A Modification Common Fixed Point Theorem of Fisher and Sessa

A.R Valipour Baboli

Department of Mathematics, College of Basic Sciences, Karaj Branch, Islamic Azad Univercity, Alborz, Iran.

M.B Ghaemi*

Department of Mathematics, College of Basic Sciences, Karaj Branch, Islamic Azad Univercity, Alborz, Iran.

Abstract. In this paper it is shown that T and I have a unique common fixed point on a compact subset C of a metric space X, where T and I are two self maps on C, I is non-expansive and the pair (T, I) is weakly commuting, before in [3] Fisher and Sessa verified on as same conditions but with C closed subset. Further we show this result by replacing compatibility instead of weakly commutativity pair (T, I) and continuity instead of non-expansiveness of I.

AMS Subject Classification: 47H09, 47H10

Keywords and Phrases:Common fixed point, commuting and compatible maps, compact space.

1 Introduction

Many authors have written some papers in which two self maps on a closed convex set has a unique fixed point for example [1], [3] and [9]. In 1986, Fisher and Sessa proved a fixed point theorem for two self maps on a subset of a Banach space which is closed convex(see [3]). Sessa in

Received: XXXX

 $^{^*}$ A.R Valipour Baboli Tel: 09356742864, Emial:a.valipour@umz.ac.ir, M.B Ghaemi, Tel: 09128204188 . Fax +9821-73228403 .

[9] generalized a result of Das and Naik [1]. They defined two maps T and I on a metric space (X, d) into itself to be weakly commuting iff

$$d(TIx, ITx) \le d(Ix, Tx) \tag{1}$$

for all x in X.

A self map I on a metric space X is said to be non-expansive provied that

$$d(Ix, Iy) \le d(x, y)$$

holds for all x, y in X. Two commuting maps clearly satisfy (1) but the converse is not generally true as is shown with the following example.

Example 1.1. Let X = [0,1]. Suppose X is endowed with the Euclidean metric. Define T and I by $Tx = \frac{x}{x+4}$, $Ix = \frac{x}{2}$ for any x in X. Then

$$d(TIx, ITx) = \frac{x}{x+8} - \frac{x}{2x+8} = \frac{x^2}{2(x+8)(x+4)}$$
$$\leq \frac{x^2 + 2x}{2(x+4)} = \frac{x}{2} - \frac{x}{x+4} = d(Ix, Tx).$$

But for any
$$x \neq 0$$
, $TIx = \frac{x}{x+8} > \frac{x}{2x+8} = ITx$.

Fisher and Sessa proved the following theorem.

Theorem 1.2. [3] Let T and I be two weakly commuting mappings of C into itself satisfying the inequality

$$d(T(x), T(y)) \le ad(I(x), I(y)) + (1 - a)max\{d(T(x), I(x)), d(T(y), I(y))\}$$
 (2)

for all x, y in C, where 0 < a < 1 and C is a closed convex subset of a Banach space X. If I is linear, non-expansive in C and IC contains TC, then T and I have a unique common fixed point in C.

2 Main results

Our aim is to modification of Theorem 1.2.

Theorem 2.1. Let T and I be two weakly commuting mappings on C into itself satisfying (2), where C is a compact subset of X. If I is non-expansive on C and IC contains TC, then T and I have a unique common fixed point in C.

Proof. Let $x = x_0$ be an arbitrary point in C and for any $n \in N$ choose x_{n+1} such that $Tx_n = Ix_{n+1}$. Since C is compact so $\{x_n\}$ has a convergence subsequence $\{y_k\}_{k=1}^{\infty}$, (which we show each y_k with y_n^k where it represent k'th member $\{y_n\}$ and n'th element of $\{x_n\}$), such that $y_n^k \longrightarrow x^*$, where $x^* \in C$ as $k \longrightarrow \infty$. Now we show

$$d(Tx^*, Ix^*) = 0$$

.

$$\begin{array}{ll} d(Tx^*,Ix^*) & \leq & \overline{lim}d(Tx^*,Ty_n^k) + \overline{lim}d(Ty_n^k,Iy_n^k) + \overline{lim}d(Iy_n^k,Ix^*) \\ & \leq & \overline{lim}ad(Ix^*,Iy_n^k) + \overline{lim}(1-a)max\{d(Tx^*,Ix^*),d(Ty_n^k,Iy_n^k)\} \\ & + & \overline{lim}d(Ty_n^k,Iy_n^k) + \overline{lim}d(Iy_n^k,Ix^*). \end{array}$$

There are two cases

if

$$\overline{\lim} d(Tx^*, Ix^*) \ge \overline{\lim} d(Ty_n^k, Iy_n^k),$$

then

$$\begin{array}{ll} ad(Tx^*,Ix^*) & \leq & (a+1)\overline{lim}d(x^*,y_n^k) + \overline{lim}d(Ty_n^k,Iy_n^k) \\ & = & \overline{lim}d(Ty_n^k,Iy_n^k) \\ & \leq & \overline{lim}d(Ty_n^k,Ix_{n+1}) + \overline{lim}d(Ix_{n+1},Iy_n^k) \\ & \leq & \overline{lim}d(x_{n+1},y_n^k) = 0, \end{array}$$

then $d(Tx^*, Ix^*) = 0$. But if $\overline{\lim} d(Ty_n^k, Iy_n^k) \ge d(Tx^*, Ix^*)$, then

$$d(Tx^*, Ix^*) \leq (a+1)\overline{\lim}d(x^*, y_n^k) + (2-a)\overline{\lim}d(Ty_n^k, Iy_n^k) = (2-a)\overline{\lim}d(Ty_n^k, Iy_n^k) \leq (2-a)(\overline{\lim}d(Ty_n^k, Ix_{n+1}) + \overline{\lim}d(Ix_{n+1}, Iy_n^k)) \leq (2-a)\overline{\lim}d(x_{n+1}, y_n^k) = 0,$$

so

$$d(Tx^*, Ix^*) = 0$$

Set

 $K_n = \{x \in C : d(Tx, Ix) \leq \frac{1}{n}\}$ and $H_n = \{x \in C : d(Tx, Ix) \leq \frac{a+1}{a \cdot n}\}$. Clearly for each $n, K_n \neq \emptyset$ and $K_1 \supseteq K_2 \supseteq \ldots \supseteq K_n \supseteq \ldots$ Thus each of the sets $\overline{TK_n}$, where $\overline{TK_n}$ denotes the closure of TK_n , must be nonempty for $n = 1, 2, \ldots$ and $\overline{TK_1} \supseteq \overline{TK_2} \supseteq \ldots \supseteq \overline{TK_n} \supseteq \ldots$ Further, for arbitrary $x, y \in K_n$,

$$\begin{array}{lcl} d(Tx,Ty) & \leq & ad(Ix,Iy) + (1-a)max\{d(Tx,Ix),d(Ty,Iy)\} \\ \\ & \leq & a[d(Ix,Tx) + d(Tx,Ty) + d(Ty,Iy)] + \frac{(1-a)}{n} \leq \frac{(a+1)}{n} + ad(Tx,Ty) \end{array}$$

and so

$$d(Tx, Ty) \le \frac{(a+1)}{(1-a)n}$$

Thus

 $\lim_{n \to \infty} diam(TK_n) = \lim_{n \to \infty} diam(\overline{TK_n}) = 0.$

It follows, by a well known result of Cantor (see, e.g [2],p. 156) the intersection $\bigcap_{n=1}^{\infty} \overline{TK_n}$ contains exactly one point w. Now let y be an arbitrary point in $\overline{TK_n}$. Then for arbitrary $\epsilon > 0$ there is a point y' in K_n such that

$$d(Ty', y) < \epsilon. \tag{3}$$

Using the weak commutativity of T and I, non-expansiveness of I and applying (2) and (3) we have

$$\begin{split} d(Ty,Iy) & \leq d(Ty,TIy') + d(TIy',ITy') + d(ITy',Iy) \\ & \leq ad(Iy,I^2y') + (1-a)max\{d(Ty,Iy),d(TIy',I^2y')\} + d(TIy',ITy') + d(ITy',Iy) \\ & \leq ad(y,Iy') + (1-a)max\{d(Ty,Iy),d(TIy',ITy') + d(ITy',I^2y')\} + d(Iy',Ty') + d(Ty',Yy') + d(Ty',Yy') + d(Ty',Yy') + d(Ty',Yy') + d(Ty',Iy')\} + \frac{1}{n} + \epsilon \\ & \leq a[d(y,Ty') + d(Ty',Iy')] + (1-a)max\{d(Ty,Iy),d(Iy',Ty') + d(Ty',Iy')\} + \frac{1}{n} + \epsilon \\ & \leq a(\epsilon + \frac{1}{n}) + (1-a)max\{d(Ty,Iy),\frac{1}{n} + \frac{1}{n}\} + \frac{1}{n} + \epsilon \\ & \leq a(\epsilon + \frac{1}{n}) + \frac{1}{n} + \epsilon + (1-a)max\{d(Ty,Iy),\frac{2}{n}\} \\ & \leq (1+a)\epsilon + \frac{(a+1)}{n} + (1-a)max\{d(Ty,Iy),\frac{2}{n}\}. \end{split}$$

Since ϵ is arbitrary it follows that

$$d(Ty, Iy) \le \frac{(a+1)}{n} + (1-a)\max\{d(Ty, Iy), \frac{2}{n}\}.$$
 (4)

That are two possible:

If $d(Ty, Iy) \le \frac{2}{n}$, then we have $d(Ty, Iy) \le \frac{2}{n} < \frac{(a+1)}{an}$ directly. But if $d(Ty, Iy) > \frac{2}{n}$, (4) implies $d(Ty, Iy) \le \frac{a+1}{n} + (1-a)d(Ty, Iy)$

 $d(Ty, Iy) \leq \frac{(a+1)}{a}$

In both cases y lies in H_n .

Thus $\overline{TK_n} \subseteq H_n$ and so the point w must be in H_n for n = 1, 2, ...It follows that

$$d(Tw, Iw) \leq \frac{(a+1)}{a n}$$

for n = 1, 2, ... and so Tw = Iw.

Since (1) holds, we also have ITw = TIw.

Thus

 $d(T^2w,Tw) \leq ad(ITw,Iw) + (1-a)max\{d(T^2w,ITw),d(Tw,Iw)\} = ad(T^2w,Tw)$, so $T^2w = ITw = TIw$ and Tw = w' is a fixed point of T for a < 1.

Further, Iw' = ITw = TIw = TTw = Tw' = w' and so w' is also a fixed point of I. uniqueness, suppose w'' is a common fixed point too Then

$$d(w', w'') = d(Tw', Tw'')$$

$$\leq ad(Iw', Iw'') + (1 - a)max\{d(Tw', Iw'), d(Tw'', Iw'')\} \leq ad(w', w'')$$

and the uniqueness of the common fixed point follows since a < 1

The following example shows that condition of Theorem 2.1 can be take placed and is different of result by Sessa Theorem 1.2 because C is non-convex.

Example 2.2. Choosing $C = [0, \frac{1}{2}] \bigcup \{1\}, Ix = \frac{x}{2}$ and $Tx = \frac{x}{x+4}$ then $TC = [0, \frac{1}{9}] \bigcup \{\frac{1}{5}\} \subseteq [0, \frac{1}{4}] \bigcup \{\frac{1}{2}\} = IC$, I is non-expansive and the pair (I, T) is weakly commuting, where both of them are self maps. Further, I and T have a unique common fixed point which we know it is 0.

Let I be the identity map in Theorem 2.1,we have the following corollary which extends Theorem 1.1[3].

Corollary 2.3. Let T be a mapping of C into itself satisfying the inequality

$$d(T(x),T(y)) \leq ad(I(x),I(y)) + (1-a) max \{ d(T(x),I(x)), d(T(y),I(y)) \},$$

for all $x, y \in C$, where 0 < a < 1. Then T has a unique fixed point.

The result of this corollary was given in [4]. We note that the weak commutativity in Theorem 2.1 is a necessary condition. It suffices to consider the following example.

Example 2.4. Let X=R and let C=[0,1]. Define T and I by $Tx=\frac{1}{3}, Ix=\frac{x}{2}$ for any $x\in C$. It is easily seen that all the conditions of Theorem 2.1 are satisfied except that of weak commutativity since

with $x = \frac{1}{2}, d(TI(\frac{1}{2}), IT(\frac{1}{2})) = \frac{1}{6} > d(T(\frac{1}{2}), I(\frac{1}{2}))$. However T and I do not have a common fixed point.

In 1990 , G. Jungck extended a fixed point theorem of Fisher and Sessa by replacing the requirements of weak commutativity and non-expansiveness by compatibility and continuty respectively.

G.Jungck[7] defined two self maps to be compatible iff whenever (x_n) is a sequence in X such that

 $Tx_n, Ix_n \longrightarrow t$ for some $t \in X$, then $d(ITx_n, TIx_n) \longrightarrow 0$. Clearly, commuting maps are weakly commuting, and weakly commuting maps are compatible.

Lemma 2.5. (Proposition 2.2, [7]) . Let $f, g: (X, d) \longrightarrow (X, d)$ be compatible.

- 1. If f(t) = g(t), then fg(t) = gf(t).
- 2. suppose that $\lim_{n} f(x_n) = \lim_{n} g(x_n) = t$ for some t in X.
- (a) If f is continuous at t, $\lim_{n} gf(x_n) = f(t)$.
- (b) If f and g are continuous at t, then f(t) = g(t) and fg(t) = gf(t).

Lemma 2.6. [6].Let T and I be compatible self maps of a metric space (X,d) with I continuous. Suppose there exist real number r > 0 and $a \in (0,1)$ such that for all $x,y \in X$,

$$d(Tx, Ty) \le rd(Ix, Iy) + amax\{d(Tx, Ix), d(Ty, Iy)\}\tag{5}$$

Then Tw = Iw for some $w \in X$ iff $A = \bigcap \{cl(T(K_n)) : n \in N\} \neq \emptyset$, where $k_n = \{x \in X : d(Tx, Ix) \leq \frac{1}{n}\}$.

Using lemmas 2.5, 2.6 the following corollary concludes (Notice:with subset C compact).

Corollary 2.7. Let T and I be two compatible self maps of a compact subset C of a complete metric space X. Suppose that I is continuous, linear and $TC \subseteq IC$. If there exists $a \in (0,1)$ such that for all $x, y \in C, T$ and I satisfy the following inequality

$$d(T(x),T(y)) \leq ad(I(x),I(y)) + (1-a) max \{ d(T(x),I(x)), d(T(y),I(y)) \}.$$

Then T and I have a unique common fixed point in C.

Example 2.8. Let X=[0,1] and C=[0,1] with the Euclidean metric and define I and T by $Ix=\frac{x}{2}, Tx=\frac{x}{x+3}$ for any $x\in C$. Now C is compact and $I,T:C\longrightarrow C$, where $TC=[0,\frac{1}{4}]\subset [0,\frac{1}{2}]=IC$ and I is linear and continuous. Clearly I and T are compatible on C and so satisfy in inequality(2) . Then x=0 is a unique common fixed point in C.

References

- [1] K.M. Das, K.V. Naik, Common fixed point theorem for commuting maps on a metric space, Proc. Amer. Math. Soc., 77(1979), 369 373.
- [2] J. Dugundij, A. Granas, Fixed point Theory I, Polish Scientific Publisheres, Warsawa (1982).
- [3] B. Fisher, S. Sessa, On a fixed point theorem of Gregus, Internat. J. Math. Sci. 9(1986), 23-28.
- [4] B. Fisher, Common Fixed Point on a Banach space, C.huni Juan J., XI(1982), 12 15.
- [5] Jr. M. Gregus, A fixed point theorem in Banach space, Boll. Un. Mat. Ital. (5)17 A(1980), 193 198.
- [6] G. Jungck, Common Fixed Point for Commuting and Compatible Maps on Compacta Proceedings of the American Mathematical Society 103(1988), 977 983.
- [7] G. Jungck, Commpatible Mappings and Common Fixed Points, Internet. J. Math. Sci.9(1986), 771 779.
- [8] W.A. Kirk, Afixed point theorem for mappings which do not increase distances, Amer. Math Monthly 72(1965), 1004 1006.
- [9] S.Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ.Inst. Math., 32(46)(1982), 149 153.