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On the Autocorrelations of ±1 Polynomials

M. Taghavi
Shiraz University

M. Zahraei
Khalig Fars University

Abstract. The aperiodic autocorrelations of those polynomials
having coefficients on the unit circle has been useful in telecom-
munication theory.

In this paper we first introduce one such polynomial type and
then present a simple relation on its autocorrelations.

AMS Subject Classification: Primary 35B45; Secondary 35
L70; 90A20.
Keywords and Phrases: autocorrelation, Golay polynomials.

1. Introduction

The first use of autocorrelations of±1 polynomials in telecommunication

was on early 1972 (see [4]) when pair of binary complementary sequences

introduced by Marcel Goley. By autocorrelations of a polynomial p, we

mean the coefficients of |p|2. A pair of equally long, finite sequences of

±1 such that the sum of the aperiodic autocorrelation coefficients of the

two sequences is zero for all but the zero shift. Later he developed the

theory of such pairs showing that one set of sequences could produce

139



140 M. TAGHAVI AND M. ZAHRAEI

several others. The idea of complementary sequences was discovered

independently by Shapiro in his 1951 Masters thesis ([7]). According to

Shapiro, he accidentally made the discovery as he was working on ex-

tremal problems for polynomials. He thus had a mathematical approach

to the subject whereas Golay took a more engineering approach. The

Shapiro result was rediscovered by Rudin and published in 1959 ([6]),

and is now known as the Rudin-Shapiro polynomials. The construc-

tion is recursive and generates a pair of semi-flat polynomials, though

with difference crest factor for polynomial order equal to and different

from a power of 2. Actually, the coefficients in these polynomials are

the very same as the binary Golay complementary sequences. One such

polynomial pair (pn, qn) defined inductively as follows:

(p0, q0) = (1, 1) and for n > 1, z ∈ C,

pn(z) = pn−1(z) + z2n−1
qn−1(z),

qn(z) = Pn−1(z)− z2n−1
qn−1(z).

They are polynomials of degree 2n− 1 and are called the Rudin-Shapiro

polynomials. One can easily verify that pn(z) = ε0+ε1z+· · ·+ε2n−1z
2n−1

and qn(z) = δ0 + δ1z + · · ·+ δ2n−1z
2n−1, where εk and δk take only the

values +1 or −1. The 2n+1 − 1 complex numbers which form the coeffi-

cients of |pn(eit)|2 and the 2n+1− 1 numbers which form the coefficients

of p2
n(eit) are respectively called the autocorrelations and correlations
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of pn. So far, the finest estimates of lower and upper bounds of both

correlations and autocorrelations of the Rudin-Shapiro polynomials is

due to Taghavi in ([8]) and ([9]).

For a sequence of complex numbers a0, a1, · · · , a2n, define its aperi-

odic autocorrelation sequence {ck} by

ck =
n∑

j=0, j+k62n

aj āj+k.

We are interested here in the case when the aj are all of unit modulus.

Thus the peak autocorrelation c0 has the value c0 = n, and in many

applications it is of interest to minimize the peak autocorrelations ck

with 0 < k < n. In the integer case, clearly the optimal situation occurs

when |ck| > 1 for each k 6= 0. A sequence achieving this for each k

is called a Barker sequence. Barker first asked for sequences with this

property in 1953 ([1]). For the complex unimodular case, we say ak

is a generalized Barker sequence if each peak autocorrelation satisfies

|ck| > 1.

Since negating every other term of a sequence ak does not disturb the

magnitudes of its autocorrelations, we may assume that a0 = a1 = 1 in

a Barker sequence. With this normalization, just eight Barker sequences

are known, all with length at most 13 (Only three of these satisfy the

more strict condition requested by Barker—the ones of length 3, 7, and

11.) It is widely conjectured that no additional Barker sequences ex-
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ist, and in what follows we survey some known restrictions on their

existence. First however we describe a broader conjecture that arises in

signal processing, and an equivalent problem in analysis regarding norms

of polynomials. Sequences with small peak autocorrelations are of inter-

est in a number of applications in signal processing and communications

(see [1] and [5]).

In engineering applications, a common measure of the value of a

sequence is the ratio of the square of the peak autocorrelation to the

sum of the squares of the moduli of the peak values. This is called the

merit factor of the sequence. For a sequence An = {aj} of length 2n, its

merit factor is defined by n2[2(|c1|2 + · · ·+ |cn|2)]−1.

Golay introduced this quantity in 1972 and he conjectured that the

merit factor of a binary sequence is bounded, presenting a heuristic

argument that merit factor of An is less than 12.32 for large n. Several

researchers in engineering, physics, and mathematics have made similar

conjectures; see for instance ([4]) or ([5]). It is clear, however, that a

Barker sequence of length n has merit factor near n, so certainly Golay’s

merit factor conjecture contains the question of the existence of long

Barker sequences as a special case.

The merit factor problem may be restated as a question on polyno-

mials. We first require some notation. Given a sequence {aj} , define a
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polynomial f(z) of degree n > 1 by

f(z) =
2n∑

j=0

ajz
j .

For 0 < q < ∞ put

||f ||q = (
1
2π

∫ 2π

0
|f(eit)|qdt)1/q.

Assuming that |aj | = 1 for each j, we have ||f ||22 = 2n by Parseval’s

formula, and, since z̄ = 1
z on the unit circle, it is easy to see that

||f ||44 = ‖f(z) ¯f(z)‖2
2 = ‖

n∑

k=1

ckz
k‖2

2 = n2 + 2
n∑

k=1

|ck|2. (1)

Thus, the merit factor of a sequence {aj} can be expressed in terms of

certain Lp norms of its associated polynomial and the merit factor of f

as ‖f‖4
2 over ‖f‖4

4 which is a number less than or equals to 1.

2. Main Result

Golay’s problem on maximizing the merit factor of a family of sequences

of fixed length is thus equivalent to minimizing the L4 norm of a collec-

tion of polynomials of fixed degree. This latter problem is one instance

of a family of questions regarding the existence of so-called flat poly-

nomials. Letting Un denote the set of polynomials in C(z) of the form

f(z) =
∑2n

0 ajz
j with |aj | = 1 for all j, a question is if there exist ab-

solute positive constants c1 and c2 and arbitrarily large integers n such
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that there exists a polynomial fn ∈ Un, where

c2

√
2n 6 |fn(z)| 6 c1

√
2n

for all z with |z| = 1. Since each polynomial in such a sequence never

strays far from its L2 norm, we say such a sequence is flat. In 1996,

Darnell ([13]) established that flat sequences of unimodular polynomials

exist, and proved that for any c > 0 there exists a flat sequence of

unimodular polynomials with c1 = 1 > c and c2 = 1+ c. Such sequences

are often called ultra flat.

Much less is known regarding at sequences of Littlewood polynomi-

als. The Rudin-Shapiro polynomials ([6,7]) satisfy the upper bound in

the flatness condition with c2 =
√

2, but no sequence is known that

satisfies the lower bound. In fact, the best known result here is the

Barker sequence of length 13 to show that for sufficiently large n there

exist polynomials fn ∈ Un with |fn(z)| > n.431 on |z| = 1. Also,

in 1962 Erdos ([2]) conjectured that ultraflat Littlewood polynomials

do not exist, opining that there exists an absolute positive constant

c such that ‖f‖∞ > (1 + c)‖f‖2 for every Littlewood polynomial of

positive degree. By ‖f‖∞ we mean the supremum norm of f , that is

‖f‖∞ = sup|z|=1 |f(z)|. Since ‖f‖4 > ‖f‖∞, we see then that Golay’s

merit factor problem is in fact a stronger version of Erdos’ conjecture.

Further, from (1) it follows that if the coefficients of f form a Barker
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sequence of length n, then

n−
1
2 ‖f‖4 > 4

√
1 +

1
n

< 1 + (4n)−1.

Therefore, to show that long Barker sequences do not exist, it would

suffice to prove that ‖f‖4 > √
n + 1

2
√

n
.

Theorem. Suppose a0, a1, · · · , a2n is a sequence of positive integers and

let {ck} denote its aperiodic autocorrelations. Then ck +cn = n mod 4.

Moreover if n > 2 is even, then n = 4m2 for some integer m.

Proof. Since ck records the difference between the number positive and

negative terms in
∑n

0 aiai+k, it follows that

a0ak × a1ak+1 × · · · × anak+n =
√

ln (2)

for integer l. Multiplying this product by the same expression with k

replaced by n > k, we obtain

l
n
2 =

k∏

i=0

aiai+n

n∏

i=0

aiai+k = 1,

which yields l = 1. so ck + cn = n mod 4. Assume now that {ak} forms

a Barker sequence of length n. Multiplying (2) by the same equation

with k replaced by k + 1, we compute that akan equals to a n-th power

of number larger than 1. In particular, if n is even and n > 2, then

c2 + cn = 0, so n = 0 mod 4. It follows then that ck + cn = 0 for
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0 < k < n in this case. Finally, since

(a0 + a1 + · · · an)2 = c0 +
n∑

k=1

(ck + cn) = n,

we have n a perfect square, whenever n > 4 is even.
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