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1. Introduction

In ([3]), the concept of a hereditary, directed subset of a semigroup P

is introduced. Also, by a partial representation u of a group G on a

Hilbert space H, we mean a map u : G −→ B(H) with the following

properties:

(i) ue = 1
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(ii) ut−1 = u∗t

(iii) usutut−1 = ustut−1 , s, t ∈ G.

Let utu
∗
t satisfy the special relations R which will be defined later.

The spectrum of the relations R is defined in ([1]).

On the other hand, Nica, in ([3]), has introduced the spectrum of

the diagonal subalgebra of the Toeplitz algebra, denoted by sp(D). In

this article, we want to make a homeomorphism between sp(D) and

the spectrum of the relations R. For this purpose, first, we bring some

terminologies.

A partially ordered group is a pair (G,P ) where G is a discrete group,

and P is a subsemigroup of G. We denote P−1 = {x−1 : x ∈ P} and

always assume that P ∩ P−1 = {e}.
For x, y ∈ G, define

x 6 y ⇐⇒ x−1y ∈ P.

The relation ′′ 6′′, which is called the left invariant order relation in-

duced by P , is a partial order relation. Obviously,

P = {x ∈ G : e 6 x}, P−1 = {x ∈ G : x 6 e}.

Also, x ∈ PP−1 if and only if x has an upper bound in P .

The ordered group (G,P ) is called quasi-lattice ordered group if for

any n > 1, any x1, · · · , xn in G which have common upper bounds in

P , also have a least common upper bounded in P . The least common
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upper bound of x and y is denoted by x∨y. If x, y ∈ G have no common

upper bound in P , then, by convention, we write x ∨ y = ∞.

Definition 1.1. A subset w of G is hereditary if xP−1 ⊆ w for every

x ∈ w. It is called directed, if every x, y ∈ w have an upper bound in

w ∩ P .

We remark that every directed subset of G is contained in PP−1,

because every two element in it have an upper bound in P .

Lemma 1.2. Suppose w ⊆ G is hereditary. Then w is directed if and

only if for every x, y ∈ w, x ∨ y exists and is in w.

Proof. First, suppose that w is directed and take x, y ∈ w. Then there

exists an element z in w∩P such that x 6 z and y 6 z. The quasi-lattice

condition implies that the least upper bound of x and y, x ∨ y, exists

and is in P . It remains to prove x ∨ y ∈ w. Clearly, x ∨ y 6 z, and

so z−1(x ∨ y) ∈ P−1, which implies that x ∨ y ∈ zP−1. But since w is

hereditary and z ∈ w, zP−1 ⊆ w, and so x ∨ y ∈ w.

The converse is clear by taking z = x ∨ y. ¤

2. Main Result

Recall that a subset w of P is called hereditary if

s, t ∈ P, s 6 t, t ∈ w =⇒ s ∈ w.
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Also, it is called directed if any two elements of w have a common upper

bound in w. Let Ω denote the set of all nonempty, hereditary directed

subsets of P . Consider w ∈ Ω, and take t ∈ w. Obviously, e 6 t and so

e ∈ w, because w is hereditary. Furthermore, identifying every subset of

P with its characteristic function and considering the product topology

on {0, 1}P , we observe that Ω is a compact, Hausdorff space ([3]).

let (G,P ) be a quasi-lattice ordered group. Consider the compact,

Hausdorff space X = Πt∈G{0, 1} which can be identified with P(G), the

collection of all subset of G, or with {0, 1}G. The subset XG := {w ∈
X : e ∈ w} is a compact, Hausdorff space with the relative topology

inherited from {0, 1}G. For each t ∈ G, let Xt = {w ∈ XG : t ∈ w}, and

denote the characteristic function on Xt by χt.

Define a partial homeomorphism θt : Xt−1 → Xt by θt(w) = tw.

Then ({Xt}t∈G, {θt}t∈G) is a partial action, in the sense of [2] and [4].

Theorem 2.1. ([1]) The set of hereditrary, directed subsets of G con-

taining e, which is denoted by H, is invariant under the partial action θ

on XG; i.e., θz(H ∩Xz−1) ⊆ H for every z ∈ G.

A corollary to this theorem runs as follows:

Corollary 2.2. Suppose w ∈ Xt−1 is hereditary and directed, then so is

tw.

Proof. Clearly, w ∈ H. Since t−1 ∈ w, we have w ∈ Xt−1 . Thus,
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w ∈ H ∩Xt−1 , and so the above theorem implies that

tw = θt(w) ∈ θt(H ∩Xt−1) ⊆ H.¤

Suppose that the range projections utu
−1
t = utu

∗
t of a partial repre-

sentation u, [1], satisfy the relations R given by

(i) u∗t ut = 1, for any t ∈ P ;

(ii) utu
∗
t usu

∗
s = ut∨su

∗
t∨s, for any t, s ∈ G.

Define the spectrum of the relations R by

ΩR = {w ∈ XG : f(t−1w) = 0, for all f ∈ R, t ∈ w}.

It is shown that ΩR is a compact, Hausdorff space ([1, Proposition 4.1]).

Suppose that D is the diagonal subalgebra of the Toeplitz algebra

τ(G,P ) as introduced in [3]. Indeed, D consists of all linear opera-

tors T on `2(P ) whose matrices relative to the canonical basis of `2(P )

are diagonal. By the spectrum of D, denoted by sp(D), we mean the

set of all characters of D. Nica has shown that there is a homeomor-

phism between sp(D) and Ω. It is worthy of attention to remark that

from his homeomorphism, we can obtain the form of each set in Ω; in

fact, if Tt(t ∈ P ), are the generators of the Toeplitz algebra then every

nonempty, hereditary directed subset of P is of the form

Aγ = {t ∈ P : γ(TtT
∗
t ) = 1}

where γ ∈ sp(D).
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In the remaining, our aim is to identify ΩR with sp(D).

Theorem 2.3. The spaces Ω and ΩR are homeomorphic.

Proof. By Theorem 6.4 of [1], ΩR is the set of hereditary, directed

subsets of G which contain the identity element. Take w ∈ ΩR. Clearly,

w ∩ P is a nonempty directed subset of P . Suppose s, t ∈ P , s 6 t, and

t ∈ w ∩ P . Then s ∈ tP−1, and so s ∈ w ∩ P , because w is a hereditary

subset of G. Consequently, w ∩ P ∈ Ω for every w ∈ Ω. Now, define

ψ : ΩR → Ω by ψ(w) = w ∩ P . First, we show that ψ is continuous.

Suppose that {wi}i is a net in ΩR and wi → w is ΩR as i → ∞.

Identifying each w in XG with χw, the characteristic function of w, we

have xwi → xw pointwise as i → ∞, and χwiχP → χwχP pointwise

as i → ∞; that is, χwi∩P → χw∩P pointwise as i → ∞; equivalently,

wi ∩ P → w ∩ P as i → ∞. Since ΩR and Ω are compact Hausdorff

spaces, to show that ψ is a homeomorphism, it remains to prove that

it is a bijection. So let w1, w2 ∈ ΩR, w1 ∩ P = w2 ∩ P , but w1 6= w2.

Assume that x ∈ w1 − w2. Since w1 is a directed subset of G, there

exists z ∈ w1 ∩ P = w2 ∩ P so that x 6 z, and so p = x−1z ∈ P .

Therefore, zP−1 ⊆ w2, because w2 is hereditary. This, in turn, implies

that x = zP−1 ∈ w2, which is a contradiction. Hence, ψ is one-to-one.

Finally, for every w′ ∈ Ω, consider w = w′P−1. Then it can be easily

seen that w ∩ P = w′ and w ∈ ΩR. ¤
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Corollary 2.4. There is a homeomorphism between the spaces sp(D)

and ΩR.
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