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Abstract. This paper is concerned with the problem of synchroniza-
tion of the Harb-Zohdy chaotic system using the back-stepping. Based
on the stability theory, the control for the synchronization of chaotic
systems Harb-Zohdy is considered without unknown parameters. Next,
an adaptive back-stepping control law is derived to generate an error
signal between the drive and response systems Harb-Zohdy with an un-
certain parameter asymptotically synchronized. Finally, this method is
extended to synchronize the system with two unknown parameters.
Note that the method presented here needs only one controller to realize
the synchronization. Numerical simulations indicate the effectiveness of
the proposed chaos synchronization scheme.

AMS Subject Classification: 65Dxx; 65Pxx
Keywords and Phrases: Chaos control, synchronization, back-stepping
method, lyapunov theorem, lassale-yoshizawa theorem

1. Introduction

Since Pecora and Carroll introduced a method to synchronize two chaotic
systems with different initial conditions [20], synchronization of chaos
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is widely spread as a major issue in the discussion of nonlinear sys-
tems. Synchronization is the major subdirectories of control of chaos. The
common feature of chaotic systems is unpredictable behavior and very
sensitive to initial conditions so that with the smallest change in initial
conditions, answers will be very different. Chaotic behaviors can be ob-
served in many systems. They can be found, for example, in chemistry
(Belouzov-Zhabotinski reaction), in nonlinear optics (lasers), in elec-
tronics (Chua-Matsumoto circuit), in fluid dynamics (Rayleigh-Bnard
convection), etc. Many natural phenomena can also be characterized as
being chaotic. They can be found in meteorology, solar system, heart
and brain of living organisms and so on [5].

The phenomena of synchronization is a universal concept that can occur
when two or more systems are either coupled or forced. The ability of
nonlinear systems to synchronize with each other is a basis for many pro-
cesses in nature and therefore, synchronization plays a very important
role in several branches of science, such as application of mechanics, elec-
tronics, measurement [18], lasers, chemical reactors, macroeconomics,
secure communications and biology [5]. There were been many attempts
to control and synchronization of chaotic systems [1,2,7,20]. Some of
these methods require multiple controllers to realize synchronization. For
example, the method of OGY, for many chaotic systems have been
successfully applied, like a driven pendulum [3] and the parametrically
driven pendulum [26]. Also, auto-synchronization delay Pyragas (TDAS)
[21,22] as an efficient method has been shown that the electronic chaotic
oscillators [23], lasers [4] and chemical systems [19] have been experimen-
tally realized. In recent years, synchronization of chaotic systems has
received considerable attentions and various methods is proposed and
presented for chaos synchronization [7] which can be noted the methods
of adaptive control, sliding mode control and back-stepping control.
For a long time, Lyapunov theory was an appropriate technique for
the study of linear and nonlinear systems. The main problem of this
theory, especially in nonlinear systems, is finding a function with spe-
cial properties of Lyapunov function, so if we can find such a function,
the system stability is guaranteed. However, in this context, methods
have been proposed, but each one has its limitations. As a result, at-
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tempts to find an easier way, leading to the emergence of the back-
stepping method. Back-stepping is a recursive approach that can help
us to achieve this function. One advantage of this method is to prevent
the elimination of nonlinear dynamics of the system [10]. In fact, the
back-stepping approach is the extension of state feedback method from
linear systems to nonlinear that in this regard, is used from Lyapunov
theory.

The stabilisation of nonlinear systems by designing an appropriate con-
trol is a common method in nonlinear control theory. There are various
methods for designing such control including Lyapunov-based methods,
i.e. methods in which a control is designed by employing a suitable Lya-
punov function [6,11,24]. However, usually there is not any systematic
method for presenting a suitable Lyapunov function. A back-stepping
approach introduces a Lyapunov function and then yields a control
which stabilises the system. In the presence of unknown parameters,
this method also provides appropriate estimates of the unknown pa-
rameters, by presenting an adaption law resulting from the Lyapunov
direct method. Back-stepping is a systematic approach for designing a
stabilizer control which has been developed to many classes of nonlinear
systems, both with and without unmatched parametric uncertainty.
Kokotovic published an article in this field in 1991 [17]. In 1992 Kanel-
lakopoulos provides a mathematical approach to design nonlinear control
by using back-stepping theory [2]. Followed by a few years later people
like Krstic [17], Freeman [8] and then Sepulchre [25] have published pa-
pers in this regard. Also in 1991 Kokotovic proposed progress of back-
stepping and other nonlinear control tools in the 1990s at the World
Congress IFAC [15]. This paper investigates the problem of chaos syn-
chronization to Harb-Zohdy chaotic system via back-stepping method.
Based on the stability theory, analytical proof of some conditions are
presented, which ensure masterslave synchronization scheme.

The rest of this paper is organized as follows. In Section 2, the back-
stepping method is described. In Section 3, synchronization of master-
slave of Harb-Zohdy chaotic system via back-stepping method is pre-
sented. In Section 4, numerical simulations are provided to verify the
effectiveness of the theoretical results. Finally some conclusions are writ-
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ten in Section 5.

2. Backstepping Method

In control theory, back-stepping is a technique developed circa 1990 by
Petar V. Kokotovic and other for designing stabilizing controls for a
special class of nonlinear dynamical systems. These systems are built
from subsystems that radiate out from an irreducible subsystem that
can be stabilized using some other method. Because of this recursive
structure, the designer can start the design process at the known-stable
system and “back out” new controllers that progressively stabilize each
outer subsystem. The process terminates when the final external control
is reached. Hence, this process is known as back-stepping [14].

The backstepping approach provides a recursive method for stabilizing
the origin of a system in strict-feedback form. That is, consider a system
of the form [14]

(&= fo(x) + gu(2)21,

Z1 = fi(x, z1) + g1(x, 21) 22,

2 = fo(x, 21, 22) + g2(x, 21, 22) 23,

zi = filw 21,22, 201, 20) + 0i(T, 21,22, Zim1, 2) 2k, 1<0 < k-1,
Z—1 = fro—1(x, 21, 22, .« Zh—1) + Ge—1(@, 21, 22, .. -, 2p—1) 2k,
Z = fulx, 21,22, ..., 261, 26) + 96T, 21, 22, . .., Zk—1, 2k) U,

where

e r € R'with n > 1,
® 21,29,...,2%,...,2k_1, 2 are scalars,
e U is a scalar input to the system,

o fo fi,foy-os fiye oo, fu—1, fr vanish at the origin
(i.e., (fi(0,0,...,0) =0)),
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® g1,92,.--,Gi,---,9k—1, gk are nonzero over the domain of interest
(te. , gi(z,z1,02k) #0 5 1< i< k).

1. It is given that the smaller (i.e., lower-order) subsystem

is already stabilized to the origin by some control uz(z) where uz(0) =
0. That is, choice of u, to stabilize this system must occur using some
other method. It is also assumed that a Lyapunov function V, for this
stable subsystem is known. Backstepping provides a way to extend the
controlled stability of this subsystem to the larger system.

2. A control uj(z, z1) is designed so that the system

21 = fi(z, 21) + g1(x, z1)ua (2, 21),

is stabilized so that z; follows the desired u, control. The control design
is based on the augmented Lyapunov function candidate

1
Vil 21) = Vale) + 51— e (a))?
The control u; can be picked to bound Vl away from zero.
3. A control ug(z, 21, 22) is designed so that the system
2 = fa(x, 21, 22) + g2(x, 21, 22)ua(z, 21, 22),

is stabilized so that zo follows the desired wuqcontrol. The control design
is based on the augmented Lyapunov function candidate

1
Va(w, 21, 20) = Vi(w, 21) + 5(22 —uy(z,21))%,

The control uy can be picked to bound Vs away from zero.
4. This process continues until the actual v is known, and
e The real control u stabilizes z; to fictitious control u_1.

e The fictitious control u;_q stabilizes zj_1 to fictitious control ug_o.
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e The fictitious control uy_o stabilizes z,_o to fictitious control uj_s.

e The fictitious control ug stabilizes z9 to fictitious control wu;.
e The fictitious control u; stabilizes z; to fictitious control wu,.

e The fictitious control u, stabilizes x to the origin.

This process is known as backstepping because it starts with the require-
ments on some internal subsystem for stability and progressively steps
back out of the system, maintaining stability at each step. Because

e f; vanish at the origin for 0 < ¢ < k,
e g; are nonzero for 1 < i < k,
e the given control u, has u,(0) = 0,

then the resulting system has an equilibrium at the origin (i.e., where
x=0,2=0,20=0, ..., 2,1 = 0 and z; = 0) that is globally
asymptotically stable.

3. Chaos Synchronization of Harb-Zohdy Sys-
tem

The Harb-Zohdy system is one of the paradigms of the chaos since it
captures many features of the chaotic systems. Several applications have
been conducted. Among these are prevention of voltage collapse in elec-
trical power system, and subsynchronouns resonance in power system
[9]. This system includes a simple square part and three simple ordinary
differential equations that depend on two positive real parameters. The
drive nonlinear chaotic system considered in this paper is assumed to be
[27]:

i‘l = —Z1,
UL =21 — Y1, (1)
21 :axl—i-y%—i-bzl,
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where x1, y; and z; are state variables and a and b are the constants. For
instance, the system is chaotic for the parameters ¢ = 3.1, b = 0.5. To
realize the synchronization of chaotic systems, the controlled response
system is given by

-/I‘JQ = —Z2,
Yo = T2 — Y2, (2)
Z9 = axo + y% + bzo 4+ ug,

where u;(t) is a controller. Note that, in the back-stepping, only one
controller is required. Defining the error states for the state variables as
er = Tg — T1, ey = Y2 — Y1, e, =22 — 21 (3)

Subtracting equation (1) from (2) and using the error states Definition
(3), we obtain

éx = —€4,
éy = € — ey, (4)
€, = aey + be, + ey (ey + 2y1) + u,

In this paper, the goal is to find a control law u; that can stabilize the
error states in (4) at the origin. Then, we have the first main result.

Theorem 3.1. If we design the controller uy(t)as

ui(t) = —(a — 4)e, — b(wz + 2e,) — ey(ey + 2y1) — w3, (5)

or

ui(t) = (6 = a)es — (ey +2y1)ey — (b + ez, (6)

where w3 s error dynamics, then the controlled response Harb-Zohdy
system (2) is globally synchronous with drive Harb-Zohdy chaotic system

(1).

Proof. Considering the stability of system (7) given below:

€y = —€5, (7)
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and regarding e, as a virtual control, an estimate stabilizing function
aq(e;) can be designed for the virtual control e,. By choosing a Lya-
punov function

() = 3¢ Q

Its derivative is

(ez) = exeq, 9)

H<.

For I}(em)to be negative definite, we must have, = f(x); therefore
1

‘1/(61‘) = —ei, (10)
Thus from (4) we can choose «j(e;) = —e,. Note that the function

a1(ey) is an estimate control function when f(x) is considered as a con-
troller. Let

wy = e, — aues), (11)
and consider the subspace (e, w2) given by
€r = —€z,

éy = 2e, — wo,(12)

Let f: D C R® — R" be a virtual controller in system (12) and as-
sume that when e, = ag(e;, w2), system (12) is made asymptotically
stable. Choose the Lyapunov function

1
Va (ez7w2) = Vl(ez) + Ew%’ (13)

for subspace (e, w2). The derivative of (13) is given by

w<:.

(eg,w2) = Y(em) + watiy = —e2 — w3 + wy (2e, — €), (14)

If ag(ey, wa) = 2¢,, then e, = 2e, and from (14) we have
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12/ (e, wq) = —ei — w% < 0; (15)

hence it is negative definite. Now, we define the error dynamics ws as

w3 = e, — az(ex, w2), (16)
and study the full dimension or the complete space (e, w2, ws3)
€x = 2eq,
wg = 2635 — w2, (17)
w3 = (a — 4)ex + b(ws + 2e,) + ey ey + 2y1) + ua,

let choose a Lyapunov functions

1
‘/3 (ewi2a U]3) = sz (6I,w2) + ng, (18)
If
ui(t) = —(a —4) e — b (w3 + 2e,) — ey (ey + 2y1) — w3, (19)
then,
g(ex,wz,wg) = —ei — w% — w% <0, (20)

is negative definite and according to LaSalle-Yoshizawa theorem [17], the

L]
error dynamics V (x) will converge to zero as x = 0, while the equilibrium
point (0,0, 0) remains asymptotically stable. Thus, the synchronization
of the drive-response system is achieved. This completes the proof. [J

Now, we consider adaptive synchronization of Harb-Zohdy system with
uncertain parameters. First of all, consider the Harb-Zohdy system (1)
with a unknown parameter a.

Here, we are going to design the controller uy(t) to make the controlled
Harb-Zohdy system:

To = —29,
Yo = T2 — Yo, (21)
29 = a my + Y3 + bzg + ug,
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synchronous with Harb-Zohdy chaotic system (1), where the parameter
a is an estimate of the parameter a.
Here, we have the following theorem.

Theorem 3.2. If we design the controller us(t) as

us(t) = (6 — @)es — (ey +2u1)ey — (b+ ez, (22)

and update rule of a as

a=—x(e. — 2ey, (23)

then the controlled Harb-Zohdy system (21) is globally synchronous with
Harb-Zohdy chaotic system (1) with an unknown parameter a.

Proof. The error dynamics between system (1) and (21) is
€r = —éy,
€y = €y — €y, (24)
é, = axy — ax1 + (ey + 2y1)ey + be.+uo,

Consider the Lyapunov function

1 1
V= gle +uwptws) + 5(a—a), (25)
where wy = e, + €, and w3 = e, — 2e,.

The time derivative of Valong the solutions of system (1) and (21) is

vV o= €xby + watho + w33 + (a4 — a)d

= —e2 —wi+ws[ary — axy +be, + (e, + 2uy1)e, — de,

+ ug+ (@ —a)a (26)
— €2 —wi — wi + wslaze — ary + (ey + 2y1)ey, +

(b+1)e, — 6e, + us] + (& — a) a.

By utilizing the update rule (23) and control input (22), we have
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which is negative definite and according to LaSalle-Yoshizawa theorem,

the error dynamics X}(x) will converge to zero as « = 0. Thus, the
synchronization of the drive-response system is achieved. This completes
the proof. [0 Finally, consider the Harb-Zohdy system (1) with two
unknown parameter a and b. Then we are going to design the controller
us(t) to make the controlled Harb-Zohdy system:

i"Q = —Zz92,
Y2 =T2 Y2, (28)
Z9 = a T2 + Y3 + b2+ us,

where G and b are the estimate of the unknown parameters a and b.

Theorem 3.3. If we design the controller us(t) as

uz(t) = (6 — a)es — (ey +2y1)ey — (b + 1)e. (29)

and update rules of a and b as

a=—uxi(e, —2e,)
b= —z1(ex — 2e;) (30)

then the controlled Harb-Zohdy system (28) is globally synchronous with
drive Harb-Zohdy chaotic system (1) with two unknown parameters.

Proof. From the Lyapunov function

1 1. 1 .
V= g(e tuptwy) +5a—a)’+5(b-b) (31)
and similar approach in proof of Theorem 3.2, one can easily obtain the

conclusion of Theorem 3.3. O

4. Numerical Results

In this section first, in order to evaluate and demonstrate the effec-
tiveness of the proposed method, we discuss simulation results for the
controlled Harb-Zohdy chaotic system. In the numerical simulations, the
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MATLABs ode45 in-built solver is used to solve the systems with time
step size 0.001.

Example 4.1. For the numerical simulations, we assume the initial con-
ditions, (z1(0) , y1(0), 21(0)) = (2, 0, 2) and (z2(0) , y2(0) , 22(0)) =
(1, —1, 2). Therefore, error system for the state variables has the ini-
tial values e, (0) = —1, e,(0) = —1 and e,(0) = 0. The two parameters
are chosen as a = 3.1 and b = 0.5 in simulations so that the Harb-Zohdy
system exhibits a chaotic behavior. Synchronization of the systems (1)
and (2) via nonlinear control law (6) is illustrated in Fig| (1)-(3)], and
Fig (4) displays synchronization errors of systems (1) and (2), and Fig
(5) shows the cnotrol signal.

0 10 20 30 40 50
t

Figure 1: State trajectories of drive and response systems

0 10 20 30 40 50
t

Figure 2: State trajectories of drive and response systems
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Example 4.2. Consider the Harb-Zohdy system (1) with one unknown
parameter, a. In simulation, the one unknown parameter is chosen as
a = 3.1 for chaotic behavior of the system. The following initial condi-
tions (21(0), y1(0), 21(0)) = (2, 0, 2), and (z2(0), y2(0), 22(0)) =
(1, —1, 2) are employed. Synchronization of the systems (1) and (21)
via adaptive control law (22) and (23) with the initial estimated param-
eter @ = 1 are shown in Fig[(6)-(8)] , and Fig (9) display synchronization
errors, and Fig (10) shows the control signal.

0 10 20 30 40 50
t

Figure 6: State trajectories of drive and response systems

-—-X

-8 i i i i
0 10 20 30 40 50
t

Figure 7: State trajectories of drive and response systems
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Figure 8: State trajectories of drive and response systems

[ 10 20 30 40 50
t

Figure 9: Synchronization errors of ez, ey, e
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Figure 10: Control signal

Example 4.3. Consider the Harb-Zohdy system (1) with two unknown
parameter, a and b. In simulation, the one unknown parameter is chosen
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as ¢ = 3.1 and b = 0.5 for chaotic behavior of the system.

The following initial conditions (z1(0) , y1(0), 21(0)) =(2, 0, 2), and
(22(0) , y2(0) , 22(0)) = (1, — 1, 2) are employed. Synchronization of
the systems (1) and (28) via adaptive control law (29) and (30) with the
initial estimated parameter & = 1 and b = —3 are shown in Fig[(11)-
(13)], and Fig (14) display synchronization errors, and Fig (15) shows
the control signal.

—,
R

0 10 20 30 40 50

Figure 11: State trajectories of drive and response systems

0 10 20 30 40 50

Figure 12: State trajectories of drive and response systems

N

-4

-5

0 10 20 30 40 50

Figure 13: State trajectories of drive and response systems
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o 10 20 30 40 50
t

Figure 14: Synchronization errors of e., ey, e,

L —

Figure 15: Control signal

5. Conclusion

In this paper, the problem of synchronization for controlled Harb-Zohdy
chaotic systems with uncertain parameters has been investigated. Firstly,
the control for the synchronization of chaotic systems Harb-Zohdy is con-
sidered with no unknown parameters. Finally, this method is extended
to synchronize the system with two unknown parameters. Using back-
stepping control scheme, we have proposed a novel nonlinear controller
for asymptotic chaos synchronization using the well-known Lyapunov
stability theorem. Note that the approach provided here needs only a
single controller to realize the synchronization. This study have shown
that if the parameters of a system are unknown, we can define a control
for chaos synchronization. Three numerical simulations are also shown
the effectiveness of our proposed method.
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