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1. Introduction

As a mathematical point of view, generally, an orthonormal basis with

some suitable approximation properties is called a wavelet ([5]). Indeed
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the first serious study in this area was done by Haar in 1910 by obtain-

ing a basis set of functions in L2(R). But the basic research on wavelets

for application was started about 30 years ago. In 1980’s analysis and

solution of the optimal control problem of dynamical systems via apply-

ing the orthogonal functions are considered by researchers like Chen and

Hsiao (1975), Balanisami and Batachara (1981), and Livoshio (1981) (see

[10]). Donoho in 1993 showed that wavelets could be closed to optimal

solution for a class of problems (see [6]). Hsiao also in [14] presented a

method for determining the control function for dynamical systems by

the approximation properties of the Haar orthogonal function in [0, 1) in

1997. The main advantages of this method is the transfer of the control

problem into a simpler optimization one. In fact, strong properties of

wavelets in solving differential equations (see [13] and [14]) recently

have caused to consider them for solving optimal control problems more

than before (see [16] and [17]). Moreover these works also show how

wavelets are important for approximation targets (see also [1], [2], [3],

[4] and [7]).

2. Dense Wavelets in C ′(R2)

Definition. A Multiresolution Analysis (MRA) for the Sobolev space of

order k, Hk(Ω) (or similarly L2(R)), is a sequence {vm}m∈Z of closed
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and linear subspaces of Hk(Ω) that satisfies the following conditions:

• (MRA1) ∀m ∈ Z, vm ⊂ vm+1,

• (MRA2)
⋂

m∈Z vm = {0} and
⋃

m∈Z vm = Hk(Ω) (i.e.
⋃

m∈Z vm

is dense in Hk(Ω)),

• (MRA3) ∀m ∈ Z : f(x) ∈ vm ⇔ f(2x) ∈ vm+1,

• (MRA4) ∀n ∈ Z, f(x) ∈ v0 ⇔ f(x− n) ∈ v0,

• (MRA5) there exist a function ϕ ∈ v0 such that {ϕ(x− n)|n ∈ Z}
is an orthogonal basis for v0; ϕ is called scaling function (or father

wavelet). Moreover {vm}m∈Zis called the MRA generated by ϕ.

We note (MRA2) means that for every f ∈ Hk(Ω) there exists a

sequence {fn}n∈N in
⋃

m∈Z vm which converges to f .

Definition. A wavelet (or mother wavelet) is a function ψ ∈ L2(R) in

which for ψm,n(x) =
√

2mψ(2mx− n) the set {ψm,n(x)|m,n ∈ Z} be an

orthogonal basis for L2(R). We also define vm = span{ϕm,n(x)|n ∈ Z}
and wm = span{ψm,n(x)|n ∈ Z}.

When we consider {v0, w0, w1, . . .} as a basis, a function f ∈ L2(R)

could be shown with respect to the above wavelet as follows ( [19]):

f =< f, ϕ(x) > ϕ +
∞∑

m=0

∑

n∈Z
< f, ψm,n(x) > ψm,n(x) (1)
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in which < f, g >=
∫

f(x)g(x)dx; this fact presents one of the powerful

ability of wavelets in approximation schemes. The following example

can explain it.

Example 2.1. By applying the above equation, the known function sin

is approximated for n = 0, 1, . . . , 7 and two cases of m = 0, 1, 2, 3 and

n = 0, 1, . . . , 8. The following figures show how these approximations

are closed.

Figure 1: Approximating sin function for m = 0, 1, 2, 3.

Definition. For given a > 0 and n ∈ Z, a spline wavelet with nods in aZ

is a function f : R → R in which f ∈ Cn−1(R) and ∀j ∈ Z, f |[ja,(j+1)a]

is a polynomial with maximum degree n.

Definition. Let N0(x) = χ[0,1)(x) (a characteristic function); for n =
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Figure 2: Approximating sin function for m = 0, 1, . . . , 8.

1, 2, ... we define recursively Nn = Nn−1 ∗ N0 in which (f ∗ g)(x) =
∫
R f(x− y)g(y)dy. Nn is called a (uniform) B-spline of degree n.

Example 2.2. By use of Maple 8, N2 (a square B-spline) is calculated

as:

N2 =





0 x < 0
1
2x2 0 6 x < 1
−x2 + 3x− 3

2 1 6 x < 2
1
2x2 − 3x− 9

2 2 6 x < 3
0 3 6 x

In general, spline of degree n with nods in aZ is denoted by Sn(aZ).

The following important theorem for these wavelets holds (see [10]).

Theorem 2.1. If vj = Sn(2−jZ)
⋂

Hn−1(R) then {vj}j∈Z is a MRA

for Hn−1(R) with {Nn(x− k) : k ∈ Z} as a basis (Riesz basis) for v0.
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By use of the square B-spline scaling function we define

vj = span{N2(2jx− k), k ∈ Z}

and

v
′
j = span{N2(2jt− k), k ∈ Z}.

Since {vj}j∈Z and {v′j}j∈Z are MRA for H1(R), if we define

Vj = vj

⊗
v
′
j

= span{N2(2jx− k)N2(2jt− `);N2(2jx− k) ∈ vj ,

N2(2jt− `) ∈ v
′
j},

then we will have the following theorem for approximation schemes.

Theorem 2.2.
⋃

j∈Z Vj is dense in C
′
(R2).

Proof. By theorem 2.1 {Vj}j∈Zis a MRA for H1(R). Hence by MRA2

we have
⋃

j∈Z Vj = H1(R2); moreover ... ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 (MRA1)

and therefore
⋃

j∈Z Vj = limj→∞ Vj . Since C
′
(R2) is dense in H1(R2)

( [10]), and limj→∞ Vj ⊆ C
′
(R2),

⋃
j∈Z Vj is dense in C

′
(R2). ¤

3. Classical Optimal Control Problem

A classical optimal control problem has the following form

Minimize u ∈ U :
∫

J
f0(t, x(t), u(t))dt ≡ I(p)
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Subject to : ẋ = g(t, x(t), u(t)),∀t ∈ J

in which

• J = [ta, tb] is the time interval and J0 = (ta, tb);

• for a bounded and closed set U ⊂ Rn the a.e. Lebesgue measurable

function u(t) : J → U is the control function;

• for a bounded and closed set U ⊂ Rn the absolutely continuous

function x(t) : J → A is the trajectory;

• let Ω = J ×A× U , it is supposed that f0 : Ω → R is continuous.

The pair p = (x, u) is called admissible if it satisfies in the above

conditions; the set of all admissible pairs is denoted by W .

Problems may arise in the quest for the finding the optimal pair:

It is difficult to determine the solution of the differential equations, to

identify an admissible pair, to find a general applicable approximation

method to estimate the optimal control and its related trajectory at the

same time, and etc. We therefore change the problem into a measure

theoretical one. This idea first was propounded by L. C. Young (1969)

in his book ([21]), even Rosenbloom (1952) and Ghouila-Houri (1967)

had done some related works previously (see [19]). In 1986 Rubio

theorized this method in his book ([19]). Afterwards, base on this
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method (embedding method), a lot of papers was published in the area

of optimal control and optimal shape design theory (such as papers by

Rubio ([20]), Kamyad ([15]), Farahi ([9]), Fakharzadeh ([8]), etc).

The basis of this method is replacing the admissible pairs with posi-

tive Radon measures. First the problem will be defined in a variational

form. Then it will change to a measure theoretical one in which its solu-

tion can be obtained from a linear programming problem approximately.

Finally the nearly optimal pair of control and trajectory will be identify

from the solution of the linear programming problem.

3.1 Metamorphosis and Existence

Rubio in ([19]) proved that each optimal pair is satisfied in the following

properties:

∫

J
ϕg[t, x(t), u(t)]dt = ϕ(tb, xb)− ϕ(ta, xa) ≡ 4ϕ ∀ϕ ∈ C

′
(B)

∫

J
ψg

j [t, x(t), u(t)]dt = 0 j = 1, ..., n,∀ψ ∈ D(J0)
∫

J
f(t, x(t), u(t))dt = af ∀f ∈ C1(Ω)

where af is the Lebesgue integral of f on J , C
′
(B) is the space of real-

valued continuously differentiable functions on B such that they and

their first derivatives are bounded on B, D(J0) is the space of infinitely

differentiable real-valued functions with compact support in J0, C1(Ω)

is the space of functions in C(Ω) which depend only on the variable t
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and moreover, here we have:

ϕg(t, x, u) = ϕx(t, x)g(t, x, u) + ϕt(t, x).

For a given admissible pair p, let

Λp : F ∈ C(Ω) −→
∫

J
F (t, x(t), u(t))dt,

we have the following proposition.

Proposition 3.1. Transformation p −→ Λp from W to the set of linear

mappings Λp is one to one.

In the other hand, from Riesz Representation Theorem, one can

present each Λp by a measure µp ∈ M+(Ω) (the set of all positive Radon

measure on Ω) which satisfies in the above properties. Now to overcome

the difficulties, we will extend the problem over the set of all pairs of

measures in M+(Ω) satisfying the conditions mentioned in (1). Hence

we have the following new problem.

Minimize : µ(f0) µ ∈ M+(Ω)

Subject to : µ(ϕg) = 4ϕ ∀ϕ ∈ C ′(B)

µ(ψg
j ) = 0 j = 1, 2, ..., n,∀ψ ∈ D(J0)

µ(f) = af ∀f ∈ C1(Ω)

The above representation of the problem has many advantages. Let Q

be the solution space of (1), then
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• existence of an optimal pair of measures in Q is guaranteed;

• functions in (1) are linear in their arguments so the problem is

Linear;

• Since extending the underlying space infQ µ(f0) 6 infW I(p); thus

the minimization is global.

Although the problem (1) is linear the underling space still has in-

finite dimension. It would be more appropriate if some how one could

obtain its solution from the solution of a finite linear programming prob-

lem.

4. Approximation

Now we explain how to approximate the optimal pair for the classical

problem. This fact is done in three steps. First the number of constraints

be fixed. Then by discretizing, and using the properties of the optimal

measure, the problem changes into a finite linear programming one.

Finally the last step is related to the applications of wavelets.

Step one: We choose a countable total sets in C ′(B), D(J0) and C1(ω).

For the first set of equations in (1), we choose the function {ϕj}j∈Z as

ϕj =
∑

k∈Z2

N2(2jx− k1)N2(2jt− k2) , k = (k1, k2). (1)
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Since Vj ’s are dense in C ′(B) (theorem 2.2), the set of finite linear com-

binations of ϕj ’s are dense in C ′(B). We remind that up to now re-

searchers usually have used the set of polynomials {t, x, tx, t2x, ...} which

may cause some problems in feasibility.

For the second and third sets of equations in (1), the same as in [19],

we respectively select

ψj = sin(2πj
t− ta
4t

) , ψj = 1− cos(2πj
t− ta
4t

), j = 1, 2, ...

fs(t) =
{

1 t ∈ Js

0 t /∈ Js

where Js = [ta +(s−1)d, ta +sd] and d = 4t
M3

for a given M3. Although

the last function is not continuous, their linear combinations can approx-

imate a function in C1(Ω) arbitrarily well; also they are very important

for determining the optimal control. Moreover the following proposition

(see [19]) shows that the solution can be approximated just by finite

number of these functions.

Proposition 4.1. Let M1,M2 and M3 be the positive integers. Con-

sider the problem of minimizing the function µ −→ µ(f0) over the set

Q(M1,M2,M3) of measures in M+(Ω) satisfying

µ(ϕg
j ) = 4ϕj j = 1, 2, . . . ,M1

µ(ψg
i ) = 0 i = 1, 2, . . . , M2

µ(fs) = as s = 1, 2, . . . , M3
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then inf
Q(M1,M2,M3)

µ(f0) tends to infQ µ(f0) when M1,M2,M3 −→∞.

Step two: By the results of Rosenbloom works in [18], the optimal

measure of (2), µ∗, has the form

µ∗ =
M1+M2+M3∑

k=1

α∗kδ(z
∗
k) where z∗k ∈ Ω, α∗k > 0

and δ(z∗k) is the unitary atomic measure with support the singleton

set {z∗k}. But applying this fact convert (2) to a nonlinear one in

which its unknowns are the coefficients {α∗k}M1+M2+M3
i=1 and the supports

{z∗k}M1+M2+M3
i=1 . However as shown in [19], it is sufficient to select the

points z∗k’s from a dense subset of Ω. Now by applying a discretization

on Ω with nods in a dense subset of it, one is able to approximate the

solution of (1) by the solution of a finite linear programming problem.

Step three: Although the number of ϕj in (2) is finite, each one is

defined by an infinite series in which its calculations, indeed, is impossi-

ble (especially in numerical works). Considering the ability of wavelets

in approximation (section 2), by selecting the finite number of wavelets

in (1) each ϕj can be calculated approximately. Therefor if the number

of wavelets in this calculation increases, the calculation will be more

accurate. Hence, by choosing M1, we select K1M1 ×K2M1 of this terms

and then obtain the nearly optimal solution of (1) from the solution

of the following FLP problem. (We mention, to compare with Rubio’s
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method, this one has an extra approximation step, one must remem-

ber the abilities of wavelets, specially in sobolove spaces and when the

control system is governed by a partial differential equation.)

Minimize :
N∑

j=1

αjf0(zj)

Subject to :
N∑

j=1

αj(
∑

(k1,k2)

N2(2mxj − k1)N2(2mtj − k2))g

= 4
∑

(k1,k2)

N2(2mxj − k1)N2(2mtj − k2)

k1 = 0, 1, 2, ...,K1m, k2 = 0, 1, 2, ...,K2m, m = 0, 1, ...,M1

N∑

j=1

αjψ
g
h(zj) = 0 h = 1, 2, ..., M2

N∑

j=1

αjfs(zj) = as s = 1, 2, ..., M3

αj > 0 j = 1, 2, ..., N

5. Numerical Example

The same as the example 3 in [19] chapter 5, we assume f0 = u2,

ẋ(t) = 1
2x + u and x(0) = 0. Each interval J = A = U = [0, 1] was

divided into 10 equal subintervals and a point in each was selected;

hence N = 1000. Also for M1 = 3, we had

ϕ1(t, x) = N2(x)N2(t),
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ϕ2(t, x) =
3∑

k=0

3∑

`=0

N2(22x− k)N2(22t− `),

ϕ3(t, x) =
31∑

k=0

31∑

`=0

N2(25x− k)N2(25t− `);

hence4ϕ1 = 0.25, 4ϕ2 = 0 and4ϕ3 = 0. Finally M2 = 7 and M3 = 10

and therefor each as = 0.1 were chosen. In this manner a linear program-

ming problem like (2) with 1000 unknowns and 20 equation was set up.

Then this problem was solved by revised simplex method with subrou-

tine DLPRS in IMSL library of Compaq Visual Fortran6. The optimal

value of objective function was 0.145218. Afterwards, as explained in

[19], the nearly optimal pair of control and trajectory functions are ob-

tained by help of Maple8, and drawn in figures (3) and (4). (We remind

that the optimal value from Rubio’s method in [19] is 0.1451 and the

main result is 0.14549.)

Conclusion. The explained method was the first attempt to solve op-

timal control problems by applying measures and wavelets. Although in

this Manner a step in approximation scheme and a state in discontinuity

are increased, but regarding the wide and growing up abilities of wavelets,

it could be much more applicable especially for more complicated cases.
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