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Abstract

In this note it is shown that T and I have a unique common fixed point on a compact subset C of a
metric space X, where T and I are two self maps on C, I is non-expansive and the pair (T, I)is weakly
commuting. further we show this result by replacing compatibility instead of weakly commutativity pair
(T, I) and continuity instead of non-expansiveness of I.

Keywords: Common fixed point, commuting and compatible maps, compact space.
Mathematics Subject Classification 2010: 47H09, 47H10

1. Introduction and Preliminaries

Many authors have written some papers in which two self maps on a closed convex set has a unique fixed
point for example [1], [3] and [9]. In 1986 , Fisher and Sessa proved a fixed point theorem for two self maps
on a subset of a Banach space which is closed convex[3]. Sessa in [9] generalized a result of Das and Naik
[1]. They defined two maps T and I on a metric space (X, d) into itself to be weakly commuting iff

d(TIx, ITx) ≤ d(Ix, Tx) (1.1)

for all x in X .A self map I on a metric space X is said to be non-expansive provied that d(Ix, Iy) ≤ d(x, y),
holds for all x, y in X. Two commuting maps clearly satisfy (1.1) but the converse is not generally true as
is shown with the following example.

Example 1.1. Let X = [0, 1]. Suppose X is endowed with the Euclidean metric . Define T and I by

Tx =
x

x+ 4
, Ix =

x

2
for any x in X. Then

d(TIx, ITx) =
x

x+ 8
− x

2x+ 8
=

x2

2(x+ 8)(x+ 4)

≤ x2 + 2x

2(x+ 4)
=
x

2
− x

x+ 4
= d(Ix, Tx).

But for any x 6= 0, T Ix =
x

x+ 8
>

x

2x+ 8
= ITx.

Fisher and Sessa proved the following theorem.

Theorem 1.1. [3] Let T and I be two weakly commuting mappings of C into itself satisfying the inequality

d(T (x), T (y)) ≤ ad(I(x), I(y)) + (1− a)max{d(T (x), I(x)), d(T (y), I(y))}, (1.2)

for all x, y in C , where 0 < a < 1 and C is a closed convex subset of Banach space X. If I is linear ,
non-expansive in C and IC contains TC, then Tand I have a unique common fixed point in C.
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2. Main results

Our aim is to modification of theorem 1.1.

Theorem 2.1. Let Tand I be two self maps and weakly commuting on C into satisfying 1.1, where C is a
compact subset of X. If I is non-expansive on C and IC contains TC, then T and I have a unique common
fixed point in C.

Proof. Let x = x0 be an arbitrary point in C and for any n ∈ N choose xn+1 such that Txn = Ixn+1.
Since C is compact so {xn} has a convergence subsequence {yk}∞k=1, (which we show each yk with ykn where
it represent k’th member {yn} and n’th element of {xn}) , such that ykn −→ x∗, where x∗ ∈ C. Now we
show d(Tx∗, Ix∗) = 0.

d(Tx∗, Ix∗) ≤ limd(Tx∗, T ykn) + limd(Tykn, Iy
k
n) + limd(Iykn, Ix

∗)

≤ limd(Ix∗, Iykn) + lim(1− a)max{d(Tx∗, Ix∗), d(Tykn, Iy
k
n)}

+ limd(Tykn, Iynk) + limd(Iykn, Ix
∗).

There are two cases , if limd(Tx∗, Ix∗) ≥ limd(Tykn, Iy
k
n), then

ad(Tx∗, Ix∗) ≤ (a+ 1)limd(x∗, ykn) + limd(Tykn, Iy
k
n)

= limd(Tykn, Iy
k
n)

≤ limd(Tykn, Ixn+1) + limd(xn+1, y
k
n)

≤ limd(xn+1, y
k
n) = 0,

then d(Tx∗, Ix∗) = 0. But if limd(Tykn, Iy
k
n) ≥ d(Tx∗, Ix∗), then

d(Tx∗, Ix∗) ≤ (a+ 1)limd(x∗, ykn) + (2− a)limd(Tykn, Iy
k
n)

= (2− a)limd(Tykn, Iy
k
n) ≤ (2− a)lim(d(Tykn, Ixn+1) + limd(Ixn+1, Iy

k
n))

≤ (2− a)limd(xn+1, y
k
n) = 0,

so d(Tx∗, Ix∗) = 0. Set Kn = {x ∈ C : d(Tx, Ix) ≤ 1

n
} and Hn = {x ∈ C : d(Tx, Ix) ≤ a+ 1

a.n
}. Clearly for

each n,Kn 6= ∅ and K1 ⊇ K2 ⊇ ... ⊇ Kn ⊇ .... Thus each of the sets TKn, where TKn denotes the closure
of TKn, must be non-empty for n = 1, 2, ... and TK1 ⊇ TK2 ⊇ ... ⊇ TKn ⊇ .... Further, for arbitrary
x, y ∈ Kn,

d(Tx, Ty) ≤ ad(Ix, Iy) + (1− a)max{d(Tx, Ix), d(Ty, Iy)}

≤ a[d(Ix, Tx) + d(Tx, Ty) + d(Ty, Iy)] +
(1− a)

n
≤ (a+ 1)

n
+ ad(Tx, Ty)

and so d(Tx, Ty) ≤ (a+ 1)

(1− a)n
. Thus limn−→∞ diam(TKn) = 0. It follows, by a well known result of

Cantor(see, e.g [2],p. 156) the intersection
⋂∞

n=1 TKn contains exactly one point w. Now let y be an
arbitrary point in TKn. Then for arbitrary ε ≥ 0 there is a point y′ in Kn such that d(Ty′, y) ≤ ε.

2



Using the weak commutativity of T and I ,non-expansiveness of I and applying (2.1) and (2.2) we have

d(Ty, Iy)

≤ d(Ty, TIy′) + d(TIy′, ITy′) + d(ITy′, Iy)

≤ ad(Iy, I2y′) + (1− a)max{d(Ty, Iy), d(TIy′, I2y′)}+ d(TIy′, ITy′) + d(ITy′, Iy)

≤ ad(y, Iy′) + (1− a)max{d(Ty, Iy), d(TIy′, ITy′) + d(ITy′, I2y)}+ d(Iy′, Ty′) + d(Ty′, y)

≤ a[d(y, Ty′) + d(Ty′, Iy′)] + (1− a)max{d(Ty, Iy), d(Iy′, Ty′) + d(Ty′, Iy′)}+
1

n
+ ε

≤ a(ε+
1

n
) + (1− a)max{d(Ty, Iy),

1

n
+

1

n
}+

1

n
+ ε

≤ a(ε+
1

n
) +

1

n
+ ε+ (1− a)max{d(Ty, Iy),

2

n
}

≤ (1 + a)ε
(a+ 1)

n
+ (1− a)max{d(Ty, Iy),

2

n
}.

Since ε is arbitrary it follows that

d(Ty, Iy) ≤ (a+ 1)

n
+ (1− a)max{d(Ty, Iy),

2

n
}. (2.1)

That are two possible .If d(Ty, Iy) ≤ a+ 1

n
+(1−a)d(Ty, Iy) so d(Ty, Iy) ≤ (a+ 1)

a.n
.In both cases y lies inHn

. Thus Kn ⊆ Hn and so the point w must be in Hn for n = 1, 2, .... It follows that d(Tw, Iw) ≤ (a+ 1)

a.n
, for

n = 1, 2, ... and so Tw = Iw.Since (1.1) holds, we also have ITw = TIw.Thus d(T 2w, Tw) ≤ ad(ITw, Iw) +
(1− a)max{d(T 2w, ITw), d(Tw, Iw)} = ad(T 2w, Tw), so T 2w = ITw = TIw and Tw = w′is a fixed point
of T for a < 1. Further, Iw′ = ITw = TIw = TTw = Tw′ = w′ and so w′ is also a fixed point of I.
uniqueness, suppose w′′ is a common fixed point too .Then

d(w′, w′′) = d(Tw′, Tw′′)

≤ ad(Iw′, Iw′′) + (1− a)max{d(Tw′, Iw′), d(Tw′′, Iw′′)} ≤ ad(w′, w′)

and the uniqueness of the common fixed point follows since a < 1.

The following example shows that condition of theorem 2.1 can be take placed and is diffrerent of result
by Sessa 1.1 because C is non-convex.

Example 2.1. Choosing C = [0,
1

2
]
⋃
{1}, Ix =

x

2
and Tx =

x

x+ 4
thenTC = [0,

1

9
]
⋃
{1

5
} ⊆⊆ [0,

1

4
]
⋃
{1

2
} =

IC ,I is non-expansive and the pair (I, T )is weakly commuting, where both of them are self maps.Further ,
I and T have a unique common fixed point which we know it is 0.

Let I be the identity map in Theorem 2.1,we have the following corollary which extends Theorem 1.1[3].

Corollary 2.2. Let T be a mapping of C into itself satisfying the inequality

d(T (x), T (y)) ≤ ad(I(x), I(y)) + (1− a)max{dT (x), I(x)), d(T (y), I(y))},

for all x, y ∈ C, where 0 < a < 1. Then T has a unique fixed point.

The result of this corollary was given in [4]. We note that the weak commutativity in Theorem 2.1 is a
necessary condition. It suffices to consider the following example.

Example 2.2. Let X = R and let C = [0, 1]. Define T and I by Tx =
1

3
, Ix =

x

2
for any x ∈ C . It is

easily seen that all the conditions of Theorem 2.1 are satisfied except that of weak commutativity since with

x =
1

2
, d(TI(

1

2
), IT (

1

2
)) =

1

6
> d(T (

1

2
), I(

1

2
)). However T and I do not have a common fixed point.
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In 1990 , G. Jungck extended a fixed point theorem of Fisher and Sessa by replacing the requirements of
weak commutativity and non-expansiveness by compatibility and continuty respectively.
G.Jungck[7] defined two self maps to be compatible iff whenever (xn) is a sequence inX such that Txn, Ixn −→
tfor some t ∈ X, then d(ITxn, T Ixn) −→ 0. Clearly, commuting maps are weakly commuting, and weakly
commuting maps are compatible.

Lemma 2.3. (Proposition2.2, [7]) . Let f, g : (X, d) −→ (X, d) be compatible.
1. If f(t) = g(t), then fg(t) = gf(t).
2. suppose that limnf(xn) = limng(xn) = t for some t in X.
(a) If f is continuous at t , limngf(xn) = f(t).
b If f and g are continuous at t, then f(t) = g(t) and fg(t) = gf(t).

Lemma 2.4. [6].Let T and I be compatible self maps of a metric space (X, d) with I continuous. Suppose
there exist real number r > 0 and a ∈ (0, 1) such that for all x, y ∈ X,

d(Tx, Ty) ≤ rd(Ix, Iy) + amax{d(Tx, Ix), d(Ty, Iy)} (2.2)

Then Tw = Iw for some w ∈ Xiff A =
⋂
{cl(T (Kn)) : n ∈ N} 6= ∅, where kn = {x ∈ X : d(Tx, Ix) ≤ 1

n
}.

Using lemmas 2.1, 2.2 the following corollary concludes.

Corollary 2.5. Let T and I be two compatible self maps of a compact subset C of a complete metric space
X .Suppose that I is continuous , linear and TC ⊆ IC . If there exists a ∈ (0, 1) such that for all x, y ∈ C, T
and I satisfy the following inequality

d(T (x), T (y)) ≤ ad(I(x), I(y)) + (1− a)max{d(T (x), I(x)), d(T (y), I(y))}.

Then Tand I have a unique common fixed point in C.

Example 2.3. Let X = [0, 1] and C = [0, 1] with the Euclidean metric and define I and T by Ix =
x

2
, Tx =

x

x+ 3
for any x ∈ C . Now C is compact and I, T : C −→ C, where TC = [0,

1

4
] ⊂ [0,

1

2
] = IC and I is

linear and continuous. Clearly I and T are compatible on C and so satisfy in inequality(2.1) . Then x = 0
is a unique common fixed point in C.
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