrix L, and $m \times m$ matrix M. The last relation leads us to $X \prec \prec Y$ as follows:

$$
\begin{gathered}
X+J X N L^{-1}=\left(P^{t} R P\right) Y+J Y M L^{-1} \\
\Rightarrow X+J D Y N L^{-1}=\left(P^{t} R P\right) Y+J Y M L^{-1} \\
\Rightarrow X+J Y N L^{-1}=\left(P^{t} R P\right) Y+J Y M L^{-1} \\
\Rightarrow X=\left(P^{t} R P\right) Y
\end{gathered}
$$

Now, we are ready to state the second main result of this paper which is the direct conclusion of Theorem 3.2. and Theorem 3.3.

Theorem 3.4. $T: M_{n m} \rightarrow M_{n m}$ is a strong linear preserver of chain majorization if and only if $T X=P X L+J X M$ for some $P \in \mathcal{P}(n)$, and $m \times m$ matrices L, M with $L(L+n M)$ invertible.

References

[1] T. A. Majorization, Doubly stochastic matrices and comparison of eigenvalues, Linear Algebra and its Applications, 118 (1989), 163-248.
[2] L. B. Beasley, S. G. Lee, and Y. H. Lee, Linear operators strongly preserving multivariate majorization with $T(I)=I$, Kyugpook Mathematics Journal, 39 (1999), 191-194.
[3] L. B. Beasley and S. G. Lee, Linear operators preserving Multivariate majorization, Linear Algebra and its Applications, 304 (2000), 141-159.
[4] L. B. Beasley, S. G. Lee, and Y. H. Lee, Resolution of the conjecture on strong preservers of multivariate majorization. Bulletin of Korean Mathematical Society, 39(2) (2002), 283-287.
[5] R. Bhatia, Matrix analysis, Springer-Verlag, New York, (1997).
[6] G. Birkhoff, Tres observaciones sobre el algebra lineal, Univ. Nac. Tucuman. Rev. A. 5 (1946), 147-151.
[7] J.V. Bondar, Comments and complements to: Inequalities: Theory of Majorization and its appl. by Albert W. Marshall and Ingram Olkin, Linear Algebra and its Applications, 199 (1994), 115-130.
[8] R. A. Brualdi, The doubly stochastic matrices of a vactor majorization, Linear Algebra and its Applications, 61 (1984), 141-154.
[9] G. S. Cheon and Y. H. Lee, The doubly stochastic matrices of a multivariate majorization, Journal of Korean Mathematical Society, 32 (1995), 857-867.
[10] A. M. Hasani and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, Electronic Journal of Linear Algebra, 15 (2006), 260-268.
[11] C. G. lee and Y. H. lee, A survey on majorization and its preservers, Bull. Korean Math., Soc., 39 (2002), 1-8.
[12] C. K. Li and S. Pierce, Linear preserver problems, Mathematical Monthly, 108 (2001), 591-605.
[13] C. K. Li and E. Poon, Linear operators preserving directional majorization, Linear Algebra and its Applications, 325 (2001), 141-146.
[14] C. K. Li, B. S. Tam, and N. K. Tsing, Linear maps preserving stochastic matrices, Linear Algebra and its Appllications, 341 (2002), 5-22.
[15] C. K. Li and N. K. Tsing, Linear preserver problems; A brief introduction and some special techniques, Linear Algebra and its Applications, (1992), 162-164; 217-235.
[16] M. Marcus and R. Purves, Linear transformation on matrices II : The invariance of the elementary symmetric functions, Canad. J. Math, 11 (1959), 383-396.
[17] A. W. Marshall and I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1972.
[18] F. D. Martínez Pería, P. G. Massey, and L. E. Silvestre, Weak MatrixMajorization, Linear Algebra and its Applications, 403 (2005), 343-368.
[19] S. Pierce and et al., A survey of Linear preserver problem, Linear and Multilinear Algebra, 33 (1992), 1-129.
[20] E. Savaglio, On multidimentional inequality: Ordering and measurment, Quaderni, 336 (2001), 1-26.

Parisa Torabian

Department of Mathematics
Islamic Azad University-Jahrom Branch
Jahrom, Iran
E-mail: parisatorabian@yahoo.com

