\documentclass[12pt]{amsart} \usepackage{amsmath, amsthm, amscd, amsfonts} \renewcommand{\baselinestretch}{1.25} \makeatletter \oddsidemargin.2375in \evensidemargin \oddsidemargin \marginparwidth-1.9375cm \makeatother \def\affilfont{\normalfont\fontsize{10}{12}\selectfont\centering}%\itshape%SHK 24/2 \def\affil#1{\par\vskip12pt{\affilfont#1\par}\vskip15pt} \newtheorem{theorem}{Theorem}[section] \newtheorem{lemma}[theorem]{Lemma} \newtheorem{proposition}[theorem]{Proposition} \newtheorem{corollary}[theorem]{Corollary} \theoremstyle{definition} \newtheorem{definition}[theorem]{Definition} \newtheorem{example}[theorem]{Example} \newtheorem{xca}[theorem]{Exercise} \theoremstyle{remark} \newtheorem{remark}[theorem]{Remark} \numberwithin{equation}{section} %--------------------------------------- \usepackage{amssymb} \usepackage{graphicx} \setlength{\textwidth}{6.0in} \setlength{\textheight}{8.2 in} \usepackage{latexsym} \renewcommand{\baselinestretch}{1.5} %--------------------------------------- \begin{document} \begin{minipage}{15cm} \begin{center} {\textbf{\Large Uniqueness Theorem for the Inverse Aftereffect problem and Representation the Nodal Points Form}}\\ \end{center} \end{minipage} \vspace{10mm} \begin{center} \index{A. Neamaty}\index{Sh. Akbarpoor}\index{A. Dabbaghian} {\text{A. Neamaty, Sh. Akbarpoor and A. Dabbaghian}\\ {\small Department of Mathematics, University of Mazandaran, Babolsar, Iran\\ E-mail: {\tiny Namaty@umz.ac.ir, Sh.akbarpoor@stu.umz.ac.ir, A.dabbaghian@iauneka.ac.ir } \vspace{0.2cm}} } \end{center} \vspace{5mm} %-------------------------- \begin{center} \begin{minipage}{11.5cm} \text{\small \textbf{Abstract}.} {\small In this paper, we consider a boundary value problem with aftereffect on a finite interval and study the asymptotic behavior of the solutions, eigenvalues, the nodal points and the associated nodal length and calculate the numerical values of the nodal points and the nodal length. Then, we prove the uniqueness theorem for the inverse aftereffect problem by applying any dense subset of the nodal points. \\} \text{\small \textbf{Keywords}:} {\small Differential equation; Aftereffect; Uniqueness theorem; Nodal points.} \\ \end{minipage} \end{center} \vspace{0.3cm} %------------------------- \section{\bf{Introduction} } \noindent In this work, we consider the equation \begin{eqnarray} -y''(x)+q(x)y(x)+\int_{0}^{x}M(x-t)y(t)dt=\lambda y(x),& 0 \leq x \leq \pi, \end{eqnarray} under the separated boundary conditions \begin{eqnarray} U(y):=y'(0)-h y(0)=0, \end{eqnarray} \begin{eqnarray} V(y):=y'(\pi)+H y(\pi)=0, \end{eqnarray} where $\lambda=\rho^{2}$ and $ \rho $, $\rho=\sigma+i\tau$, is the spectral parameter, $ q, M \in W^{2,1}(0,\pi)$ are real functions. We denote the boundary value problem (1.1)-(1.3) by $ L(q,M,h,H) $. In fact, in this work, we consider the Sturm-Liouville operator disorganized by a Volterra integral operator. Uniqueness in the inverse aftereffect problem is the problem of chek the uniqueness of the function $ M $. In this work, we suppose the function $ q $ is the known function and prove the uniqueness theorem for the solution of the inverse problem i.e $ M $. Many authors studied the uniqueness of the inverse boundary value problem for the Sturm-Liouville equations lately (see [1, 3, 7, 9, 16]) but a few of them considered it for the differential equations with aftereffect (for example see [6]). In this paper, we obtain the nodal points and the associated nodal length and investigate the uniqueness of inverse aftereffect problem $L(q,M,h,H)$ with the separated boundary conditions by using any dense subset of the nodal points. Proof of the uniqueness and computation of the nodal points was studied for Sturm-Liouville equations in [2, 4, 8, 10, 11-12, 14-15, 17-18] and other works but it was not considered for the differential equations with aftereffect. The form of the differential equation with aftereffect without the computation of the nodal points were perused in [6]. In [6], Fereiling and Yurko considered the equation (1.1) under the Dirichlet boundary conditions, obtained the eigenvalues, proved the uniqueness theorem by using the transformation operator method. In [5], we studied the equation (1.1) under the separated boundary conditions on a finite interval with discontinuity conditions in an interior point and proved the uniqueness theorem by using the nodal points but we did not obtain the numerical values of the nodal points. Whereas in this paper, we consider the differential equation (1.1) under the boundary conditions (1.2)-(1.3) but without discontinuity conditions in an interior point and obtain the numerical values of the nodal points and the nodal length and prove the uniqueness theorem by applying any dense subset of the nodal points. In section 2, we obtain the asymptotic solution, the characteristic function, the eigenvalues, the numerical values of the nodal points and the nodal length and present a uniqueness theorem for the solution of inverse aftereffect problem. \\ \section{\small{\bf{ Main results }}} First, we present some definitions that will be applied in this paper. \begin{definition} $[6]$ The values of the parameter $\lambda$ for which $L$ has nonzero solutions are called eigenvalues and the corresponding nontrivial solutions are called eigenfunctions. The set of eigenvalues is called the spectrum of $L$. \end{definition} \begin{definition} $[13]$ If $f(z)$ and $g(z),$ two functions of a complex number $z,$ which may be a parameter of the problem or an independent variable defined on some domain $D,$ possess limits as $z\rightarrow z_{0}$ in $D,$ then we say that $f(z)=O(g(z))$ as $z\rightarrow z_{0}$ if there exist positive constants $K$ and $\delta$ such that $|f|\leq K|g|$ whenever $0<|z-z_{0}|<\delta$ and if $|f|\leq K|g|$ for all $z$ in $D,$ we say $f(z)=O(g(z)).$ \end{definition} \begin{definition} $[13]$ If $f(z)$ and $g(z)$ are such that, for any $\varepsilon>0,$ $|f|\leq \varepsilon|g|$ whenever $z$ is in a small $\delta-$neighborhood of $z_{0},$ we say $f(z)=o(g(z))$ as $z\rightarrow z_{0}.$ \end{definition} \begin{definition} $[13]$ A finite or infinite sequence of functions ${\phi_{n}(z)}, n=1,2,...$ is an asymptotic sequence as $z\rightarrow z_{0}$ if, for all $n,$ $\phi_{n+1}(z)=o(\phi_{n}(z))$ as $z\rightarrow z_{0},$ that is, $\lim_{z\rightarrow z_{0}}\frac{\phi_{n+1}}{\phi_{n}}=0.$ \end{definition} \begin{definition} $[13]$ If ${\phi_{n}(z)}, n=1,2,...$ is an asymptotic sequence of functions as $z\rightarrow z_{0},$ we say that $\Sigma_{n=1}a_{n}\phi_{n}(z),$ where the $a_{n}$ are constants (with the upper limit omitted), is an asymptotic expansion or asymptotic approximation of the function $f(z)$ if for each $N$ $$f(z)=\Sigma_{n=1}^{N}a_{n}\phi_{n}(z)+o(\phi_{n}(z)) \ \ as \ \ z\rightarrow z_{0}.$$ \end{definition} \subsection{\small{\bf{ The asymptotic form of the solution and the eigenvalues }}} Let $ C(x,\rho) $ and $ S(x,\rho) $ be solutions of (1.1) under the initial conditions $ S(0,\rho)=C'(0,\rho)=0 $ and $ C(0,\rho)=S'(0,\rho)=1 $. In this case, the functions $ C(x,\rho) $ and $ S(x,\rho) $ satisfy the following integral equations respectively (see [6]): \begin{eqnarray*} C(x,\rho)=\cos\rho x+ \int_{0}^{x}\frac{\sin\rho(x-t)}{\rho}\left(q(t)C(t,\rho)+\int_{0}^{t}M(t-s)C(s,\rho)ds\right)dt, \end{eqnarray*} \begin{eqnarray*} S(x,\rho)=\frac{\sin\rho x}{\rho}+ \int_{0}^{x}\frac{\sin\rho(x-t)}{\rho}\left(q(t)S(t,\rho)+\int_{0}^{t}M(t-s)S(s,\rho)ds\right)dt. \end{eqnarray*} \ \ \ \ Denote $ \varphi(x,\rho)=C(x,\rho)+h S(x,\rho) $. Thus, the function $ \varphi(x,\rho) $ is solution of (1.1) under the initial conditions $ \varphi(0,\rho )=1 $ and $ \varphi'(0,\rho)=h $ and the solution of the integral equation \begin{eqnarray*} \varphi(x,\rho)=\cos\rho x+h\frac{\sin\rho x}{\rho}+\int_{0}^{x}\frac{\sin\rho(x-t)}{\rho} \end{eqnarray*} \begin{eqnarray} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \times \left(q(t)\varphi(t,\rho)+\int_{0}^{t}M(t-s)\varphi(s,\rho)ds\right)dt, \end{eqnarray} and hence \begin{eqnarray*} \varphi'(x,\rho)=-\rho\sin\rho x+h \cos\rho x+ \int_{0}^{x}\cos\rho(x-t) \end{eqnarray*} \begin{eqnarray} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \times \left(q(t)\varphi(t,\rho)+\int_{0}^{t}M(t-s)\varphi(s,\rho)ds\right)dt. \end{eqnarray} \begin{lemma}{\label{theor}} For $|\rho|\rightarrow\infty$, the formula \\ \begin{eqnarray} \varphi(x,\rho)=\cos\rho x+O(\frac{1}{|\rho|}e^{|\tau|x})=O(e^{|\tau|x}), \end{eqnarray} holds, uniformly with to $x\in[0,\pi]$ as $ \tau=Im\rho $. \end{lemma} \begin{proof} See [6]. \end{proof} Substituting (2.3) into (2.1) and (2.2), we get \begin{eqnarray*} \varphi(x,\rho)=\cos\rho x+q_{1}(x) \frac{\sin\rho x}{\rho}+\frac{1}{2\rho}\int_{0}^{x}q(t)\sin\rho(x-2t)dt \end{eqnarray*} \begin{eqnarray} +\frac{1}{\rho}\int_{0}^{x}\sin\rho(x-t)\int_{0}^{t}M(t-s)\cos \rho s dsdt+O(\frac{1}{|\rho|^2}e^{|\tau|x}), \end{eqnarray} and also \begin{eqnarray*} \varphi'(x,\rho)=-\rho\sin\rho x+q_{1}(x) \cos\rho x+\frac{1}{2}\int_{0}^{x}q(t)\cos\rho(x-2t)dt \end{eqnarray*} \begin{eqnarray} +\int_{0}^{x}\cos\rho(x-t)\int_{0}^{t}M(t-s)\cos \rho s dsdt+O(\frac{1}{|\rho|}e^{|\tau|x}), \end{eqnarray} where \begin{eqnarray*} q_{1}(x)=h+\frac{1}{2}\int_{0}^{x}q(t)dt. \end{eqnarray*} Integration by parts results \begin{eqnarray*} \int_{0}^{x}q(t)\sin\rho(x-2t)dt=-\frac{1}{2\rho}q(x)\cos\rho x+\frac{1}{2\rho}q(0)\cos\rho x \end{eqnarray*} \begin{eqnarray} +\frac{1}{2\rho}\int_{0}^{x}q'(t)\cos\rho(x-2t)dt, \end{eqnarray} and \begin{eqnarray*} \int_{0}^{x}\sin\rho(x-t)\int_{0}^{t}M(t-s)\cos \rho s dsdt=\frac{1}{\rho}\int_{0}^{x}M(x-s)\cos\rho s ds \end{eqnarray*} \begin{eqnarray} -\frac{1}{\rho}\int_{0}^{x}\cos\rho(x-t)\left(M(0)\cos\rho t+\int_{0}^{t}\frac{\partial M}{\partial t}(t-s)\cos\rho s ds\right)dt. \end{eqnarray} We obtain from (2.4)-(2.7) that \begin{eqnarray} \varphi(x,\rho)=\cos\rho x+q_{1}(x)\frac{\sin\rho x}{\rho}+O(\frac{1}{|\rho|^2}e^{|\tau|x}), \end{eqnarray} and \begin{eqnarray} \varphi'(x,\rho)=-\rho\sin\rho x+q_{1}(x) \cos\rho x+O(\frac{1}{|\rho|}e^{|\tau|x}). \end{eqnarray} Substituting (2.8) into (2.1) and applying integration by parts, we get \begin{eqnarray*} \varphi(x,\rho)=\cos\rho x+q_{1}(x)\frac{\sin\rho x}{\rho}-\frac{1}{4\rho^{2}}q(x)\cos\rho x+\frac{1}{4\rho^{2}}q(0)\cos\rho x \end{eqnarray*} \begin{eqnarray} -\frac{\cos\rho x}{2\rho^{2}}\int_{0}^{x}q(t)q_{1}(t)dt-\frac{M(0)}{2\rho^{2}}x\cos\rho x+O(\frac{1}{|\rho|^3}e^{|\tau|x}), \end{eqnarray} similarly, we get \begin{eqnarray*} \varphi'(x,\rho)=-\rho\sin\rho x+q_{1}(x)\cos\rho x+\frac{3}{4\rho}q(x)\sin\rho x-\frac{1}{4\rho}q(0)\sin\rho x \end{eqnarray*} \begin{eqnarray} +\frac{\sin\rho x}{2\rho}\int_{0}^{x}q(t)q_{1}(t)dt+\frac{M(0)}{2\rho}x\sin\rho x+O(\frac{1}{|\rho|^2}e^{|\tau|x}). \end{eqnarray} \begin{lemma}{\label{theor}} The following formula holds \\ \begin{eqnarray} \varphi(x,\rho)=\cos\rho x+\int_{0}^{x}G(x,t)\cos\rho t dt, \end{eqnarray} where $G(x,t)$ is a real continuous function with the same smoothness as $\int_{0}^{x}q(t)dt,$ and \begin{eqnarray} G(x,x)=h+\frac{1}{2}\int_{0}^{x}q(t)dt. \end{eqnarray} \end{lemma} \begin{proof} See [6]. \end{proof} Let $\varphi(x,\rho)$ and $\psi(x,\rho)$ be solutions of (1.1) under the initial conditions $\varphi(0,\rho)=1$, $\varphi'(0,\rho)=h $, $\psi(\pi,\rho)=1$, $\psi'(\pi,\rho)=-H$. Denote \begin{eqnarray} \Delta(\rho):=\langle\psi(x,\rho),\varphi(x,\rho)\rangle, \end{eqnarray} where \begin{eqnarray*} \langle\psi(x,\rho),\varphi(x,\rho)\rangle=\psi(x,\rho)\varphi'(x,\rho)-\psi'(x,\rho)\varphi(x,\rho), \end{eqnarray*} is the Wronskian of $\psi(x,\rho)$ and $\varphi(x,\rho)$. Since the function $\Delta(\rho)$ called the characteristic function for the boundary value problem $L(q,M,h,H)$ does not depend on $x$, hence, substituting $x=\pi$ into (2.14), we get \begin{eqnarray} \Delta(\rho)=V(\varphi)=\varphi'(\pi,\rho)+H\varphi(\pi,\rho). \end{eqnarray} \begin{lemma}{\label{theor}}For $|\rho|\rightarrow\infty$, the representation \\ \begin{eqnarray*} \Delta(\rho)=-\rho\sin\rho \pi+\omega\cos\rho \pi+\frac{3}{4\rho}q(\pi)\sin\rho \pi-\frac{1}{4\rho}q(0)\sin\rho \pi \end{eqnarray*} \begin{eqnarray*} +\frac{\sin\rho \pi}{2\rho}\int_{0}^{\pi}q(t)q_{1}(t)dt+\frac{M(0)}{2\rho}\pi\sin\rho \pi \end{eqnarray*} \begin{eqnarray} +H q_{1}(\pi)\frac{\sin\rho \pi}{\rho}+O(\frac{1}{|\rho|^2}e^{|\tau|\pi}), \end{eqnarray} holds where $\omega=H+q_{1}(\pi)$. \end{lemma} \begin{proof} we arrive at (2.16) from (2.10), (2.11) and (2.15) by using straightforward calculations. \end{proof} Since the eigenvalues $ \{\rho_{n}\}_{n\geq1} $ of the boundary value problem coincide with the zeros of the function $ \Delta(\rho) $, using some straightforward calculations (see [6]), we obtain \begin{eqnarray} \rho_{n}=n+\frac{\omega}{n\pi}+O(\frac{1}{n^{2}}), \ \ n\rightarrow\infty. \end{eqnarray} \subsection{\small{\bf{The asymptotic form of the nodal points and the associated nodal length }}} Denote \begin{eqnarray} \varphi_{n}(x)=\varphi(x,\rho_{n}), \end{eqnarray} where $\varphi_{n}$ is the eigenfunction corresponding to the eigenvalue $\lambda_{n}.$ Let $\lambda_{0}<\lambda_{1}<\ldots\rightarrow\infty$ be the eigenvalues of the aftereffect problem (1.1)-(1.3) and also let the nodal points of the $n$th eigenfunction $\varphi_{n}$ be shown with $01,j=\overline{1,n-1}}$ is dense in $[0,\pi]$ (see [10]). \begin{theorem}{\label{theor}}The nodal points of the aftereffect problem (1.1)-(1.3) are \begin{eqnarray*} x_{n}^{j}=(j-\frac{1}{2})\frac{\pi}{n}+\frac{1}{n^{2}}q_{1}(x_{n}^{j})+\frac{1}{2n^{2}}\int_{0}^{x_{n}^{j}}q(t)\cos 2nt dt \end{eqnarray*} \begin{eqnarray} \ \ \ \ \ \ \ \ +\frac{1}{n^{2}}\int_{0}^{x_{n}^{j}}\int_{0}^{t}M(t-s)\cos nt \cos ns ds dt+O(\frac{1}{n^{3}}), \end{eqnarray} and the nodal length is \begin{eqnarray*} l_{n}^{j}=\frac{\pi}{n}+\frac{1}{2 n^{2}}\int_{x_{n}^{j}}^{x_{n}^{j+1}}q(t) dt+\frac{1}{2n^{2}}\int_{x_{n}^{j}}^{x_{n}^{j+1}}q(t)\cos 2nt dt \end{eqnarray*} \begin{eqnarray} \ \ \ \ \ \ \ \ +\frac{1}{n^{2}}\int_{x_{n}^{j}}^{x_{n}^{j+1}}\int_{0}^{t}M(t-s)\cos nt \cos ns ds dt+O(\frac{1}{n^{3}}). \end{eqnarray} \end{theorem} \begin{proof} Since the nodal points are the zeroes of the eigenfunctions, then we get from (2.1) that \begin{eqnarray*} \varphi_{n}(x)=\cos\rho_{n} x+h\frac{\sin\rho_{n} x}{\rho_{n}}+\int_{0}^{x}\frac{\sin\rho_{n}(x-t)}{\rho_{n}} \end{eqnarray*} \begin{eqnarray*} \ \ \ \ \ \ \ \ \ \times \left(q(t)\varphi_{n}(t)+\int_{0}^{t}M(t-s)\varphi_{n}(s)ds\right)dt \end{eqnarray*} \begin{eqnarray*} \ \ \ \ \ \ \ \ \ \ \ \ \ =\cos\rho_{n} x+h\frac{\sin\rho_{n} x}{\rho_{n}}+\frac{\sin\rho_{n}(x)}{\rho_{n}}\int_{0}^{x}\cos \rho_{n}(t) \end{eqnarray*} \begin{eqnarray*} \ \ \ \ \ \ \ \ \ \times \left(q(t)\varphi_{n}(t)+\int_{0}^{t}M(t-s)\varphi_{n}(s)ds\right)dt \end{eqnarray*} \begin{eqnarray*} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -\frac{\cos\rho_{n}(x)}{\rho_{n}}\int_{0}^{x}\sin\rho_{n}(t)\left(q(t)\varphi_{n}(t)+\int_{0}^{t}M(t-s)\varphi_{n}(s)ds\right)dt. \end{eqnarray*} Now, we set $\varphi_{n}(x)=0.$ Thus, we obtain \begin{eqnarray*} \cot\rho_{n} x+\frac{h}{\rho_{n}}+\frac{1}{\rho_{n}}\int_{0}^{x}\cos \rho_{n}(t)\left(q(t)\varphi_{n}(t)+\int_{0}^{t}M(t-s)\varphi_{n}(s)ds\right)dt \end{eqnarray*} \begin{eqnarray*} -\frac{\cot\rho_{n}(x)}{\rho_{n}}\int_{0}^{x}\sin\rho_{n}(t)\left(q(t)\varphi_{n}(t)+\int_{0}^{t}M(t-s)\varphi_{n}(s)ds\right)dt=0, \end{eqnarray*} then, for $n\rightarrow\infty$, we get \begin{eqnarray*} x_{n}^{j}=(j-\frac{1}{2})\frac{\pi}{\rho_{n}}+\frac{h}{\rho_{n}^{2}}+\frac{1}{\rho_{n}^{2}}\int_{0}^{x_{n}^{j}}\cos \rho_{n}(t)\left(q(t)\varphi_{n}(t)+\int_{0}^{t}M(t-s)\varphi_{n}(s)ds\right)dt. \end{eqnarray*} From (2.3) and (2.17), we obtain \begin{eqnarray*} x_{n}^{j}=(j-\frac{1}{2})\frac{\pi}{n}+\frac{1}{n^{2}}q_{1}(x_{n}^{j})+\frac{1}{2n^{2}}\int_{0}^{x_{n}^{j}}q(t)\cos 2nt dt \end{eqnarray*} \begin{eqnarray*} \ \ \ \ \ \ \ \ +\frac{1}{n^{2}}\int_{0}^{x_{n}^{j}}\int_{0}^{t}M(t-s)\cos nt \cos ns ds dt+O(\frac{1}{n^{3}}). \end{eqnarray*} Also, the nodal length is \begin{eqnarray*} l_{n}^{j}=x_{n}^{j+1}-x_{n}^{j}, \end{eqnarray*} therefore \begin{eqnarray*} l_{n}^{j}=\frac{\pi}{n}+\frac{1}{2n^{2}}\int_{x_{n}^{j}}^{x_{n}^{j+1}}q(t)dt+\frac{1}{2n^{2}}\int_{x_{n}^{j}}^{x_{n}^{j+1}}q(t)\cos 2nt dt \end{eqnarray*} \begin{eqnarray*} \ \ \ \ \ \ \ \ +\frac{1}{n^{2}}\int_{x_{n}^{j}}^{x_{n}^{j+1}}\int_{0}^{t}M(t-s)\cos nt \cos n s ds dt+O(\frac{1}{n^{3}}), \end{eqnarray*} and consequently, the theorem is proved. \end{proof} \begin{example} Let $h=1$ and $q(x)=M(x)=x.$ Using (2.19) and (2.20), we obtain \\ \begin{center} \begin{tabular}{c c c c c c c c c c} \hline % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ... \multicolumn{6}{c}{The numerical values of the nodal points} \\ \cline{1-7} $x_{n}^{j}$ & j=1 & j=2 & j=3 & j=4 & j=5 & j=6 & j=7 & j=8 & j=9 \\ \hline n=2 & 1.0581 & & & & & & & & \\ n=3 & 0.6391 & 0.7473 & & & & & & & \\ n=4 & 0.4566 & 1.2613 & 2.0852 & & & & & & \\ n=5 & 0.3547 & 0.9909 & 1.6351 & 2.2870 & & & & & \\ n=6 & 0.2899 & 0.8166 & 1.3483 & 1.8821 & 2.4220 & & & & \\ n=7 & 0.2450 & 0.6955 & 1.1486 & 1.6030 & 2.0606 & 2.5188 & & & \\ n=8 & 0.2121 & 0.6058 & 1.0011 & 1.3970 & 1.7949 & 2.1931 & 2.5935 & & \\ n=9 & 0.1869 & 0.5366 & 0.8873 & 1.2384 & 1.5907 & 1.9432 & 2.2971 & 2.6510 & \\ n=10 & 0.1671 & 0.4817 & 0.7969 & 1.1124 & 1.4287 & 1.7451 & 2.0624 & 2.3798 & 2.6982 \\ \hline \end{tabular} \end{center} and also \\ \begin{center} \begin{tabular}{c c c c c c c c c} \hline % after \\: \hline or \cline{col1-col2} \cline{col3-col4} ... \multicolumn{6}{c}{The numerical values of the nodal length} \\ \cline{1-7} $l_{n}^{j}$ & j=1 & j=2 & j=3 & j=4 & j=5 & j=6 & j=7 & j=8 \\ \hline n=3 & 1.0895 & & & & & & & \\ n=4 & 0.8000 & 0.8268 & & & & & & \\ n=5 & 0.6345 & 0.6452 & 0.6493 & & & & & \\ n=6 & 0.5267 & 0.5317 & 0.5338 & 0.5398 & & & & \\ n=7 & 0.4505 & 0.4532 & 0.4544 & 0.4576 & 0.4582 & & & \\ n=8 & 0.3937 & 0.3953 & 0.3960 & 0.3978 & 0.3983 & 0.4004 & & \\ n=9 & 0.3497 & 0.3507 & 0.3511 & 0.3523 & 0.3525 & 0.3539 & 0.3539 & \\ n=10 & 0.3146 & 0.3152 & 0.3155 & 0.3162 & 0.3164 & 0.3173 & 0.3173 & 0.3183 \\ \hline \end{tabular} \end{center} \end{example} \subsection{\small{\bf{The uniqueness theorem for the inverse aftereffect problem }}} In this section, we consider two boundary value problems $L(q,M,h,H)$ and $ \tilde{L}(q,\tilde{M},\tilde{h},\tilde{H}) $ where $ \tilde{M} $ has same properties of $ M $ and prove the uniqueness theorem by using any dense subset of the nodal points. \begin{theorem}{\label{theor}} Let $q(x)=\tilde{q}(x)$ on $[0,\pi]$. Then the function $M$ and the numbers $h,$ $H$ are uniquely determined by any dense subset of the nodes in $[0,\pi]$. \end{theorem} \begin{proof} Consider the problems \begin{eqnarray} -y''(x)+q(x)y(x)+\int_{0}^{x}M(x-t)y(t)dt=\rho^{2} y(x),& 0\leq x\leq \pi, \end{eqnarray} \begin{eqnarray} y'(0)-h y(0)=0,\ \ \ \ \ \ \ \ y'(\pi)+H y(\pi)=0, \end{eqnarray} and \begin{eqnarray} -y''(x)+q(x)y(x)+\int_{0}^{x}\tilde{M}(x-t)y(t)dt=\tilde{\rho}^{2} y(x),& 0\leq x\leq \pi, \end{eqnarray} \begin{eqnarray} y'(0)-\tilde{h} y(0)=0,\ \ \ \ \ \ \ \ y'(\pi)+\tilde{H} y(\pi)=0. \end{eqnarray} Let $\varphi_{n}(x)$ and $\tilde{\varphi}_{n}(x)$ be the solutions of (2.21) and (2.23) under the initial conditions $ \varphi_{n}(0,\rho)=1,$ $\varphi_{n}'(0,\rho)=h$ and $\tilde{\varphi}_{n}(0,\rho)=1,$ $\tilde{\varphi}'_{n}(0,\rho)=\tilde{h}$, respectively and also let $ x_{n}^{j}=\tilde{x}_{n}^{j}, $ for $n>1$ and $j=1,2,...,n-1,$ be a dense set in $[0,\pi]$ (see [10]). Then from (2.21) and (2.23), we obtain \begin{eqnarray*} [\tilde{\varphi}_{n}'(x)\varphi_{n}(x)-\tilde{\varphi}_{n}(x)\varphi'_{n}(x)]'= \int_{0}^{x}[\tilde{M}(x-t)\varphi_{n}(x)\tilde{\varphi}_{n}(t) \end{eqnarray*} \begin{eqnarray} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -M(x-t)\varphi_{n}(t)\tilde{\varphi}_{n}(x)] dt+(\rho_{n}^{2}-\tilde{\rho}_{n}^{2})\varphi_{n}\tilde{\varphi}_{n}, \end{eqnarray} integrating (2.25) from $ 0 $ to $ x_{n}^{j} $ and using (2.22) and (2.24), we get \begin{eqnarray*} (h-\tilde{h})\varphi_{n}(0)\tilde{\varphi}_{n}(0)=\int_{0}^{x_{n}^{j}} \int_{0}^{x}[\tilde{M}(x-t)\varphi_{n}(x)\tilde{\varphi}_{n}(t) \end{eqnarray*} \begin{eqnarray} \ \ \ \ \ \ \ \ \ \ \ \ \ \ -M(x-t)\varphi_{n}(t)\tilde{\varphi}_{n}(x)] dt dx+(\rho_{n}^{2}-\tilde{\rho}_{n}^{2})\int_{0}^{x_{n}^{j}}\varphi_{n}(x)\tilde{\varphi}_{n}(x)dx. \end{eqnarray} Now, we select a subsequence of the nodal points from the dense set that tends to $0$, then from (2.26), we get $h=\tilde{h}.$ Integrating both sides of (2.25) from $ x_{n}^{j} $ to $ \pi $, we obtain \begin{eqnarray*} (H-\tilde{H})\varphi_{n}(\pi)\tilde{\varphi}_{n}(\pi)=\int_{x_{n}^{j}}^{\pi} \int_{0}^{x}[\tilde{M}(x-t)\varphi_{n}(x)\tilde{\varphi}_{n}(t) \end{eqnarray*} \begin{eqnarray} \ \ \ \ \ \ \ \ \ \ \ \ \ \ -M(x-t)\varphi_{n}(t)\tilde{\varphi}_{n}(x)] dt dx+(\rho_{n}^{2}-\tilde{\rho}_{n}^{2})\int_{x_{n}^{j}}^{\pi}\varphi_{n}(x)\tilde{\varphi}_{n}(x)dx. \end{eqnarray} We select a subsequence of the nodal points that tends to $\pi$. Thus, we get $H=\tilde{H}.$ Consequently $\rho_{n}=\tilde{\rho_{n}}.$ Now, Integrating (2.25) from $ 0 $ to $ x_{n}^{j} $, we obtain \begin{eqnarray} \int_{0}^{x_{n}^{j}}\int_{0}^{x}[\tilde{M}(x-t)\varphi_{n}(x)\tilde{\varphi}_{n}(t)-M(x-t)\varphi_{n}(t)\tilde{\varphi}_{n}(x)]dtdx=0. \end{eqnarray} We take a sequence $ \{x_{n}^{j}\}_{n>1,j=\overline{1,n-1}} $ accumulating at an arbitrary $ b\in[0,\pi] $. Then, using (2.3) for $n\rightarrow\infty$, we get \begin{eqnarray} \int_{0}^{b}\int_{0}^{x}[\tilde{M}(x-t)-M(x-t)]\cos n x \cos n t dtdx=0. \end{eqnarray} Consequently, from the completeness of the function $ \cos, $ we can conclude that $ M $ is uniquely determined on $ [0,\pi] $. \end{proof} \begin{thebibliography}{10} $[$1$]$ Y. M. Berezanskii, The uniqueness theorem in the inverse spectral problem for the Schr$\ddot{o}$dinger equation, \textit{Turdy Moskov. Mat. Obshch,} \textbf{7} (1958), 3-51. \\ $[$2$]$ P. J. Browne, B. D. Sleeman, Inverse nodal problems for sturm-liouvile equations with eigenparameter dependent boundary conditions, \textit{Inverse problems,} \textbf{12} (1996), 377-381. \\ $[$3$]$ P. J. Browne and B. D. Sleeman, A uniqueness theorem for inverse eigenparameter dependent Sturm-Liouville problems, \textit{Inverse problems,} \textbf{13(6)} (1997), 1453-1462. \\ $[$4$]$ Y. H. Cheng, C. K. Law, J. Tsay, Remarks on a new Inverse nodal problem, \textit{J. Math. Anal.,} \textbf{248} (2000), 145-155. \\ $[$5$]$ A. Dabbaghian, Sh. Akbarpour, A. Neamaty, The uniqueness theorem for discontinuous boundary value problems with aftereffect using the nodal points, \textit{Iranian Journal of Science and Technology,} \textbf{7} (2012), 391-394. \\ $[$6$]$ G. Freiling, V. A. Yurko, \textit{Inverse Sturm-Liouville problems and their applications,} NOVA science publishers (New York) 2001.\\ $[$7$]$ F. Gesztesy and B. Simon, Uniqueness theorems in inverse spectral theory for one-dimensional Schr$\ddot{o}$dinger operators, \textit{Trans. Amer. Math. Soc.,} \textbf{348(1)} (1996), 349-373. \\ $[$8$]$ O. H. Hald, J. R. Mclaughlin, Solutions of inverse nodal problems, \textit{Inverse Problems,} \textbf{5} (1989) 307-347.\\ $[$9$]$ M. Kobayashi, A uniqueness proof for discontinuous inverse Sturm-Liouville problems with symmetric potentials, \textit{Inverse Problems,} \textbf{5} (1989), 767-781.\\ $[$10$]$ H. Koyunbakan, A new inverse problem for the diffusion operator, \textit{Applied Mathematics Letters,} \textbf{19} (2006) 995-999.\\ $[$11$]$ H. Koyunbakan, E. S. Panakhov, Solution of a Discontinuous Inverse nodal problem on a finite interval, \textit{Math. Comput. Modelling,} \textbf{44} (2006) 204-209.\\ $[$12$]$ C. K .Law, C. F. Yang, A constructing the potential function and its derivatives using nodal data, \textit{Inverse Problem,} \textbf{14} (1998) 299-312.\\ $[$13$]$ J. D. Murray, \textit{Asymptotic Analysis,} Springer-Verlag (New York) 1984.\\ $[$14$]$ J. R. Mclaughlin, Inverse spectral theory using nodal points as data-A uniqueness result, \textit{J.Differential equations,} \textbf{73} (1988) 354-362.\\ $[$15$]$ E. S. Panakhov, H. Koyunbakan, Inverse nodal problems for second order differential operators with a regular singularity, \textit{International journal of difference equations,} \textbf{2} (2006) 241-247.\\ $[$16$]$ M. Shahriari, A. Jodayree and G. Teschl, Uniqueness for inverse Sturm-Liouville problems with a finite number of transmission conditions, \textit{J. Math. Anal. Appl.,} \textbf{395} (2012), 19-29. $[$17$]$ C. T. Shieh, V. A. Yurko, Inverse nodal and inverse spectral problems for discontinuous boundary value problems, \textit{J. Math. Anal.,} \textbf{47} (2008) 266-272.\\ $[$18$]$ X. F. Yang, A solution of the inverse nodal problem, \textit{Inverse Problem}, Transaction A, \textbf{13} (1997) 203-213.\\ \end{thebibliography} \end{document}