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subsets. Also, idempotent endomorphisms form a class of (strong) de-
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1. Introduction

There are many classes of functions from algebraic structures to themselves
which have close relations to some aspects of algebraic properties. One of them
is the class of decomposer type functions, introduced and studied in [2]. They
have many relations to factorization by two subsets, associative , multiplicative
symmetric and canceller functions (see [1,4,6]). Indeed, decomposer type func-
tions satisfy some functional equations on algebraic structures (see [5,7]). In the
case that the algebraic structure is a group, the properties are so much more and
there are many important sub-classes. Fore instance, cyclic decomposer (parter)
functions that are periodic, and specially b-parts functions on the additive real
numbers group (see [3]). We found that they have also some connections to a
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type of local homomorphisms which we call them ∆×Ω-homomorphisms. Let
us recall decomposer type functions on groups (from [2,4]) first, and then in-
troduce the new conceptions. By applying them, we obtain many new results
regarding to decomposer type functions on groups and prove some related the-
orems.
Let (G, .) be a group with the identity element e. If f and g are functions from
G to G, then define the functions f.g and f− by

f.g(x) = f(x)g(x) , f−(x) = f(x)−1 : ∀x ∈ G.

We denote the identity function on G by ιG and put f∗ = ιG.f
− , f∗ = f−.ιG

and call f∗ [resp. f∗] left ∗-conjugate of f [resp. right ∗-conjugate of f ]. They
are also called ∗-conjugates of f . Note that f∗(e) = f∗(e) = f−(e) = f(e)−1.
If (G,+) is additive group, then the notations e, f−, f.g, f.g− are replaced by
0, −f , f + g, f − g and we have f∗ = f∗ = ιG − f . It is easy to see that

f is idempotent ⇔ f∗f = e⇔ f∗f = e

f∗
2

= f∗ ⇔ ff∗ = e⇔ f∗∗f∗ = e , f2
∗ = f∗ ⇔ ff∗ = e⇔ f∗∗f∗ = e.

Also, if f is endomorphism then f−f = ff−, f∗f = ff∗ and f∗f = ff∗
(i.e. the compositions of f and its ∗-conjugations are commutative).
Now, we recall from [2,4] decomposer type functions as follows.
A function f from (a group) G to G is called:
(a) right [resp. left] strong decomposer if

f(f∗(x)y) = f(y) [resp. f(xf∗(y)) = f(x)] : ∀x, y ∈ G.

(b) right [resp. left] semi-strong decomposer if

f(f∗(x)y) = f(f∗(e)y) [resp. f(xf∗(y)) = f(xf∗(e))] : ∀x, y ∈ G.

(c) right [resp. left] decomposer if

f(f∗(x)f(y)) = f(y) [resp. f(f(x)f∗(y)) = f(x)] : ∀x, y ∈ G.

(d) right [resp. left] weak decomposer if

f(f∗(e)f(x)) = f(x) , f(f∗(x)f(e)) = f(e) : ∀x ∈ G.

[resp. f(f(x)f∗(e)) = f(x) , f(f(e)f∗(x)) = f(e) : ∀x ∈ G].

(e) right [resp. left] separator if f∗(G) ∩ f(G) = {f(e)} [resp. f(G) ∩ f∗(G)
= {f(e)}].
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In each of the above parts if f(e) = e, then we will add the word standard to the
titles. For example “f is a standard right separator” means f∗(G)∩f(G) = {e}.
We call f a decomposer or a two-sided decomposer [resp. a separator] if it is a
left and right decomposer [resp. separator].

Example 1.1. Consider G = {1, a, a2, a3, b, ba, ba2, ba3} ∼= D4 (a4 = b2 =
1, bab = a−1 = a3). Put Ω = {1, ba, ba2, ba3} and

f(x) =

{
x x ∈ Ω
bx x /∈ Ω.

Considering the relation x /∈ Ω ⇔ bx ∈ Ω, it can be seen that f is a (standard)
right strong decomposer.
Now, consider the additive group R and fix b ∈ R \ {0}. For a real number a
denote by [a] the largest integer not exceeding a and put (a) = a − [a] (the
decimal part of a). Now, set

[a]b = b[
a

b
] , (a)b = b(

a

b
).

We call [a]b the b-integer part of a and (a)b the b-decimal part of a. Also [ ]b,
( )b are called b-decimal part function and b-integer part function, respectively.
The b-parts functions are decomposers. Moreover, the b-decimal part function
( )b is a strong decomposer (see [3,4]). Also, for every constant real number c,
the function f := ( )b + c is a semi-strong decomposer.

It is shown in [2,4] that
(a) f is a right strong decomposer ⇒ f is a right semi-strong decomposer ⇒ f
is a right decomposer ⇒ f is a right weak decomposer.
Note that the converses of the above implications are not necessarily true. For
example, the real function f := ( )1 + 1

2 is a (right) semi-strong decomposer
but it is not a (right) strong decomposer.
(b) f is a standard right strong decomposer ⇔ f is a standard right semi-strong
decomposer ⇒ f is a standard right decomposer ⇒ f is a standard right weak
decomposer ⇒ f is a standard right separator.
(c) If f is a right strong decomposer, then f is a right separator, an idempotent,
ff∗ = f(e) and

f∗(e).ff∗ = f∗f = e , 〈f(e)〉 6 f∗(G) 6 G.

Similar properties hold for the left case. Also, a left or right decomposer func-
tion is a (two-sided) strong decomposer if and only if f∗(G) = f∗(G) E G.
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2. Relations to Local Homomorphisms

Below introduces a type of local (partial) homomorphisms whic is very useful
for the topic.

Definition 2.1. Assume ∆,Ω are nonempty subsets of G. We call a map f from
G to G a “∆× Ω-homomorphism” if f(δω) = f(δ)f(ω), for all δ ∈ ∆, ω ∈ Ω.

If f is a ∆× Ω-homomorphism and e ∈ ∆ ∪ Ω, then f(e) = e. A function f is
an endomorphism if and only if it is a G×G-homomorphism.
Now, let g,h be arbitrary functions from G to G. The function f is a g(G) ×
h(G)-homomorphism if and only if

f(g(x)h(y)) = fg(x)fh(y) ; ∀x, y ∈ G.

Hence f is a f∗(G)× f(G)-homomorphism if and only if

f(f∗(x)f(y)) = ff∗(x)f2(y) ; ∀x, y ∈ G,

and it is a f∗(G)×G-homomorphism if and only if

f(f∗(x)y) = ff∗(x)f(y) ; ∀x, y ∈ G.

Also, if f is an idempotent f(G)×G-homomorphism then

f(f(x)y) = f(x)f(y) ; ∀x, y ∈ G.

It is interesting to know that if f(e) = e, then the converse is also valid (notice
that without the condition f(e) = e, the converse is not true, e.g. if k ∈ Z, then
f(x) = [x]+k satisfies in the additive real numbers group, but f2 6= f whenever
k 6= 0). It is easy to see that if f satisfies, then the following conditions are
equivalent:
(i) f(e) = e , (ii) f is an idempotent , (iii) f is a f(G)×G-homomorphism.
For if f satisfies and f(e) = e then f2(x) = f(f(x)e) = f(x)f(e) = f(x), for
all x ∈ G. So, f(f(x)y) = f(x)f(y) = f2(x)f(y), for all x ∈ G, which means
(iii) holds. Also, if f is a f(G)×G-homomorphism then putting x = y = e we
obtain f2(e) = f2(e)f(e) and so f(e) = e.
Finally, f satisfies if and only if f∗ is a right strong decomposer (see [2; p.
549]). Similar properties hold for:

f(xf(y)) = f(x)f(y) ; ∀x, y ∈ G.

If f is is an idempotent f(G)× f(G)-homomorphism then

f(f(x)f(y)) = f(x)f(y) ; ∀x, y ∈ G.
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If f2 = f , then the converse is also valid (e.g. if f(e) = e). For the above
functional equation the conditions f(e) = e and f2 = f are not equivalent, for
if c > 0 is a fixed real number and f(x) = max{x, c}, then f satisfies in the
additive real numbers group and f2 = f but f(0) = c 6= 0. It is clear that if
f satisfies, then f(G) is a sub-semigroup of G but (in general) f(G) is not a
subgroup of G (e.g. f(x) = max{x, c}).

Example 2.2. The functions ( )b and [ ]b are bZ × R-homomorphisms. But
they are not endomorphisms.

Notation. By H6̇G we mean H is a sub-semigroup of G. Also, we put fe :=
f−(e) · f .
It can be shown that if f is a type of right decomposer (weak, ordinary, semi-
strong or strong), then fe is a standard form of the same type of decomposer.

Lemma 2.3. Let f : G→ G.
(a) If f is a right decomposer and f∗(G)6̇G, then it is a right strong decom-
poser.
(b) If f is a right weak decomposer and fe is a f∗e (G)× fe(G)-homomorphism,
then f is a right decomposer.
(c) If f is a standard right separator and ff∗ = f∗f , then it is a standard right
weak decomposer.

Proof. (a) Since f∗(x)f∗(y) ∈ f∗(G), then

f(f∗(x)y) = f(f∗(x)f∗(y)f(y)) = f(y) : ∀x, y ∈ G.

(b) fe is a standard right weak decomposer and so fef∗e = e, f2
e = fe. Hence,

we have

fe(f∗e (x)fe(y)) = fef
∗
e (x)f2

e (y) = fe(y) : ∀x, y ∈ G.

Therefore fe is a standard right decomposer, so f is a right decomposer.
(c) Fix x ∈ G. If c = f(f∗(x)) = f∗(f(x)), then c ∈ f∗(G) ∩ f(G) so c = e.
Therefore ff∗ = f∗f = e so f is a standard right weak decomposer. �

Recall from [2] that if ∆ and Ω are subsets of G, then the notation A = ∆ · Ω
means A = ∆Ω and if δ1ω1 = δ2ω2 where δ1, δ2 ∈ ∆, ω1, ω2 ∈ Ω, then δ1 = δ2
and ω1 = ω2. If A = ∆ · Ω, then we say A is direct product of (subsets) ∆ and
Ω. By the notation A = ∆ : Ω we mean A = ∆ ·Ω and ∆∩Ω = {e} and say A
is standard direct product of ∆ and Ω. If A = ∆.Ω, then ∆ [resp. Ω] is called
left [resp. right] factor of A. Note that additive notations are ∆ u Ω (direct
sum of subsets) and ∆+̈Ω (standard direct sum of subsets).
Clearly if ∆Ω = ∆ · Ω, then |∆Ω| = |∆||Ω| = |Ω∆|. Also if ∆ and Ω are
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nonempty subsets of G, then ∆Ω = ∆ ·Ω if and only if (∆−1∆)∩(ΩΩ−1) = {e}
(in additive notation (∆ − ∆) ∩ (Ω − Ω) = {0}). Moreover, if ∆ and Ω are
finite, then ∆Ω = ∆ ·Ω if and only if |∆Ω| = |∆||Ω|. If ∆Ω = ∆ ·Ω and ∆∩Ω
has an element that commutes with every element of ∆∩Ω, then |∆∩Ω| = 1.
Especially if ∆Ω = ∆ · Ω and e ∈ ∆ ∩ Ω, then ∆Ω = ∆ : Ω. If G = ∆.Ω, then
G = ∆e : Ωe where ∆e = ∆δ−1

0 , Ωe = ω−1
0 Ω and e = δ0ω0. One may see more

information about factorization of a group by its subsets in [8].

Example 2.4. Consider the additive real numbers group R and put Rb =
b[0, 1) = {bd|0 6 d < 1} , 〈b〉 = bZ where b 6= 0 is a constant real number.
We have R = 〈b〉+̈Rb (see [2]). But the natural numbers set is not a factor
(subset) of R. Also, S3 = 〈σ〉 : 〈τ〉 where σ and τ are the elements of order two
and three, respectively, but S3 is not decomposable by its non-trivial (normal)
subgroups.

Projections. Let G = ∆ · Ω. Define the functions P∆, PΩ, from G to G,
by P∆(x) = δ, PΩ(x) = ω, where x = δω, δ ∈ ∆, ω ∈ Ω. Clearly, they are
well-defined and P∆(G) = ∆, PΩ(G) = Ω, P ∗Ω = P∆. We call PΩ, [resp. P∆]
right [resp. left] projection.

Example 2.5. The b-parts functions are projections of the direct decomposi-
tion R = 〈b〉+̈Rb.
Now, we can state many equivalent conditions for a function f : G→ G to be
a right weak, an ordinary, a semi-strong and a strong decomposer.

Theorem 2.6. Every conditions in each part (a),...,(f) are equivalent.

(a)

i) f is a right decomposer.

ii) G = f∗(G).f(G).

iii) fe is a standard right decomposer.

iv) fe is a standard right weak decomposer
and a f∗e (G)× fe(G)-homomorphism.

v)f∗(f∗(x)f(y)) = f∗(x), ∀x, y ∈ G.

(b)

i)f is a standard right decomposer.

ii) G = f∗(G) : f(G).

iii)f is a standard right weak decomposer
and f∗(G)× f(G)-homomorphism.

iv) f is a standard right weak decomposer
and f∗ is a f∗(G)× f(G)-homomrphism.
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(c)
i) f is a right strong decomposer.

ii) f is a right decomposer and f∗(G)6̇G.

iii)f is a right decomposer and f∗(G) 6 G.

iv) f∗e is a f∗e (G)×G-homomorphism and e ∈ f∗(G).

v) fe is a f∗e (G)×G-homomorphism
and f∗e is an idempotent, f(e) ∈ f∗e (G).

vi) f∗e is a f∗e (G)×G-homomorphism and
an idempotent, f(e) ∈ f∗e (G).
vii)f∗(f∗(x)y) = f∗(x)f∗(y), ∀x, y ∈ G.

(d)
i) f is a standard right strong decomposer.

ii) f is a right strong decomposer and
f∗ is an idempotent.

iii)f is a right strong decomposer and
a f∗(G)×G-homomorphism.

iv)f is a f∗(G)×G-homomorphism
and f∗ is an idempotent.

v)f∗ is a f∗(G)×G-homomorphism
and an idempotent.

(e)
i) f is a standard right weak decomposer.

ii)f and f∗ are idempotent.

iii) f is an idempotent and ff∗ = f∗f .

iv) f∗ is an idempotent and ff∗ = f∗f .

v)f is a right separator and ff∗ = f∗f .

vi)ff∗ = f∗f = e.

vii)ff∗ = f∗f = c, for some c ∈ G.

(f)
i)f is a right semi-strong decomposer.

ii)f(f∗(e)f(x)y) = f(xy), ∀x, y ∈ G
(i.e. f is a left semi-canceler ).

iii)f∗(e) · f is a standard right strong
decomposer.
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iv)f is a right decomposer and f∗(G)f(e)6̇G.
v)f is a right decomposer and f∗(G)f(e) 6 G.
vi) There exists a standard right strong
decomposer g and c ∈ G such that f = c · g.
vii)f∗(f∗(x)y) = f∗(x)f(e)f∗(f∗(e)y),
∀x, y ∈ G.

Moreover, if f is an endomorphism, then f is a standard right strong decom-
poser ⇔ f is a right decomposer ⇔ f is a right weak decomposer ⇔ f is a
right separator ⇔ f is an idempotent ⇔ f∗ or f∗ is an idempotent.

Proof. (a) Let f be a right decomposer. If δ1ω1 = δ2ω2, where δi ∈ f∗(G) and
ωi ∈ f(G), then

ω1 = f(δ1ω1) = f(δ2ω2) = ω2,

so δ1 = δ2. Therefore G = f∗(G).f(G). Now let G = f∗(G).f(G). The relation

f∗(x)f(y) = f∗(f∗(x)f(y))f(f∗(x)f(y)),

implies f is right a decomposer. Also, the above relation shows that (i),(v) are
equivalent. The parts (i), (iii) are equivalent, obviously. Now, if f is a right
decomposer, then fe is a standard right decomposer and so fef∗e = e, f2

e = fe.
Thus fe is f∗e (G) × fe(G)-homomorphism. Therefore (i) implies (iv). Now if
(iv) holds, then fe a is right decomposer, so f is a right decomposer.
(b) The part (a) implies (b), clearly.
(c) Lemma 2.3 implies that (i),(ii) and (iii) are equivalent and (i) implies (iv).
Now, let (iv) holds and put c = f(e)−1 (hence fe = c.f). Since e ∈ f∗(G), then
f(e) ∈ f∗e (G) = f∗(G)f(e) so c ∈ f∗e (G). So

f(f∗(x)y) = c−1cf(f∗(x)c−1cy) = c−1fe(f∗e (x)cy) = c−1fe(y) = f(y),

for all x, y ∈ G. Therefore (i), (iv) are equivalent. Also, the parts (i),(vii) are
equivalent, clearly.
Since f(e) ∈ f∗e (G) if and only if e ∈ f∗(G), then the other parts are equivalent,
similarly.
(d) If f∗ is idempotent, then f is a standard right strong decomposer if and
only if f is a f∗(G)×G-homomorphism. Considering this fact (c) implies (d).
(e) Considering the relations

f2 = (f∗f)−.f , f∗
2

= f∗.(ff∗)−,

the parts (i),...,(vi) are equivalent. Now, let (viii) holds. Putting α = f(e),
β = f∗(e) we have c = f(β) = f∗(α). On the other hand f∗f = c implies
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f2 = c−1.f so f2(β) = c−1f(β). Hence

f(c) = f2(β) = c−1f(β) = ff∗(α) = c = f(β).

Therefore c = e.
(f) If f is a right semi-strong decomposer, then

f(f∗(e)f(x)y) = f(f∗(x)f(x)y) = f(xy),

so it is a left semi-canceler (see the next section). Conversely, if f satisfies (ii),
then

f(f∗(e)y) = f(f∗(e)f(x)f−(x)y) = f(xf−(x)y) = f(f∗(x)y),

thus f is a right semi-strong decomposer. Also we have

f(f∗(x)y) = f(f∗(e)y) ⇔ f∗(f∗(x)y)−1f∗(x)y = f∗(f∗(e)y)−1f∗(e)y

⇔ f∗(f∗(x)y) = f∗(x)f(e)f∗(f∗(e)y).

Considering the above relations and f∗ = f∗e .f(e) and Lemma 2.3, we can con-
clude other parts of (f).
Finally, if f is endomorphism, then f is f∗(G)×G and f∗(G)×f(G)-homomorphism
and ff∗ = f∗f . Therefore the last part of the theorem is concluded from (e),(a)
and (d). 

Corollary 2.7. (i) Let f and g be two right decomposer functions with the
same ∗-range (i.e. f∗(G) = g∗(G)). Then f is a right strong decomposer if
and only if g is a right strong decomposer. Moreover, if f or g is a right strong
decomposer, then (they are right strong decomposer and) fg = f , gf = g and
|f(G)| = |g(G)|.
(ii) If G = ∆ · Ω1 = ∆ · Ω2 and ∆̇G or 0 = |∆| < ∞, then |Ω1| = |Ω2| (for
example R = Z+̈[0, 1) = Z+̇[1, 2) and we have [0, 1) ∼ [1, 2) ).

Proof. The first part of (i) is concluded from Theorem 2.6. Now, if f and g
are right strong decomposers and f∗(G) = g∗(G), then for every x ∈ G

x = f∗(x)f(x) = g∗(x)f∗(g(x))f(g(x)).

Since g∗(x)f∗(g(x)) ∈ f∗(G), then f(x) = fg(x) (by Theorem 2.6). Therefore,
f = fg and similarly g = gf . Putting Ωf = f(G) and Ωg = g(G), we have

Ωf = f(g(G)) = f(Ωg) , Ωg = g(f(G)) = g(Ωf ).

Therefore |Ωf |  |Ωg| and |Ωg|  |Ωf | so |Ωf | = |Ωg|.
(ii) If ∆ is non-empty and finite, then |∆||Ω1| = |∆||Ω2| implies |Ω1| = |Ω2|.
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and ff∗ = f∗f . Therefore the last part of the theorem is concluded from (e),(a)
and (d). 

Corollary 2.7. (i) Let f and g be two right decomposer functions with the
same ∗-range (i.e. f∗(G) = g∗(G)). Then f is a right strong decomposer if
and only if g is a right strong decomposer. Moreover, if f or g is a right strong
decomposer, then (they are right strong decomposer and) fg = f , gf = g and
|f(G)| = |g(G)|.
(ii) If G = ∆ · Ω1 = ∆ · Ω2 and ∆̇G or 0 = |∆| < ∞, then |Ω1| = |Ω2| (for
example R = Z+̈[0, 1) = Z+̇[1, 2) and we have [0, 1) ∼ [1, 2) ).

Proof. The first part of (i) is concluded from Theorem 2.6. Now, if f and g
are right strong decomposers and f∗(G) = g∗(G), then for every x ∈ G

x = f∗(x)f(x) = g∗(x)f∗(g(x))f(g(x)).

Since g∗(x)f∗(g(x)) ∈ f∗(G), then f(x) = fg(x) (by Theorem 2.6). Therefore,
f = fg and similarly g = gf . Putting Ωf = f(G) and Ωg = g(G), we have

Ωf = f(g(G)) = f(Ωg) , Ωg = g(f(G)) = g(Ωf ).

Therefore |Ωf |  |Ωg| and |Ωg|  |Ωf | so |Ωf | = |Ωg|.
(ii) If ∆ is non-empty and finite, then |∆||Ω1| = |∆||Ω2| implies |Ω1| = |Ω2|.
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Also if ∆6̇G, then putting f = PΩ1 and g = PΩ2 (where PΩ1 and PΩ2 are
projections, see next page) we have f∗(G) = g∗(G) = ∆ 6 G, by Theorem 2.6,
so the part (i) implies |Ω1| = |f(G)| = |g(G)| = |Ω2|. �

Corollary 2.8. f is a left strong decomposer ⇔ f∗ is a right decomposerand
f∗(G) 6 G.

Remark 2.9. The most important property of right decomposer functions is
G = f∗(G).f(G). In fact this property connects these functions to “decompo-
sition of a group by its subsets.” For example the decomposition Z = 〈n〉+̈Zn,
by a subgroup and a subset, is produced by the strong decomposer function ( )n,
for every nonzero integer n (notice that Z is not decomposable with its two
non-trivial subgroups).

2.1 Existence of decomposer types functions

Up to now we have studied the properties of decomposer type functions. Now,
we show that how we can construct them and prove their existence, in arbitrary
groups.

Definition 2.1.1. Let ∆ ⊆ G. We say G is left [resp. right] ∆-decomposable if
∆ is a left [resp. right] factor of G, which means G = ∆ ·Ω [resp. G = Ω ·∆],
for some Ω ⊆ G.
Let ∆ ⊆ G. If ∆ is singletons, then G is left and right ∆-decomposable. Also
G is left and right G-decomposable (trivially). Now consider the additive group
G = R and fix b ∈ R \ {0}. Then R is Rb-decomposable and R is not N-
decomposable, i,e, the real numbers group does not have natural part property
(although it has the integer part property, see Example 2.4).

Remark 2.1.2. Considering Theorem 2.6(c), if ∆6̇G but ∆ 
 G, then G is not
left and right ∆-decomposable. Therefore, R is not (M,∞)-decomposable for
all M > 0. Now, if ∆ 6 G, then G is (standard) left and right ∆-decomposable.
Moreover, if ∆ E G, then G is (standard two-sided) ∆-decomposable (see Re-
mark 2.7 of [2]).
Now, we are ready to prove the existence of a vast class of decomposer type
functions.

Lemma 2.1.3. If G 6= 0 is a group (finite or infinite) for which |G| is not
a prime number, then nontrivial (standard) right and left strong decomposer
functions exist (and vice versa). In addition if G is not a simple group, then
nontrivial (standard) strong decomposer functions exist.

Proof. The hypothesis implies there exists non-trivial subgroup ∆ of G. So
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Remark 2.9 gives us a subset Ω of G such that G = ∆ : Ω. Putting f = PΩ,
we have f∗(G) = P∆(G) = ∆ 6 G, thus Theorem 2.6 implies f is a nontrivial
left standard strong decomposer function on G. Moreover, if G is not simple
group, then there exists such a nontrivial subgroup ∆ which is normal. In this
case we claim that the function f defined by f = PΩ is a (two-sided) strong
decomposer. Considering the first part it is enough to show that it is a left strong
decomposer. For every y there exist y′, y′′ such that y−1f∗(y) = f∗(y′)y−1 and
so

f(xf∗(y)) = f(xy−1f∗(y)y) = f(xf∗(y′)y−1y)

= f(xf∗(y′)) = f(f∗(y
′′
)x) = f(x).

Therefore the proof is complete. �

Note that there are so many left and right strong decomposer [strong associa-
tive] functions in group [non-simple group] G such that 1 6= |G| 6= p, for every
prime numbers p. For example the cardinal number of all strong decomposer
real functions is 2c = |2R|, i.e. there exists a one to one correspondence between
the solutions set of b-decimal part functional equation f(x+ y − f(y)) = f(x)
and all real functions!.
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type of local homomorphisms which we call them ∆×Ω-homomorphisms. Let
us recall decomposer type functions on groups (from [2,4]) first, and then in-
troduce the new conceptions. By applying them, we obtain many new results
regarding to decomposer type functions on groups and prove some related the-
orems.
Let (G, .) be a group with the identity element e. If f and g are functions from
G to G, then define the functions f.g and f− by

f.g(x) = f(x)g(x) , f−(x) = f(x)−1 : ∀x ∈ G.

We denote the identity function on G by ιG and put f∗ = ιG.f
− , f∗ = f−.ιG

and call f∗ [resp. f∗] left ∗-conjugate of f [resp. right ∗-conjugate of f ]. They
are also called ∗-conjugates of f . Note that f∗(e) = f∗(e) = f−(e) = f(e)−1.
If (G,+) is additive group, then the notations e, f−, f.g, f.g− are replaced by
0, −f , f + g, f − g and we have f∗ = f∗ = ιG − f . It is easy to see that

f is idempotent ⇔ f∗f = e⇔ f∗f = e

f∗
2
= f∗ ⇔ ff∗ = e⇔ f∗∗f∗ = e , f2∗ = f∗ ⇔ ff∗ = e⇔ f∗∗f∗ = e.

Also, if f is endomorphism then f−f = ff−, f∗f = ff∗ and f∗f = ff∗
(i.e. the compositions of f and its ∗-conjugations are commutative).
Now, we recall from [2,4] decomposer type functions as follows.
A function f from (a group) G to G is called:
(a) right [resp. left] strong decomposer if

f(f∗(x)y) = f(y) [resp. f(xf∗(y)) = f(x)] : ∀x, y ∈ G.

(b) right [resp. left] semi-strong decomposer if

f(f∗(x)y) = f(f∗(e)y) [resp. f(xf∗(y)) = f(xf∗(e))] : ∀x, y ∈ G.

(c) right [resp. left] decomposer if

f(f∗(x)f(y)) = f(y) [resp. f(f(x)f∗(y)) = f(x)] : ∀x, y ∈ G.

(d) right [resp. left] weak decomposer if

f(f∗(e)f(x)) = f(x) , f(f∗(x)f(e)) = f(e) : ∀x ∈ G.

[resp. f(f(x)f∗(e)) = f(x) , f(f(e)f∗(x)) = f(e) : ∀x ∈ G].

(e) right [resp. left] separator if f∗(G) ∩ f(G) = {f(e)} [resp. f(G) ∩ f∗(G)
= {f(e)}].


