
Journal of Mathematical Extension
Vol. 9, No. 3, (2015), 73-85

ISSN: 1735-8299

URL: http://www.ijmex.com

More on Energy and Randić Energy
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1. Introduction

In this paper we are concerned with simple finite graphs, without di-
rected, multiple, or weighted edges, and without self-loops. Let A(G) be
adjacency matrix of G and λ1, λ2, . . . , λn its eigenvalues. These are said
to be the eigenvalues of the graph G and to form its spectrum [5]. The
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of Specific Graphs

S. Alikhani∗

Yazd University

N. Ghanbari
Yazd University

Abstract. Let G be a simple graph of order n. The energy E(G) of
G is the sum of the absolute values of the eigenvalues of G. The Randić
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energy E(G) of the graph G is defined as the sum of the absolute values
of its eigenvalues

E(G) =
n∑

i=1

|λi|.

Details and more information on graph energy can be found in [6, 7, 9,
13].
The Randić matrix R(G) = (rij)n×n is defined as [2, 3, 10]

rij =

{
1√
didj

if vi ∼ vj

0 otherwise.

Denote the eigenvalues of the Randić matrix R(G) by ρ1, ρ2, . . . , ρn and
label them in non-increasing order. The Randić energy [2, 3, 10] of G is
defined as

RE(G) =
n∑

i=1

|ρi|.

Two graphs G and H are said to be Randić energy equivalent, or simply
RE-equivalent, written G ∼ H, if RE(G) = RE(H). It is evident that
the relation ∼ of being RE-equivalence is an equivalence relation on the
family G of graphs, and thus G is partitioned into equivalence classes,
called the RE-equivalence classes. Given G ∈ G, let

[G] = {H ∈ G : H ∼ G}.

We call [G] the equivalence class determined by G. A graph G is said to
be Randić energy unique, or simply RE-unique, if [G] = {G}.
Similarly, we can define E-equivalence for energy and E-unique for a
graph.
A graph G is called k-regular if all vertices have the same degree k. One
of the famous graphs is the Petersen graph which is a symmetric non-
planar 3-regular graph. In the study of energy and the Randić energy, it
is interesting to investigate the characteristic polynomial and the energy
of this graph. We denote the Petersen graph by P .
In this paper, we study the energy and Randić energy of specific graphs. In
the next section, we study energy and Randić energy of 2-regular and
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3-regular graphs. We study cubic graphs of order 10 and list all char-
acteristic polynomial, energy and Randić energy of them. As a result,
we show that Petersen graph is not RE-unique (E-unique) but can be
determined by its Randić energy (energy) and its eigenvalues. In the
last section we consider some another families of graphs and study their
Randić characteristic polynomials.

2. Energy of 2-Regular and 3-Regular Graphs

The energy and Randić energy of regular graphs have not been widely
studied. In this section we consider 2-regular and 3-regular graphs. The
following theorem gives a relationship between the Randić energy and
energy of k-regular graphs.

Lemma 2.1. ([11]) If the graph G is k-regular then RE(G) = 1
kE(G).

Also we have the following easy lemma:

Lemma 2.2. Let G = G1 ∪G2 ∪ . . . ∪Gm. Then

(i) E(G) = E(G1) + E(G2) + . . .+ E(Gm).

(ii) RE(G) = RE(G1) +RE(G2) + . . .+RE(Gm).

Randić characteristic polynomial of the cycle graph Cn can be determined
by the following theorem:

Lemma 2.3. ([1]) For n > 3, the Randić characteristic polynomial of
the cycle graph Cn is

RP (Cn, λ) = λΛn−1 −
1
2

Λn−2 − (
1
2

)n−1,

where for every k > 3, Λk = λΛk−1−1
4Λk−2 with Λ1 = λ and Λ2 = λ2−1

4 .

By Lemma 2.3, we can find all the eigenvalues of Randić matrix of cycle
graphs. So we can compute the Randić energy of cycles. Also every
cycle is 2-regular. By Lemma 2.1, we have E(Cn) = 2RE(Cn). Hence
we can compute energy of cycle graphs too. Every 2-regular graph is a
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disjoint union of cycles. Therefore by Lemma 2.2, we can find energy
and Randić energy of 2-regular graphs.
Let to consider the characteristic polynomial of 3-regular graphs of order
10. Also we shall compute energy and Randić energy of this class of
graphs. There are exactly 21 cubic graphs of order 10 given in Figure 1
(see [12]). We denote these 21 graphs by G1, G2, ..., G21.
We show that Petersen graph is not RE-unique (E-unique) but can be
determined by its Randić energy (energy) and its eigenvalues. There are
just two non-connected cubic graphs of order 10. The following theorem
gives us characteristic polynomial of 3-regular graphs of order 10. We
denote the characteristic polynomial of the graph G by P (G,λ).
Using Maple we computed the characteristic polynomials of 3-regular
graphs of order 10 in Table 1.

Table 1: Characteristic polynomial P (Gi, λ), for 1 6 i 6 21.

Gi P (Gi, λ)
G1 λ10 − 15λ8 − 8λ7 + 71λ6 + 64λ5 − 101λ4 − 104λ3 + 44λ2 + 48λ
G2 λ10 − 15λ8 − 4λ7 + 71λ6 + 28λ5 − 121λ4 − 48λ3 + 64λ2 + 24λ
G3 λ10 − 15λ8 − 6λ7 + 69λ6 + 48λ5 − 96λ4 − 76λ3 + 30λ2 + 26λ+ 3
G4 λ10 − 14λ8 − 4λ7 + 53λ6 + 34λ5 − 48λ4 − 50λ3 − 12λ2

G5 λ10 − 15λ8 − 8λ7 + 71λ6 + 68λ5 − 93λ4 − 132λ3 − 36λ2

G6 λ10 − 15λ8 + 65λ6 − 105λ4 + 55λ2 − 9
G7 λ10 − 15λ8 + 69λ6 − 12λ5 − 117λ4 + 36λ3 + 59λ2 − 12λ− 9
G8 λ10 − 15λ8 + 71λ6 − 16λ5 − 133λ4 + 64λ3 + 76λ2 − 48λ
G9 λ10 − 15λ8 − 2λ7 + 71λ6 + 8λ5 − 132λ4 − 2λ3 + 91λ2 − 8λ− 12
G10 λ10 − 15λ8 + 65λ6 − 4λ5 − 85λ4 − 20λ3 + 35λ2 + 20λ+ 3
G11 λ10 − 15λ8 − 4λ7 + 69λ6 + 32λ5 − 105λ4 − 64λ3 + 23λ2 + 20λ+ 3
G12 λ10 − 15λ8 − 4λ7 + 75λ6 + 24λ5 − 157λ4 − 36λ3 + 144λ2 + 16λ− 48
G13 λ10 − 15λ8 − 2λ7 + 67λ6 + 12λ5 − 96λ4 − 22λ3 + 35λ2 + 12λ
G14 λ10 − 15λ8 − 6λ7 + 75λ6 + 48λ5 − 144λ4 − 114λ3 + 75λ2 + 68λ+ 12
G15 λ10 − 15λ8 − 2λ7 + 69λ6 + 12λ5 − 116λ4 − 24λ3 + 54λ2 + 26λ+ 3
G16 λ10 − 15λ8 + 63λ6 − 85λ4 + 36λ2

G17 λ10 − 15λ8 + 75λ6 − 24λ5 − 165λ4 + 120λ3 + 120λ2 − 160λ+ 48
G18 λ10 − 15λ8 − 8λ7 + 63λ6 + 64λ5 − 37λ4 − 56λ3 − 12λ2

G19 λ10 − 15λ8 − 4λ7 + 73λ6 + 28λ5 − 141λ4 − 52λ3 + 99λ2 + 16λ− 21
G20 λ10 − 15λ8 − 12λ7 + 63λ6 + 96λ5 − 13λ4 − 84λ3 − 36λ2

G21 λ10 − 15λ8 − 8λ7 + 51λ6 + 72λ5 + 27λ4

By computing the roots of characteristic polynomial of cubic graphs of order
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10, we can have the energy of these graphs. We compute them to four decimal
places. So we have table 2.

Figure 1. Cubic graphs of order 10.
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Table 2: Energy and Randić energy of cubic graphs of order 10.

Gi E(Gi) RE(Gi) Gi E(Gi) RE(Gi) Gi E(Gi) RE(Gi)
G1 15.1231 5.0410 G8 15.1231 5.0410 G15 14.7943 4.9314
G2 14.8596 4.9532 G9 15.3164 5.1054 G16 14.0000 4.6666
G3 14.8212 4.9404 G10 14.4721 4.8240 G17 16.0000 5.3333
G4 13.5143 4.5047 G11 14.7020 4.9006 G18 13.5569 4.5189
G5 14.2925 4.7641 G12 16.0000 5.3333 G19 15.5791 5.1930
G6 14.9443 4.9814 G13 14.3780 4.7926 G20 14.0000 4.6666
G7 15.0777 5.0259 G14 15.0895 5.0298 G21 12.0000 4.0000

Theorem 2.1. Six cubic graphs of order 10 are not E-unique (RE-unique). If
two cubic graphs of order 10 have equal energy (Randić energy), then their
eigenvalues are different in exactly 3 values.

Proof. Using Table 2, we see that [G1] = {G1, G8}, [G12] = {G12, G17} and
[G16] = {G16, G20}. Now, it suffices to find the eigenvalues of G1, G8, G12,
G16 , G17 and G20. By Table 1 we have:

P (G1, λ) = λ10 − 15λ8 − 8λ7 + 71λ6 + 64λ5 − 101λ4 − 104λ3 + 44λ2 + 48λ

= λ(λ− 3)(λ+ 2)2(λ− 1)2(λ+ 1)2(λ− 1−
√

17
2

)(λ− 1 +
√

17
2

),

P (G8, λ) = λ10 − 15λ8 + 71λ6 − 16λ5 − 133λ4 + 64λ3 + 76λ2 − 48λ

= λ(λ− 3)(λ+ 2)2(λ− 1)3(λ+ 1)(λ− −1 +
√

17
2

)(λ− −1−
√

17
2

).

Also

P (G12, λ) = λ10 − 15λ8 − 4λ7 + 75λ6 + 24λ5 − 157λ4 − 36λ3 + 144λ2 + 16λ− 48
= (λ− 3)(λ− 2)(λ+ 2)3(λ− 1)3(λ+ 1)2,

P (G17, λ) = λ10 − 15λ8 + 75λ6 − 24λ5 − 165λ4 + 120λ3 + 120λ2 − 160λ+ 48
= (λ− 3)(λ+ 2)4(λ− 1)5,

and

P (G16, λ) = λ10 − 15λ8 + 63λ6 − 85λ4 + 36λ2

= λ2(λ− 3)(λ+ 3)(λ− 2)(λ+ 2)(λ− 1)2(λ+ 1)2,
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P (G20, λ) = λ10 − 15λ8 − 12λ7 + 63λ6 + 96λ5 − 13λ4 − 84λ3 − 36λ2

= λ2(λ− 3)2(λ+ 2)2(λ− 1)(λ+ 1)3.

So we have the result. 
Now we consider Petersen graph P . We have shown this graph in Figure 2.

Figure 2. Petersen graph

Theorem 2.2. Let G be the family of 3-regular graphs of order 10. For the
Petersen graph P , we have the following properties:

(i) P is not E-unique (RE-unique) in G.

(ii) P has the maximum energy (Randić energy) in G.

(iii) P can be identify by its energy (Randić energy) and its eigenvalues in G.

Proof.

(i) The adjacency matrix of P is

A(P ) =




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
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So det(λI −A(P )) = (λ− 3)(λ+ 2)4(λ− 1)5. Therefore we have:

λ1 = 3 , λ2 = λ3 = λ4 = λ5 = −2 , λ6 = λ7 = λ8 = λ9 = λ10 = 1,

and so we have E(P ) = 16. By Table 2, we have P ∈ {G12, G17}.
Hence P is not E-unique (and RE-unique) in G.

(ii) It follows from Part (i) and Table 2.

(iii) It follows from Part (i) and Theorem 2.1. SoG17 is the Petersen graph. 
The following result gives a relationship between energy and permanent of
adjacency matrix of two connected graphs in the family of cubic graphs of
order 10 whose have the same E-equivalence class.

Theorem 2.3. If two connected cubic graphs of order 10 have the same energy,
then their adjacency matrices have the same permanent.

Proof. By Table 2, it suffices to find per(A(G1)), per(A(G8)), per(A(G12))
and per(A(G17)). For graph G1, we have

A(G1) =





0 1 0 0 0 1 0 0 0 1
1 0 1 1 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0
0 0 1 1 0 1 0 0 0 0
1 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 1 1 0 1
1 0 0 0 0 0 0 1 1 0





.

By Ryser’s method, we have per(A(G1)) = 72. Similarly we have:

per(A(G8)) = 72 , per(A(G12)) = 60 , per(A(G17)) = 60.

So we have the result. 

Remark 2.4. The converse of Theorem 2.3, is not true. Because per
(A(G7)) = per(A(G11)) = 85, but as we see in Table 2, E(G7) = E(G11).

Corollary 2.5. If two connected cubic graphs of order 10 have the same Randić
energy, then their adjacency matrices have the same permanent.

Proof. It follows from Lemma 2.1, Table 2 and Theorem 2.3. 
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The following result gives a relationship between energy and permanent of
adjacency matrix of two connected graphs in the family of cubic graphs of
order 10 whose have the same E-equivalence class.

Theorem 2.3. If two connected cubic graphs of order 10 have the same energy,
then their adjacency matrices have the same permanent.

Proof. By Table 2, it suffices to find per(A(G1)), per(A(G8)), per(A(G12))
and per(A(G17)). For graph G1, we have

A(G1) =


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

.

By Ryser’s method, we have per(A(G1)) = 72. Similarly we have:

per(A(G8)) = 72 , per(A(G12)) = 60 , per(A(G17)) = 60.

So we have the result. 

Remark 2.4. The converse of Theorem 2.3, is not true. Because per
(A(G7)) = per(A(G11)) = 85, but as we see in Table 2, E(G7) = E(G11).

Corollary 2.5. If two connected cubic graphs of order 10 have the same Randić
energy, then their adjacency matrices have the same permanent.

Proof. It follows from Lemma 2.1, Table 2 and Theorem 2.3. 
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3. Randić Characteristic Polynomial of a Kind
of Dutch-Windmill Graphs

We recall that a complex number ζ is called an algebraic number (resp. an alge-
braic integer) if it is a root of some monic polynomial with rational (resp. inte-
ger) coefficients (see [14]). Since the Randić characteristic polynomial P (G,λ)
is a monic polynomial in λ with integer coefficients, its roots are, by definition,
algebraic integers. This naturally raises the questions: Which algebraic integers
can occur as zeros of Randić characteristic polynomials? Which real numbers
can occur as Randić energy of graphs? We are interested to numbers which
are occur as Randić energy. Clearly those lying in (−∞, 2) are forbidden set,
because we know that if graph G possesses at least one edge, then RE(G)  2
(see [4]). We think that the Randić energy of graphs are dense in [2,∞). In this
section we would like to study some further results of this kind.
Let n be any positive integer andDnm be DutchWindmill graph with (m−1)n+1
vertices and mn edges. In other words, the graph Dnm is a graph that can be
constructed by coalescence n copies of the cycle graph Cm of length m with
a common vertex. We recall that Dn3 is friendship graphs. Figure 3 shows
some examples of this kind of Dutch Windmill graphs. In this section we shall
investigate the Randić characteristic polynomial of Dutch Windmill graphs.

Figure 3. Dutch Windmill Graph D24, D
3
4, D

4
4 and Dn4 , respectively

By Lemma 2.3, we know that

RP (Cm, λ) = λΛm−1 −
1
2
Λm−2 − (

1
2
)m−1,

where for every k  3, Λk = λΛk−1 − 1
4Λk−2 with Λ1 = λ and Λ2 = λ2 − 1

4 .
We show that the Randić characteristic polynomial of Dutch Windmill graphs
can compute by the Randić characteristic of the cycle which constructed it.
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Theorem 3.1. For m > 3, the Randić characteristic polynomial of the Dutch
Windmill graph Dn

m is

RP (Dn
m, λ) = Λn−1

m−1.RP (Cm, λ),

where for every k > 3, Λk = λΛk−1 − 1
4Λk−2 with Λ1 = λ and Λ2 = λ2 − 1

4 .

Proof. For every k > 3, consider

Bk :=



λ −1
2 0 0 . . . 0 0 0

−1
2 λ −1

2 0 . . . 0 0 0
0 −1

2 λ −1
2 . . . 0 0 0

0 0 −1
2 λ . . . 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 . . . λ −1
2 0

0 0 0 0 . . . −1
2 λ −1

2
0 0 0 0 . . . 0 −1

2 λ


k×k

,

and let Λk = det(Bk). It is easy to see that Λk = λΛk−1 − 1
4Λk−2.

Suppose that RP (Dn
m, λ) = det(λI −R(Dn

m)). We have

RP (Dn
m, λ) = det


λ A A . . . A
At Bm−1 0 . . . 0
At 0 Bm−1 . . . 0
...

...
...

. . .
...

At 0 0 . . . Bm−1

 ,

where A =
(

−1
2
√
n

0 0 . . . 0 −1
2
√
n

)
1×(m−1)

. So

det(λI −R((Dn
m)) =

λΛnm−1 +
(−1

4 Λm−2 + 2((−1)m+1(−1
2 )m) + (−1)2m+1( 1

4 )Λm−2

)
Λn−1
m−1.

Therefore

det(λI −R(Dn
m)) = λΛnm−1 +

(
−1
2

Λm−2 − (
1
2

)m−1

)
Λn−1
m−1.

Hence

det(λI−R(Dn
m)) = Λn−1

m−1

(
λΛm−1 −

1
2

Λm−2 − (
1
2

)m−1

)
= Λn−1

m−1RP (Cm, λ). �
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In [1] we have presented two families of graphs such that their Randić energy
are n+ 1 and 2 + (n− 1)

√
2. Here we recall the following results:

Theorem 3.2.([1])

(i) The Randić energy of friendship graph Fn is RE(Fn) = n+ 1.

(ii) The Randić energy of Dutch-Windmill graph Dn
4 is RE(Dn

4 ) = 2 + (n−
1)
√

2.

(iii) For every m,n > 2, the Randić energy of Km,n − e is RE(Km,n − e) =
2 + 2√

mn
.

We can use Theorem 3.2 to obtain RE(Dn
5 ). Here using the definition of Randić

characteristic polynomial, we prove the following result:

Theorem 3.3. The Randić energy of Dn
5 is

RE(Dn
5 ) = 1 + n

√
5.

Proof. The Randić matrix of Dn
5 is

R(Dn
5 ) =



0 1
2
√
n

1
2
√
n

0 0 · · · 1
2
√
n

1
2
√
n

0 0
1

2
√
n

0 0 1
2 0 . . . 0 0 0 0

1
2
√
n

0 0 0 1
2 . . . 0 0 0 0

0 1
2 0 0 1

2 . . . 0 0 0 0
0 0 1

2
1
2 0 . . . 0 0 0 0

...
...

...
...

...
. . .

...
...

...
...

1
2
√
n

0 0 0 0 . . . 0 0 1
2 0

1
2
√
n

0 0 0 0 . . . 0 0 0 1
2

0 0 0 0 0 . . . 1
2 0 0 1

2
0 0 0 0 0 . . . 0 1

2
1
2 0


(4n+1)×(4n+1)

.

Let A =


λ 0 −1

2 0
0 λ 0 −1

2−1
2 0 λ −1

2
0 −1

2
−1
2 λ

 and C =


−1
2
√
n

0 −1
2 0

−1
2
√
n

0 λ 0 −1
2

0 0 λ −1
2

0 −1
2

−1
2 λ

. Then

det(λI −R(Dn
5 )) = λdet(A)n +

√
ndet(C)det(A)n−1.

So

det(λI −R(Dn
5 )) = det(A)n−1(λ− 1)(λ− (

√
5

4
− 1

4
))2(λ+ (

√
5

4
+

1
4

))2.
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Hence
RE(Dn

5 ) = 1 + n
√

5. �

Part (iii) of Theorem 3.2 implies that the Randić energy of graphs are dense
in [2, 3). Motivated by this notation, Theorems 3,2 and 3.3, we think that
the Randić energy of graphs are dense in [2,∞). We close this paper by the
following conjecture:

Conjecture 3.4. Randić energy of graphs are dense in [2,∞).
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[1] S. Alikhani and N. Ghanbari, Randić energy of specific graphs, 269 (2015),

722-730.
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