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Abstract. Let {8(n)}>2 __ be a sequence of positive numbers
such that 5(0) =1 and let 1 < p < co. We consider the space of

all formal Laurent series f(z) = . f(n)z" such that

n=—oo

oo

Yo f)PBM) < co.

n=—oo

We investigate the supercyclicity with respect to a sequence on the
Banach spaces of formal Laurent series.
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1. Introduction

Let {6(n)}2_., be a sequence of positive numbers with 3(0) = 1 and

1 < p < oo. Consider the space of f(z) = > f(n)z" such that

n=—0oo

[e.e]

AP =115 =D 1f)PB0) < co.

n=—oo
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They are called formal Laurent series and the space of such formal Lau-
rent series is denoted by LP(f3). These are reflexive Banach spaces with
the norm ||-||g. The operator B on LP(f3) is defined by Bf; = f;_1 for all
j € Z. Clearly B is bounded if and only if the sequence {5(k)/B(k+1)}x
is bounded.

Let X be a complex Banach space and B(X) be the set of bounded
linear operators from X into itself. If T € B(X), then the orbit of a

vector x € X is the set
Orb(T,x) ={T"x: ne NU{0}}.

A vector x € X is called hypercyclic for T' if Orb(T, z) is dense in X. The
operator T is called hypercyclic if it has a hypercyclic vector. A vector
xz € X is said to be cyclic for an operator 7' € B(X) if the linear span
of Orb(T,x) is dense in X. Also a vector x € X is called a supercyclic

vector for an operator T € B(X) if the set
{Ay:y e Orv(T,x), A e C}

is dense in X. An operator T' € B(X) is cyclic (supercyclic) if it has
a cyclic (a supercyclic) vector. It is evident that hypercyclicity implies
supercyclicity and this, in turn, implies cyclicity.

Sources on formal series include [7, 11, 12, 14, 17]. Also, hypercyclic-
ity and supercyclicity have been studied in several works (see [1, 2, 3, 5,

7,8, 9, 10, 13, 15, 16, 18, 19, 20]).
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We will investigate the supercyclicity with respect to a sequence on

the Banach spaces of formal Laurent series.

2. Main Result

Supercyclicity was introduced by Hilden and Wallen ([6]). They showed
that all unilateral backward weighted shifts are supercyclic, but there
does not exist a vector that is supercyclic vector for all the unilateral
backward weighted shifts. H. Salas ([10]) gives a condition for super-
cyclicity in Frechet spaces.

We can extend the notions to sequences of linear operators; let {ny}
be an increasing sequence of nonnegative integers. Then the sequence
{T%,. } k>0 of bounded linear operators from a complex Banach space
X into itself is hypercyclic (supercyclic) if there exists z € X such
that the orbit {7}, x}r>0 ({\Tn,z : k € NU {0}, A € C}) is dense in
X. In the special case when T' € B(X) and the sequence {T™* };>
is hypercyclic (supercyclic), we say that the operator T' is hypercyclic
(supercyclic) with respect to the sequence {ny}. Here we will investigate
the supercyclicity of the operator B with respect to a sequence on the
Banach spaces of formal Laurent series.

Suppose that B is bounded on LP(3) and {n;} is an increasing se-
quence of nonnegative integers. For investigation about the supercyclic-

ity of the sequence {B"*}, we need the following lemma.
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Lemma 1. Let E be a normed space and T be a bounded linear operator

on E. Then the sequence {T™} is supercyclic if and only if the set

{(x, \T™"2x) :x € E,X € Q+1iQ, k € N}

is dense in EE x E .

Proof. The proof is similar to the proof of Theorem 1.2.2 in [4, page

11] and so we omit it. [J

Theorem 2. The sequence {B™}; is supercyclic on LP((3) if and only

if
h}ggf max{ﬂ(j _ﬁ?;iggz;— i) I < o, R < nm} =0
for allm € N.

Proof. Let 0 < e < 1 and m € N. Choose a > 0 such that % < 5%.

Let

y=w= Y fi/BQ)

be in LP(3). Suppose {By,}: is supercyclic. Then by Lemma 1 there
exists an arbitrary large ¢ > m, a vector
=Y 20()f
n

in LP(3), and a complex number A such that ||z —w| < « and ||AB"™ix —
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y|| < a. Note that A # 0. Therefore,

le—wl? = Y 1@GBG) -1+ D 12GIPAG)

71 <nm |7]>1m
< ol
Thus
1Z()1B3I) > 1—aq, 7] < nm (1)
1Z(5)18(J) < a, 7] > nm (2)
Also since
IAB "z —y|lP = Y |[A&(k+n)B(k) — 1]
|k|<nm
+ > PPlEE 4+ n)[PB(R) < o,
|k|>nm
we have
A2 (k +ni)B(k) — 1] < a, k] < (3)
IA[|2(k + ni)|B(k) < a, k| > . (4)

Note that j — n; < —n,, for |j| < ny,, so by (1) and (4) we have

fU—ni) 1 «
5G) “Mi-a

for |j] < np. Also since k + n; > nyy, for |k| < ngy,, by (2) the relation

(0}

Z(k +ng)| < e
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is consistent and so by (3) we get

for |k| < ny,. Therefore

B(J — ni)B(k + ny) a
B0eH <~ i-a

¥ <e

for all —n,,, < j, k < nyy and ¢ > m arbitrarily large enough.
Conversely suppose that € > 0 is given and consider
y=>_ i0f
71 <nm

and

w= Y @)

in LP(B) such that both are different from zero. By Lemma 1, it is
sufficient to find x € LP(S) and ¢ € N such that ||z — y|| < € and
IAB"ix — w| < e for some A € C. Let
Stw= 3 k) fran
k| <rm
where ¢ € N. Also let

1
=y — Qi
z=y+ 35w
with i to be determined but ||+ S™w| = e. Note that

1
B"x = B"y+ v
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Thus it suffices to find i such that |[AB™y|| < . We have

[AB™z —w[[” = [[AB™y]|]”

1B y|[P]| 5™ wl|”/”

= I Y I S-nllP D k) frn, |P/€P

ljl<nm lkl<nm

= | Y 1wGIrsG —ny?

x| D (k)B4 )P | feP.
|k|<"m

So we get

B —ni) Bk + n;)
B(5)B(k)

IAB"x —w| < max{ k] < nmy |4 énm}

Nyl lwll/e

and consequently by our hypothesis there exists ¢ large enough such that

||IAB™ix — w| < e. This completes the proof. [J
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