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1 Introduction

Let C represent the complex plane, and consider the open unit disk
E = {z ∈ C : |z| < 1}. For a harmonic function f = u + v to be
locally univalent and sense-preserving in E, it must satisfy the condition
|v′(z)| < |u′(z)| for all z ∈ E (see [8]).

The class SH consists of harmonic, sense-preserving, univalent func-
tions that are normalized such that f(0) = 0 and fz(0) = 1 in the unit
disk E. A subclass of SH, denoted by SH0, contains functions f ∈ SH
for which v′(0) = 0. The harmonic components u and v are analytic in
E and can be written as:

u(z) = z +
∞∑
s=2

usz
s, v(z) =

∞∑
s=2

vsz
s. (1)

If v(z) = 0, the function reduces to the well-known class S, which
consists of normalized, analytic, univalent functions. Thus, we have the
inclusions S ⊂ SH0 ⊂ SH.

The subclass K of S represents functions that map E onto convex
domains, while the subclass S∗ represents those mapping onto starlike
domains. Similarly, the subclasses of SH0 corresponding to these geo-
metric properties are denoted by KH0 and SH0,∗. For further details,
see [8, 21].

The q-derivative for a function ψ ∈ S, introduced by Jackson [19], is
defined as follows for 0 < q < 1:

Dqψ(z) =

{
ψ(z)−ψ(qz)

(1−q)z , if z ̸= 0,

ψ′(0), if z = 0.
(2)

As q approaches 1, the q-derivative converges to the standard deriva-
tive, Dqψ(z) → ψ′(z). For the expansions in (1) and using (2), the
q-derivative becomes:

Dqu(z) = 1 +

∞∑
s=2

[s]qusz
s−1, D2

qu(z) = 1 +

∞∑
s=2

[s]2qusz
s−1,
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and

Dqv(z) =

∞∑
s=2

[s]qvsz
s−1, D2

qv(z) =

∞∑
s=2

[s]2qvsz
s−1,

where [s]q =
1−qs
1−q is the q-number, which approaches s as q approaches

1.

Jackson also introduced the q-integral [20], defined as:∫ z

0
ψ(ζ) dqζ = z(1− q)

∞∑
k=0

qkψ(zqk),

provided the series converges.

For more detailed information on fractional works, the reader may
refer to works such as [25, 24, 5, 28, 4, 14].

In 2019, Ahuja and Çetinkaya [1] introduced the class SHq of q-
harmonic, univalent, and sense-preserving functions f = u+v. A function

f belongs to SHq if and only if
∣∣∣Dqv(z)
Dqu(z)

∣∣∣ < 1. As q → 1, this class reduces

to the class SH.

The class SH∗
q(α), consisting of q-starlike harmonic functions of or-

der α, is defined by the inequality

Re

{
zDqu(z)− zDqv(z)

u(z) + v(z)

}
> α,

for 0 ≤ α < 1. Similarly, the class KHq(α) consists of q-convex harmonic
functions of order α, defined by the condition

Re

{
zD2

qu(z)− zD2
qv(z)

zDqu(z)− zDqv(z)

}
> α,

where 0 ≤ α < 1. For more information, see [2, 3, 22, 29, 32].

A function f : E → C is said to be subordinate to another function
g : E → C, written as f(z) ≺ g(z), if there exists a function ω : E → C
such that ω(0) = 0 and f(z) = g(ω(z)) (see [15]).

We now introduce a new class of functions based on the Jackson
q-derivative.



4 S. ÇAKMAK

Definition 1.1. The class AHq(σ, τ, ρ) is the set of functions f = u+v ∈
SH0 that satisfy the condition:

Re
{
σDqu(z) + τD2

qu(z)− ρ
}
>
∣∣σDqv(z) + τD2

qv(z)
∣∣

for τ > 0, 0 ≤ ρ < σ, and z ∈ E.

For q → 1 and specific choices of the parameters, we recover known
classes such as W 0

H(α) studied by Ghosh and Vasudevarao [18], and
W 0
H(δ, λ) explored by Rajbala and Prajapat [23]. For additional details

on harmonic classes defined by higher-order differential inequalities, see
[6, 7, 9, 10, 11, 12, 13, 16, 30, 31].

Definition 1.2. The class Aq(σ, τ, ρ) consists of analytic functions ψ ∈
S that satisfy the inequality:

Re
{
σDqψ(z) + τD2

qψ(z)− ρ
}
> 0, z ∈ E.

This paper aims to investigate geometric properties such as distortion
bounds, coefficient bounds, and radii of starlikeness and convexity for
the new class AHq(σ, τ, ρ). Furthermore, we explore sufficient conditions
under which f ∈ AHq(σ, τ, ρ) belongs to the class of close-to-convex
functions. The results obtained here extend known findings in the field
of geometric function theory.

2 Geometric Properties of the Class AHq(σ, τ, ρ)

In this section, we first establish a connection between the class AHq(σ,
τ, ρ) and the class Aq(σ, τ, ρ). Next, we explore the geometric properties
of the class AHq(σ, τ, ρ). We derive necessary and sufficient conditions
for a function to belong to this class and obtain bounds on the coeffi-
cients of functions in this class. These results provide insights into the
geometric structure and constraints of harmonic functions related to the
q-derivative operator.

Theorem 2.1. A function f = u+ v is in the class AHq(σ, τ, ρ) if and
only if for every complex number ε with |ε| = 1, the function Γε = u+εv
belongs to the class Aq(σ, τ, ρ).
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Proof. Suppose f = u+ v is in the class AHq(σ, τ, ρ). For each complex
number ε with |ε| = 1, consider Γε = u+ εv. Then we have:

Re
{
σDqΓε(z) + τD2

qΓε(z)
}

= Re
{
σDqu(z) + τD2

qu(z) + ε
[
σDqv(z) + τD2

qv(z)
]}

> Re
{
σDqu(z) + τD2

qu(z)
}
−
∣∣σDqv(z) + τD2

qv(z)
∣∣

> ρ.

Thus, Γε(z) belongs to Aq(σ, τ, ρ). Conversely, if Γε(z) ∈ Aq(σ, τ, ρ) for
all |ε| = 1, then:

Re
{
σDqu(z) + τD2

qu(z)
}
> Re

{
−ε
[
σDqv(z) + τD2

qv(z)
]}

+ ρ

By choosing ε appropriately, we find:

Re
{
σDqu(z) + τD2

qu(z)− ρ
}
>
∣∣σDqv(z) + τD2

qv(z)
∣∣ .

Thus, f = u+ v is in AHq(σ, τ, ρ). □

Theorem 2.2. Let f = u+v be in AHq(σ, τ, ρ). For s ≥ 2, the coefficient
vs satisfies the following bound:

|vs| ≤
σ + τ − ρ

[s]q (σ + τ [s]q)
.

The function f(z) = z + σ+τ−ρ
[s]q(σ+τ [s]q)

z̄s achieves equality.

Proof. Assume f = u + v ∈ AHq(σ, τ, ρ), with v(reiθ) expressed as a
series, where 0 ≤ ρ < 1 and θ ∈ R. We then have:

ρs−1[s]q (σ + τ [s]q) |vs|

≤ 1

2π

∫ 2π

0

∣∣∣σDqv(ρe
iθ) + τD2

qv(ρe
iθ)
∣∣∣ dθ

<
1

2π

∫ 2π

0
Re{σDqu(ρe

iθ) + τD2
qu(ρe

iθ)− ρ}dθ

=
1

2π

∫ 2π

0
Re

[
σ + τ − ρ+

∞∑
s=2

[s]q (σ + τ [s]q)usρ
s−1ei(s−1)θ

]
dθ

= σ + τ − ρ.

As ρ approaches 1 from below, the bound (2.2) is achieved. □
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Theorem 2.3. Let f = u + v ∈ AHq(σ, τ, ρ). For s ≥ 2, the following
inequality holds:

|us|+ |vs| ≤
2(σ + τ − ρ)

[s]q (σ + τ [s]q)

Equality is achieved for the function f(z) = z +
∑∞

s=2
2(σ+τ−ρ)

[s]q(σ+τ [s]q)
zs.

Proof. Consider f = u+v ∈ AHq(σ, τ, ρ). By Theorem 2.1, Γε = u+ εv
belongs to Aq(σ, τ, ρ) for all ε where |ε| = 1. Hence, we have:

Re{σDq(u(z) + εv(z)) + τD2
q(u(z) + εv(z))} > ρ

for all z ∈ E. In the unit disk E, there exists an analytic function Φ with
positive real part that can be written as Φ(z) = 1 +

∑∞
s=1 ϕsz

s. This
implies:

σDq(u(z) + εv(z)) + τD2
q(u(z) + εv(z)) = ρ+ (σ + τ − ρ)Φ(z).

Comparing coefficients, we obtain:

[s]q (σ + τ [s]q) (us + εvs) = (σ + τ − ρ)ϕs−1 for s ≥ 2.

Since the real part of Φ(z) is positive, we have |ϕs| ≤ 2 for s ≥ 1. By
selecting ε with |ε| = 1, we can confirm that the inequality is valid. The

function f(z) = z+
∑∞

s=2
2(σ+τ−ρ)

[s]q(σ+τ [s]q)
zs shows that the inequality is sharp

and exact. □

Theorem 2.4. If f = u+ v belongs to the class SH0
q, where

∞∑
s=2

[s]q (σ + τ [s]q) (|us|+ |vs|) ≤ σ + τ − ρ,

then f is in the class AHq(σ, τ, ρ).
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Proof. Assume f = u+ v is in SH0
q . Using condition (2.4), consider the

following:

Re
{
σDqu(z) + τD2

qu(z)− ρ
}
= Re

[
σ + τ − ρ+

∞∑
s=2

[s]q (σ + τ [s]q)usz
s−1

]

> σ + τ − ρ−
∞∑
s=2

[s]q (σ + τ [s]q) |us|

≥
∞∑
s=2

[s]q (σ + τ [s]q) |vs|

>

∣∣∣∣∣
∞∑
s=2

[s]q (σ + τ [s]q) vsz
s−1

∣∣∣∣∣
=
∣∣σDqv(z) + τD2

qv(z)
∣∣ .

This confirms that f belongs to AHq(σ, τ, ρ). □

Theorem 2.5. Let f = u + v ∈ AHq(σ, τ, ρ). Then the following in-
equality holds:

|z| − 2(σ + τ − ρ)

[2]q (σ + τ [2]q)
|z|2 ≤ |f(z)| ≤ |z|+ 2(σ + τ − ρ)

[2]q (σ + τ [2]q)
|z|2 .

Proof. Consider f = u + v ∈ AHq(σ, τ, ρ). By taking the modulus of f
and applying Theorem 2.3, we obtain:

|f(z)| ≤ |z|+
∞∑
s=2

(|us|+ |vs|) |z|s

≤ |z|+
∞∑
s=2

2(σ + τ − ρ)

[s]q (σ + τ [s]q)
|z|s

≤ |z|+ 2(σ + τ − ρ)

[2]q (σ + τ [2]q)
|z|2 .

The other side of the inequality can be obtained by a similar method.
□

3 Radii of Convexity and Starlikeness

In this section, we determine the radii of convexity and starlikeness for
functions in the class AHq(σ, τ, ρ). We derive explicit formulas for these
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radii and explore their dependence on the parameters of the functions,
employing established lemmas and theorems.

Lemma 3.1. [26, Theorem 1] Consider f = u + v, where u and v are
defined by (1). If the following condition holds:

∞∑
s=2

[s]q (|us|+ |vs|) ≤ 1,

then f is harmonic, univalent, sense-preserving in E, and f ∈ SH∗
q.

Lemma 3.2. [26] Consider f = u+ v, where u and v are defined by (1).
If the following condition is satisfied:

∞∑
s=2

[s]2q (|us|+ |vs|) ≤ 1,

then f is harmonic, univalent, sense-preserving in E, and f ∈ KHq.

The next theorem addresses the radius of starlikeness for functions
in AHq(σ, τ, ρ).

Theorem 3.3. Let f be a function in the class AHq(σ, τ, ρ). Then f is
q-starlike harmonic within the disk |z| < r⋆, where

r⋆ = inf
s≥2

(
σ + τ [s]q

2(σ + τ − ρ)s(s− 1)

) 1
s−1

.

Proof. Let f ∈ AHq(σ, τ, ρ). For a fixed 0 < r < 1, consider the scaled
function

fr(z) = r−1f(rz) = r−1u(rz) + r−1v(rz).

This function fr remains within the class AHq(σ, τ, ρ). We express fr as

fr(z) = z +

∞∑
s=2

usr
s−1zs +

∞∑
s=2

vsrs−1zs.

To establish that fr is q-starlike, we need to show that

∞∑
s=2

[s]q (|us|+ |vs|) rs−1 ≤ 1.
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From Theorem (2.3), we have

∞∑
s=2

[s]q (|us|+ |vs|) rs−1 ≤
∞∑
s=2

2(σ + τ − ρ)

σ + τ [s]q
rs−1. (3)

Given that

1 =

∞∑
s=2

1

s(s− 1)
,

the inequality (3) can be rewritten as

∞∑
s=2

2(σ + τ − ρ)

σ + τ [s]q
rs−1 ≤

∞∑
s=2

1

s(s− 1)
.

Thus, if

rs−1 ≤ σ + τ [s]q
2(σ + τ − ρ)s(s− 1)

,

for all s ≥ 2, then
∞∑
s=2

[s]q (|us|+ |vs|) ≤ 1.

This implies

r⋆ = inf
s≥2

(
σ + τ [s]q

2(σ + τ − ρ)s(s− 1)

) 1
s−1

.

□
Finally, we determine the radius of convexity for functions in AHq(σ,

τ, ρ).

Theorem 3.4. Let f be a function in the class AHq(σ, τ, ρ). Then f is
q-convex harmonic within the disk |z| < rc, where

rc = inf
s≥2

(
σ + τ [s]q

2[s]q(σ + τ − ρ)s(s− 1)

) 1
s−1

.

Proof. Let f ∈ AHq(σ, τ, ρ). For a fixed 0 < r < 1, consider the function

fr(z) = r−1f(rz) = r−1u(rz) + r−1v(rz).
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This function is still in AHq(σ, τ, ρ). We write

fr(z) = z +
∞∑
s=2

usr
s−1zs +

∞∑
s=2

vsrs−1zs.

To show fr is q-convex, we need to show that

∞∑
s=2

[s]2q (|us|+ |vs|) rs−1 ≤ 1.

From Theorem 2.3, we have

∞∑
s=2

[s]2q (|us|+ |vs|) rs−1 ≤
∞∑
s=2

2(σ + τ − ρ)

σ + τ [s]q
rs−1. (4)

Given that

1 =
∞∑
s=2

1

s(s− 1)
,

the inequality (4) can be rewritten as

∞∑
s=2

2(σ + τ − ρ)

σ + τ [s]q
rs−1 ≤

∞∑
s=2

1

s(s− 1)
.

Thus, if

rs−1 ≤ σ + τ [s]q
2[s]q(σ + τ − ρ)s(s− 1)

,

for all s ≥ 2, then
∞∑
s=2

[s]2q (|us|+ |vs|) ≤ 1.

This implies

rc = inf
s≥2

(
σ + τ [s]q

2[s]q(σ + τ − ρ)s(s− 1)

) 1
s−1

.

□
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4 Closure Properties of the Class AHq(σ, τ, ρ)

This section explores the closure properties of the class AHq(σ, τ, ρ),
focusing on its behavior under convolution and convex combinations.
We investigate how these operations affect the class and provide key
insights into its structural stability and mathematical consistency.

Theorem 4.1. The class AHq(σ, τ, ρ) is closed under convex combina-
tions.

Proof. Consider functions fk = uk+vk belonging to the classAHq(σ, τ, ρ)
for each k = 1, 2, . . . , n. Suppose that the weights φk satisfy

∑n
k=1 φk =

1 and 0 ≤ φk ≤ 1. The convex combination of these functions is given
by:

f(z) =

n∑
k=1

φkfk(z) = u(z) + v(z),

where

u(z) =
n∑
k=1

φkuk(z) and v(z) =
n∑
k=1

φkvk(z).

Both u and v are analytic within the unit disk E and satisfy the condi-
tions u(0) = v(0) = Dqu(0)− 1 = Dqv(0) = 0. Additionally,

Re
{
σDqu(z) + τD2

qu(z)− ρ
}

= Re

[
n∑

k=1

φk{σDquk(z) + τD2
quk(z)− ρ}

]

>

n∑
k=1

φk

∣∣σDqvk(z) + τD2
qvk(z)

∣∣
≥

∣∣σDqv(z) + τD2
qv(z)

∣∣ ,
which confirms that f belongs to AHq(σ, τ, ρ). □

Definition 4.2. A sequence {as}∞s=0 of non-negative real numbers is
called a ”convex null sequence” if as approaches 0 as s → ∞ and the
sequence satisfies

a0 − a1 ≥ a1 − a2 ≥ a2 − a3 ≥ . . . ≥ as−1 − as ≥ . . . ≥ 0.
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Lemma 4.3. (see [17]) The function

A(z) =
a0
2

+

∞∑
s=1

asz
s

defined by a convex null sequence {as}∞s=0 is analytic and has a positive
real part within the unit disk E.

Lemma 4.4. (see [27]) If the function Φ(z) is analytic in E, with Φ(0) =
1 and Re{Φ(z)} > 1

2 for all z ∈ E, then for any analytic function Γ
defined in E, the convolution Φ ∗ Γ maps values within the convex hull
of the image of Γ.

Lemma 4.5. If Γ ∈ Aq(σ, τ, ρ), then

Re

(
Γ(z)

z

)
>

1

2
.

Proof. Consider Γ ∈ Aq(σ, τ, ρ), given by Γ(z) = z +
∑∞

s=2 Usz
s. The

inequality

Re

[
σ + τ − ρ+

∞∑
s=2

[s]q (σ + τ [s]q)Usz
s−1

]
> 0 for z ∈ E,

is equivalent to Re{Φ(z)} > 1
2 within E, where

Φ(z) = 1 +
1

2(σ + τ − ρ)

∞∑
s=2

[s]q (σ + τ [s]q)Usz
s−1.

The sequence {as}∞s=0 is a convex null sequence if

a0 = 2 and as−1 =
2(σ + τ − ρ)

[s]q (σ + τ [s]q)
for s ≥ 2.

Applying Lemma 4.3, the function

A(z) = 1 +

∞∑
s=2

2(σ + τ − ρ)

[s]q (σ + τ [s]q)
zs−1
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is analytic with Re{A(z)} > 0 in E. Therefore,

Γ(z)

z
= Φ(z) ∗

(
1 +

∞∑
s=2

2(σ + τ − ρ)

[s]q (σ + τ [s]q)
zs−1

)
,

and by Lemma 4.4, we conclude that Re
{

Γ(z)
z

}
> 1

2 for z ∈ E. □

Lemma 4.6. The class Aq(σ, τ, ρ) is closed under convolution.

Proof. Let Γ1(z) = z +
∑∞

s=2 Usz
s and Γ2(z) = z +

∑∞
s=2Vsz

s. The
convolution of these functions is given by:

Γ(z) = (Γ1 ∗ Γ2)(z) = z +
∞∑
s=2

UsVsz
s.

Applying the q-derivative and convolution properties, we have:

DqΓ(z) = DqΓ1(z) ∗
Γ2(z)

z
,

D2
qΓ(z) = D2

qΓ1(z) ∗
Γ2(z)

z
.

Substituting these into the formula, we obtain:

σDqΓ(z) + τD2
qΓ(z)− ρ

σ + τ − ρ
=

(
σDqΓ1(z) + τD2

qΓ1(z)− ρ

σ + τ − ρ

)
∗ Γ2(z)

z
.

(5)

Since Γ1 ∈ Aq(σ, τ, ρ), we have Re
[
σDqΓ1(z)+τD2

qΓ1(z)−ρ
σ+τ−ρ

]
> 0 for

z ∈ E. Additionally, by Lemma 4.5, Re
[
Γ2(z)
z

]
> 1

2 in E. Applying

Lemma 4.4 to (5), we conclude that Re
[
σDqΓ(z)+τD2

qΓ(z)−ρ
σ+τ−ρ

]
> 0 in E.

Hence, Γ = Γ1 ∗ Γ2 ∈ Aq(σ, τ, ρ). □
Using Lemma 4.6, we now demonstrate that the class AHq(σ, τ, ρ)

is preserved under the convolution operation.

Theorem 4.7. For m = 1, 2, let fm ∈ AHq(σ, τ, ρ). Then, the convolu-
tion f1 ∗ f2 is also a member of AHq(σ, τ, ρ).
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Proof. Assume that fm = um + vm ∈ AHq(σ, τ, ρ) for m = 1, 2. The
convolution f1 ∗ f2 is given by u1 ∗ u2 + v1 ∗ v2. To establish that this
convolution function belongs to AHq(σ, τ, ρ), we must show that the
function Fε = u1 ∗ u2 + ε(v1 ∗ v2) is within Aq(σ, τ, ρ) for any ε where
|ε| = 1.

According to Lemma 4.6, since Aq(σ, τ, ρ) is closed under convex
combinations, and both um+εvm form = 1, 2 are inAq(σ, τ, ρ), it follows
that the functions U1 = (u1−v1)∗(u2−εv2) and U2 = (u1+v1)∗(u2+εv2)
also belong to Aq(σ, τ, ρ).

Since Aq(σ, τ, ρ) is closed under convex combinations, the function

Uε =
1

2
(U1 + U2) = u1 ∗ u2 + ε(v1 ∗ v2)

is also within Aq(σ, τ, ρ). Thus, it follows that the class AHq(σ, τ, ρ)
remains invariant under convolution, implying that the convolution of
any two functions in AHq(σ, τ, ρ) will also be in AHq(σ, τ, ρ). □
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5 Examples of Functions in the Class AHq(σ, τ, ρ)

In this section, we provide examples to facilitate a better understanding
of the theoretical concepts.

Example 5.1. Consider the function f(z) = z + 0.35z3 − 0.2z4. Ac-
cording to Theorem 2.4, f belongs to the class AHq(0.25, 2, 1, 1). Addi-
tionally, the function f is a q-starlike harmonic function by virtue of the
Lemma 3.1. The image of the unit disk and concentric circle within it
under the function f is shown in Figure 1.

Figure 1: Under the map f(z) = z + 0.35z3 − 0.2z4, the image of
concentric circles inside the unit disk.
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Example 5.2. Consider the function g(z) = z + 0.45z3 + 0.25z5. By
Theorem 8, g is a member of the AHq(0.25, 2, 1, 1) class. Moreover,
based on the Lemma 3.2, g is a q-convex harmonic function. The images
of the unit disk and concentric disks within it under the mapping of g
are illustrated in Figure 2.

Figure 2: Under the map g(z) = z + 0.45z3 + 0.25z5, the image of
concentric circles inside the unit disk.



EXPLORING THE GEOMETRIC CHARACTERISTICS... 17

Example 5.3. Let h(z) = f(z) ∗ g(z) = z + 0.1575z3, where f and g
are the functions given in Example 5.1 and Example 5.2. According to
Theorem 2.4, the function h(z) belongs to the class AHq(0.25, 2, 1, 1).
Furthermore, h is a q-starlike harmonic function according to Lemma
3.1. Figure 2 illustrates the image of concentric circles inside the unit
disk E under the transformation defined by h(z) = z + 0.1575z3.

Figure 3: Under the map h(z) = z+0.1575z3, the image of concentric
circles inside the unit disk.
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6 Conclusions

In this study, we introduced a new subclass of harmonic functions de-
fined by Jackson’s second-order q derivative. We derived the necessary
coefficient conditions for functions to belong to this class, along with
geometric properties such as coefficient bounds, distortion bounds, and
closure under convolution. Additionally, we obtained the radii of con-
vexity and starlikeness. These results provide a broader perspective on
harmonic mappings and improve some previously established results.
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[11] S. Çakmak, E. Yaşar, S. Yalçın, Some basic geometric proper-
ties of a subclass of harmonic mappings, Bolet́ın de la Sociedad
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[30] S. Yaşar, S. Yalçın Tokgöz, Close-to-convexity of a class of harmonic
mappings defined by a third-order differential inequality, Turkish
Journal of Mathematics, 45 (2021), 678-694.
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