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Abstract. Let {β(n)}∞n=−∞ be a sequence of positive numbers
such that β(0) = 1 and let 1 < p < ∞. We consider the space of

all formal Laurent series f(z) =
∞∑

n=−∞
f̂(n)zn such that

∞∑
n=−∞

|f̂(n)|pβ(n)p < ∞.

We investigate the supercyclicity with respect to a sequence on the
Banach spaces of formal Laurent series.
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1. Introduction

Let {β(n)}∞n=−∞ be a sequence of positive numbers with β(0) = 1 and

1 < p < ∞. Consider the space of f(z) =
∞∑

n=−∞
f̂(n)zn such that

‖f‖p = ‖f‖p
β =

∞∑
n=−∞

|f̂(n)|pβ(n)p < ∞.
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They are called formal Laurent series and the space of such formal Lau-

rent series is denoted by Lp(β). These are reflexive Banach spaces with

the norm ‖·‖β. The operator B on Lp(β) is defined by Bfj = fj−1 for all

j ∈ Z. Clearly B is bounded if and only if the sequence {β(k)/β(k+1)}k

is bounded.

Let X be a complex Banach space and B(X) be the set of bounded

linear operators from X into itself. If T ∈ B(X), then the orbit of a

vector x ∈ X is the set

Orb(T, x) = {Tnx : n ∈ N ∪ {0}}.

A vector x ∈ X is called hypercyclic for T if Orb(T, x) is dense in X. The

operator T is called hypercyclic if it has a hypercyclic vector. A vector

x ∈ X is said to be cyclic for an operator T ∈ B(X) if the linear span

of Orb(T, x) is dense in X. Also a vector x ∈ X is called a supercyclic

vector for an operator T ∈ B(X) if the set

{λy : y ∈ Orb(T, x), λ ∈ C}

is dense in X. An operator T ∈ B(X) is cyclic (supercyclic) if it has

a cyclic (a supercyclic) vector. It is evident that hypercyclicity implies

supercyclicity and this, in turn, implies cyclicity.

Sources on formal series include [7, 11, 12, 14, 17]. Also, hypercyclic-

ity and supercyclicity have been studied in several works (see [1, 2, 3, 5,

7, 8, 9, 10, 13, 15, 16, 18, 19, 20]).
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We will investigate the supercyclicity with respect to a sequence on

the Banach spaces of formal Laurent series.

2. Main Result

Supercyclicity was introduced by Hilden and Wallen ([6]). They showed

that all unilateral backward weighted shifts are supercyclic, but there

does not exist a vector that is supercyclic vector for all the unilateral

backward weighted shifts. H. Salas ([10]) gives a condition for super-

cyclicity in Frechet spaces.

We can extend the notions to sequences of linear operators; let {nk}
be an increasing sequence of nonnegative integers. Then the sequence

{Tnk
}k>0 of bounded linear operators from a complex Banach space

X into itself is hypercyclic (supercyclic) if there exists x ∈ X such

that the orbit {Tnk
x}k>0 ({λTnk

x : k ∈ N ∪ {0}, λ ∈ C}) is dense in

X. In the special case when T ∈ B(X) and the sequence {Tnk}k>0

is hypercyclic (supercyclic), we say that the operator T is hypercyclic

(supercyclic) with respect to the sequence {nk}. Here we will investigate

the supercyclicity of the operator B with respect to a sequence on the

Banach spaces of formal Laurent series.

Suppose that B is bounded on Lp(β) and {nk} is an increasing se-

quence of nonnegative integers. For investigation about the supercyclic-

ity of the sequence {Bnk}k, we need the following lemma.
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Lemma 1. Let E be a normed space and T be a bounded linear operator

on E. Then the sequence {Tnk} is supercyclic if and only if the set

{(x, λTnkx) : x ∈ E, λ ∈ Q + iQ, k ∈ N}

is dense in E × E .

Proof. The proof is similar to the proof of Theorem 1.2.2 in [4, page

11] and so we omit it. ¤

Theorem 2. The sequence {Bni}i is supercyclic on Lp(β) if and only

if

lim inf
i→∞

max
{

β(j − ni)β(k + ni)
β(j)β(k)

: |j| 6 nm, |k| 6 nm

}
= 0

for all m ∈ N.

Proof. Let 0 < ε < 1 and m ∈ N. Choose α > 0 such that α
1−α < ε

1
2 .

Let

y = w =
∑

|j|6nm

fj/β(j)

be in Lp(β). Suppose {Bni}i is supercyclic. Then by Lemma 1 there

exists an arbitrary large i > m, a vector

x =
∑

n

x̂(j)fj

in Lp(β), and a complex number λ such that ‖x−w‖ < α and ‖λBnix−
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y‖ < α. Note that λ 6= 0. Therefore,

‖x− w‖p =
∑

|j|6nm

|x̂(j)β(j)− 1|p +
∑

|j|>nm

|x̂(j)|pβ(j)p

< αp.

Thus

|x̂(j)|β(j) > 1− α, |j| 6 nm (1)

|x̂(j)|β(j) < α, |j| > nm. (2)

Also since

‖λBnix− y‖p =
∑

|k|6nm

|λx̂(k + ni)β(k)− 1|p

+
∑

|k|>nm

|λ|p|x̂(k + ni)|pβ(k)p < αp,

we have

|λx̂(k + ni)β(k)− 1| < α, |k| 6 nm (3)

|λ||x̂(k + ni)|β(k) < α, |k| > nm. (4)

Note that j − ni < −nm for |j| 6 nm, so by (1) and (4) we have

β(j − ni)
β(j)

<
1
|λ|

α

1− α

for |j| 6 nm. Also since k + ni > nm for |k| 6 nm, by (2) the relation

|x̂(k + ni)| < α

β(k + ni)
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is consistent and so by (3) we get

β(k + ni)
β(k)

< |λ| α

1− α

for |k| 6 nm. Therefore

β(j − ni)β(k + ni)
β(j)β(k)

< (
α

1− α
)2 < ε

for all −nm 6 j, k 6 nm and i > m arbitrarily large enough.

Conversely suppose that ε > 0 is given and consider

y =
∑

|j|6nm

ŷ(j)fj

and

w =
∑

|j|6nm

ŵ(j)fj

in Lp(β) such that both are different from zero. By Lemma 1, it is

sufficient to find x ∈ Lp(β) and i ∈ N such that ‖x − y‖ 6 ε and

‖λBnix− w‖ 6 ε for some λ ∈ C. Let

Sniw =
∑

|k|6nm

ŵ(k)fk+ni
,

where i ∈ N. Also let

x = y +
1
λ

Sniw

with i to be determined but ‖ 1
λSniw‖ = ε. Note that

Bnix = Bniy +
1
λ

w.
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Thus it suffices to find i such that ‖λBniy‖ < ε. We have

‖λBnix− w‖p = ‖λBniy‖p

= ‖Bniy‖p‖Sniw‖p/εp

= ‖
∑

|j|6nm

ŷ(j)fj−ni‖p. ‖
∑

|k|6nm

ŵ(k)fk+ni
‖p/εp

=


 ∑

|j|6nm

|ŷ(j)|pβ(j − ni)p




×

 ∑

|k|6nm

|ŵ(k)|pβ(k + ni)p


 /εp.

So we get

‖λBnix− w‖ 6 max
{

β(j − ni)β(k + ni)
β(j)β(k)

: |k| 6 nm, |j| 6 nm

}

.‖y‖ ‖w‖/ε

and consequently by our hypothesis there exists i large enough such that

‖λBnix− w‖ < ε. This completes the proof. ¤
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