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1 Introduction

Let A denote the class of functions h of the form

h(z) = z +
∞∑
k=2

akz
k,

that are analytic in the open unit disk U = {z ∈ C : |z| < 1}, and satisfy
the normalizasyon condition h(0) = h

′
(0)− 1 = 0. Let H be the family

of all harmonic functions of the form

f = h+ ḡ, (1)

where

h(z) = z +
∞∑
k=2

akz
k, g(z) =

∞∑
k=1

bkz
k, (z ∈ U) (2)

are in the class A and then f(z) is given by,

f(z) = z +

∞∑
k=2

akz
k +

∞∑
k=1

bkzk, (z ∈ U). (3)

Denote by the SH the subclass of H that are univalent and sense-
preserving in U. One shows easily that the sense-preserving property

implies that |b1| < 1. Note that
f−b1f

1−|b1 |
2 ∈ SH whenever f ∈ SH. We also

let the subclass S0
H or SH,

S0
H = {f = h+ ḡ ∈ SH : g

′
(0) = b1 = 0}.

The classes S0
H and SH were first studied in ([13]). Also, let S∗,0

H , C0
H

and K0
H, denote the subclasses of S0

H of harmonic functions which are,
respectively, starlike, close-to-convex and convex in U. For definitions
and properties of these classes, one may refer to ([1, 2, 3, 13, 14]).

Let TH be the family of all harmonic functions of the form f = h+ ḡ,
where

h(z) = z −
∞∑
k=2

|ak|zk, g(z) =
∞∑
k=1

|bk|zk, (z ∈ U). (4)
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This class was studied by Silverman [27].

For 0 ≤ α < 1, 0 ≤ r < 1 and 0 ≤ θ ≤ 2π, let

NH(α) = {f ∈ H : Re(
f

′
(z)

z′ ) ≥ α, z = reiθ},

where

f
′
(z) =

∂

∂θ
f(reiθ) = i(zh

′
(z)− zg′(z)), z

′
=

∂

∂θ
(reiθ)

and define

T NH(α) = NH(α) ∩ TH.

These classes are studied by Ahuja and Jahangiri [3]. One can find
different areas which young researchers can find some connections with
the field of this work. For more contributions see [4, 5, 6, 7, 8, 17, 19,
9, 28].

1.1 Definition [2]

A function f = h + ḡ is said to be γ-uniformly harmonic starlike
functions in U if satisfied the following condition:

Re

(
zf

′
(z)

z′ [(1− η)z + η(h(z) + g(z))]
− δ

)
≥ γ

∣∣∣∣∣ zf
′
(z)

z′ [(1− η)z + η(h(z) + g(z))]
−1

∣∣∣∣∣,
for 0 ≤ η ≤ 1, 0 ≤ δ < 1, 0 ≤ γ < ∞.

The family of this functions is denoted by GH(γ,δ,η). Also, define
VGH(γ,δ,η)=GH(γ,δ,η)∩TH .

The above defined class includes several simpler subclasses. We point
out here some of these special cases as follows:

(a) Putting γ = 0 and η = 0, we obtain NH(δ), which was studied
by Ahuja and Jahangiri[3];

(b) Putting γ = 0 and η = 1, we obtain S∗
H(δ), which was studied

by Jahangiri[16];

(c) Putting η = 1 and δ = 1, we obtain G∗
H(γ), which was studied

by Rosy et al.[24];
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(d) Putting γ = 1, δ = 0, η = 1 and g(z) ≡ 0, we obtain US∗, which
was studied by Rønning[25];

(e) Putting η = 1 we obtain HUS∗(γ, δ), which was studied by
Porwal and Srivastava[23].

Lemma 1.1. [13] If f ∈ K0
H and f = h+ ḡ where h and g are given by

(2) with b1 = 0, then

|ak| ≤
k + 1

2
and |bk| ≤

k − 1

2
(k ≥ 1).

Lemma 1.2. [1] If f ∈ C0
H or S∗,0

H and f = h + ḡ where h and g are
given by (2) with b1 = 0, then

|ak| ≤
(2k + 1)(k + 1)

6
and |bk| ≤

(2k − 1)(k − 1)

6
(k ≥ 1).

Lemma 1.3. [3] If f ∈ T NH(α) and f = h+ ḡ where h and g are given
by (4), then

|ak| ≤
1− α

k
and |bk| ≤

1− α

k
(k ≥ 1, 0 ≤ α < 1).

Lemma 1.4. [2] Let 0 ≤ η ≤ 1, 0 ≤ δ < 1 and 0 ≤ γ < ∞. Also, let
f = h+ ḡ, where h and g are given by (2). If the following condition

∞∑
k=2

k(γ + 1)− η(γ + δ)

1− δ
|ak|+

∞∑
k=1

k(γ + 1) + η(γ + δ)

1− δ
|bk| ≤ 1 (5)

is hold, then f is sense-preserving and harmonic mapping in U and
f ∈ GH(γ, δ, η).

Lemma 1.5. [2] Let 0 ≤ η ≤ 1, 0 ≤ δ < 1 and 0 ≤ γ < ∞. Also let,
f = h+ ḡ, where h and g are given by (4). A function f ∈ VGH(γ, δ, η)
if and only if the condition (5) holds. Moreover, if f ∈ VGH(γ, δ, η),
then
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|ak| ≤
1− δ

k(γ + 1)− η(γ + δ)
(k ≥ 2),

|bk| ≤
1− δ

k(γ + 1) + η(γ + δ)
(k ≥ 1).

In this paper, motivated by the earlier works studied by Porwal and
Srivastava [23], we consider subclasses of harmonic univalent functions
f ∈ H given by (2) and made an attempt to study inclusion relations
making use of Pascal distribution series.

2 Applications to Pascal Distribution Series

The Pascal distribution series is a current subject of study in Geo-
metric Function Theory (see,[10, 11, 12, 15, 30]). Taking into account
the consequences on relations between various subclasses of analytic and
harmonic univalent functions by using hypergeometric functions (see
[2, 3, 13, 18, 20, 21, 22, 26]), we establish several relations between the
classes G0

H(γ, δ, η), K
0
H and S∗,0

H by applying the convolutaion operator
P r,s
p,q associated with Pascal distribution series are built.

Let us consider a non-negative discrete random variable X with a
Pascal probability generating function

P (X = k) =

(
k + r − 1

r − 1

)
pk(1− p)r, k ∈ {0, 1, 2, 3, ...},

where p, r are named as the parameters.

Currently, a power series whose coefficients are probabilities of the
Pascal distribution is introduced

P r
p (z) = z+

∞∑
k=2

(
k + r − 2

r − 1

)
pk−1(1−p)rzk, (r ≥ 1, 0 ≤ p ≤ 1, z ∈ U).

(6)

Note that using the ratio test yields the following conclusion:
The radius of convergence of the power series given above is infinite. In
conclusion, the formulas used are as follows:
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∞∑
k=0

(
k + r − 1

r − 1

)
pk =

1

(1− p)r
,

∞∑
k=0

(
k + r − 2

r − 2

)
pk =

1

(1− p)r−1
,

∞∑
k=0

(
k + r

r

)
pk =

1

(1− p)r+1
,

∞∑
k=0

(
k + r + 1

r + 1

)
pk =

1

(1− p)r+2
, |p| < 1.

Further, throughout this paper unless otherwise stated, let r ≥ 1
and 0 ≤ p < 1.

Now, for r, s ≥ 1 and 0 ≤ p, q < 1, the operator is being introduced

P r,s
p,q (f)(z) = P r

p (z) ∗ h(z) + P s
q (z) ∗ g(z) = H(z) +G(z),

where

H(z) = z +

∞∑
k=2

(
k + r − 2

r − 1

)
pk−1(1− p)rakz

k

G(z) = b1z +
∞∑
k=2

(
k + s− 2

s− 1

)
pk−1(1− p)sbkz

k (7)

and ”∗” represents the convolution (or Hadamard product) of power
series.

To be able to build relations between harmonic convex functions
and Goodman-Rønning-type harmonic univalent functions, the following
conclusion is needed.

Lemma 2.1. [30] Let r, s ≥ 1 and 0 ≤ p, q < 1. Also, let f = h + ḡ ∈
H is given by (3). If the inequalities

∞∑
k=2

|ak|+
∞∑
k=1

|bk| ≤ 1, (|b1| < 1) (8)

and

(1− p)r + (1− q)s ≥ 1 + |b1|+
rp

1− p
+

sq

1− q
(9)

are hold, then P r,s
p,q (f) ∈ SH∗.
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3 Main Results

In this part, we will obtain the inclusion relations of harmonic classes
G0

H(γ,δ,η) with the classes K0
H and S∗

H respectively.

Theorem 3.1. Let r, s ≥ 1 and 0 ≤ p, q < 1. If the inequality

(γ + 1)

2

p2r(r + 1)

(1− p)2
+

[2(γ + 1)− η
2 (γ + δ)]pr

1− p
+

(γ + 1)

2

q2s(s+ 1)

(1− q)2

+ ((γ + 1)− η(γ + δ))[1− (1− p)r] +
[(γ + 1) + η

2 (γ + δ)]qs

1− q

≤ 1− δ (10)

is hold then

P r,s
p,q (K

0
H) ⊂ G0

H(γ, δ, η).

Proof. Let f = h + ḡ ∈ K0
H where h and g are of the form (2) with

b1 = 0. We need to show that P r,s
p,q (f)=H + G ∈ G0

H(γ,δ,η), where H
and G defined by (7) with b1 = 0 are analytic functions in U . In view
of Lemma 1.4, we need to prove that

Ψ1 =

∞∑
k=2

[k(γ + 1)− η(γ + δ)]

∣∣∣∣(k + r − 2

r − 1

)
(1− p)rpk−1ak

∣∣∣∣
+

∞∑
k=2

[k(γ + 1) + η(γ + δ)]

∣∣∣∣(k + s− 2

s− 1

)
(1− q)sqk−1bk

∣∣∣∣
≤ 1− δ.
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Considering Lemma 1.1, we get

Ψ1 ≤
∞∑
k=2

[
k(γ + 1)

2
− η

2
(γ + δ)

]
(k + 1)

(
k + r − 2

r − 1

)
(1− p)rpk−1

+
∞∑
k=2

[
k(γ + 1)

2
+

η

2
(γ + δ)

]
(k − 1)

(
k + s− 2

s− 1

)
(1− q)sqk−1

=
∞∑
k=2

[
(γ + 1)

2
(k − 1)(k − 2) + (2(γ + 1)− η

2
(γ + δ))(k − 1)

+ ((γ + 1)− η(γ + δ))

]
×
(
k + r − 2

r − 1

)
(1− p)rpk−1

+
∞∑
k=2

[
(γ + 1)

2
(k − 1)(k − 2) + ((γ + 1) +

η

2
(γ + δ))(k − 1)

]
×
(
k + s− 2

s− 1

)
(1− q)sqk−1

=
γ + 1

2
p2r(r + 1)(1− p)r

∞∑
k=0

(
k + r + 1

r + 1

)
pk

+

[
2(γ + 1)− η

2
(γ + δ)]pr(1− p)r

∞∑
k=0

(
k + r

r

)
pk

+ [(γ + 1)− η(γ + δ)] (1− p)r

[ ∞∑
k=0

(
k + r − 1

r − 1

)
pk − 1

]

+
γ + 1

2
q2s(s+ 1)(1− q)s

∞∑
k=0

(
k + s+ 1

s+ 1

)
qk

+ [(γ + 1) +
η

2
(γ + δ)]qs(1− q)s

∞∑
k=0

(
k + s

s

)
qk

=
(γ + 1)

2

p2r(r + 1)

(1− p)2
+

[2(γ + 1)− η
2 (γ + δ)]pr

1− p
+

(γ + 1)

2

q2s(s+ 1)

(1− q)2

+ [(γ + 1)− η(γ + δ)][1− (1− p)r] +
[(γ + 1) + η

2 (γ + δ)]qs

1− q

≤ 1− δ.
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The last expression is bounded above by (1− δ) by the given condition.
Thus the proof of Theorem 3.1 is complete. □

Remark 3.2. Putting γ = 1 in Theorem 3.1, we improve the result
obtained in ([29], Theorem 3.3).

Analogous to Theorem 3.1, we next find conditions of the class S∗,0
H ,

with G0
H(γ,δ,η). However, we first need Lemma 1.2, which may be also

found in [15],[14].

Theorem 3.3. Let r, s ≥ 1 and 0 ≤ p, q < 1. If the inequality

(γ + 1)r(r + 1)(r + 2)p3

(1− p)3
+

[152 (γ + 1)− η(γ + δ)]r(r + 1)p2

(1− p)2

+
[12(γ + 1)− 9

2η(γ + δ)]rp

1− p
+ 3[(γ + 1)− η(γ + δ)][1− (1− p)r]

+
(γ + 1)s(s+ 1)(s+ 2)q3

(1− q)3
+

[92(γ + 1) + η(γ + δ)]s(s+ 1)q2

(1− q)2

+
3[(γ + 1) + 1

2η(γ + δ)]sq

1− q

≤ 3(1− δ)

is hold, then
P r,s
p,q (S

∗,0
H ) ⊂ G0

H(γ, δ, η).

Proof. Let f = h + ḡ ∈ S∗,0
H where h and g are of the form (2) with

b1 = 0. We need to show that P r,s
p,q (f)=H + G ∈ G0

H(γ,δ,η), where H
and G defined by (7) with b1 = 0 are analytic functions in U . In view
of Lemma 1.4, it is enough to show that

Ψ2 =
∞∑
k=2

[k(γ + 1)− η(γ + δ)]

∣∣∣∣(k + r − 2

r − 1

)
(1− p)rpk−1ak

∣∣∣∣
+

∞∑
k=2

[k(γ + 1) + η(γ + δ)]

∣∣∣∣(k + s− 2

s− 1

)
(1− q)sqk−1bk

∣∣∣∣
≤ 1− δ.
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Considering Lemma 1.2, we have

Ψ2 ≤
1

3

{ ∞∑
k=2

[
k(γ + 1)

2
− η

2
(γ + δ)

]
(2k + 1)(k + 1)

(
k + r − 2

r − 1

)
(1− p)rpk−1

+
∞∑
k=2

[
k(γ + 1)

2
+

η

2
(γ + δ)

]
(2k − 1)(k − 1)

(
k + s− 2

s− 1

)
(1− q)sqk−1

}

=
1

3

{
(γ + 1)

∞∑
k=2

(
k + r − 2

r − 1

)
(k − 1)(k − 2)(k − 3)(1− p)rpk−1

+

[
15

2
(γ + 1)− η(γ + δ)

] ∞∑
k=2

(
k + r − 2

r − 1

)
(k − 1)(k − 2)(1− p)rpk−1

+

[
12(γ + 1)− 9

2
η(γ + δ)

] ∞∑
k=2

(
k + r − 2

r − 1

)
(k − 1)(1− p)rpk−1

+ [3(γ + 1)− 3η(γ + δ)]
∞∑
k=2

(
k + r − 2

r − 1

)
(1− p)rpk−1

+ (γ + 1)
∞∑
k=2

(
k + s− 2

s− 1

)
(k − 1)(k − 2)(k − 3)(1− q)sqk−1

+

[
9

2
(γ + 1) + η(γ + δ)

] ∞∑
k=2

(
k + s− 2

s− 1

)
(k − 1)(k − 2)(1− q)sqk−1

+

[
3(γ + 1) +

3

2
η(γ + δ)

] ∞∑
k=2

(
k + s− 2

s− 1

)
(k − 1)(1− q)sqk−1

}

=
1

3

{
(γ + 1)r(r + 1)(r + 2)p3(1− p)r

∞∑
k=0

(
k + r + 2

r + 2

)
pk

+

[
15

2
(γ + 1)− η(γ + δ)

]
r(r + 1)p2(1− p)r

∞∑
k=0

(
k + r + 1

r + 1

)
pk

+

[
12(γ + 1)− 9

2
η(γ + δ)

]
rp(1− p)r

∞∑
k=0

(
k + r

r

)
pk

+ [3(γ + 1)− 3η(γ + δ)] (1− p)r

[ ∞∑
k=0

(
k + r − 1

r − 1

)
− 1

]



AN APPLICATION OF PASCAL DISTRIBUSION SERIES ON... 11

+ (γ + 1)s(s+ 1)(s+ 2)q3(1− q)s
∞∑
k=0

(
k + s+ 2

s+ 2

)
qk

+

[
9

2
(γ + 1) + η(γ + δ)

]
s(s+ 1)q2(1− q)s

∞∑
k=0

(
k + s+ 1

s+ 1

)
qk

+

[
3(γ + 1) +

3

2
η(γ + δ)

]
sq(1− q)s

∞∑
k=0

(
k + s

s

)
qk
}

=
1

3

{
(γ + 1)r(r + 1)(r + 2)p3

(1− p)3
+

[
15
2 (γ + 1)− η(γ + δ)

]
r(r + 1)p2

(1− p)2

+

[
12(γ + 1)− 9

2η(γ + δ)
]
rp

1− p
+ [3(γ + 1)− 3η(γ + δ)] [1− (1− p)r]

+
(γ + 1)s(s+ 1)(s+ 2)q3

(1− q)3
+

[
9
2(γ + 1) + η(γ + δ)

]
s(s+ 1)q2

(1− q)2

+

[
3(γ + 1) + 3

2η(γ + δ)
]
sq

1− q

}
≤ 1− δ.

Now Ψ2≤1− δ follows from the given condition.

□

Remark 3.4. Putting γ = 1 in Theorem 3.3, we improve the result
obtained in ([29]; Theorem 3.5).

Theorem 3.5. Let r, s ≥ 1 and 0 ≤ p, q < 1. If the inequality

(1− p)r + (1− q)s ≥ 1 +
[(γ + 1) + η(γ + δ)]|b1|

1− δ
(11)

is satisfied, then P r,s
p,q (GVH(γ, δ, η))⊂GVH(γ, δ, η).

Proof. Suppose f = h+ ḡ ∈ GVH(γ, δ, η) where h and g are provided
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by (4). We need to prove that the function

P r,s
p,q (f)(z) = z −

∞∑
k=2

(
k + r − 2

r − 1

)
(1− p)rpk−1|ak|zk

+ |b1|z +
∞∑
k=2

(
k + s− 2

s− 1

)
(1− q)sqk−1|bk|zk

is in GVH(γ, δ, η) if Ψ3 ≤ 1− δ, where

Ψ3 =
∞∑
k=2

[k(γ + 1)− η(γ + δ)]

(
k + r − 2

r − 1

)
(1− p)rpk−1|ak|

+ [(γ + 1) + η(γ + δ)]|b1|

+
∞∑
k=2

[k(γ + 1) + η(γ + δ)]

(
k + s− 2

s− 1

)
(1− q)sqk−1|bk|.

In view of Lemma 1.5, we have

Ψ3 ≤ (1− δ)

[ ∞∑
k=2

(
k + r − 2

r − 1

)
(1− p)rpk−1 +

∞∑
k=2

(
k + s− 2

s− 1

)
(1− q)sqk−1

]

+ [(γ + 1) + η(γ + δ)]|b1|

= (1− δ)

[
(1− p)r

∞∑
k=0

(
k + r − 1

r − 1

)
pk − (1− p)r

+ (1− q)s
∞∑
k=0

(
k + s− 1

s− 1

)
qk − (1− q)s

]
+ [(γ + 1) + η(γ + δ)]|b1|

= (1− δ) [2− (1− p)r − (1− q)s] + [(γ + 1) + η(γ + δ)]|b1|

≤ 1− δ,

by the given condition and thus the proof of the theorem is complete.
□
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Remark 3.6. Putting γ = 1 in Theorem 3.5, we improve the result
obtained in ([29], Theorem 3.6).

Remark 3.7. By suitable specializing the parameter η, one can deduce
the results for the subclasses NVH(α, δ) and f∈RVH(α, δ) which are
defined, respectively, [Example 2.1 and 2.2 in [29]] and associated with
the Pascal distribution series. The deatails involved may be given as a
pratice for the reader willing.

Author Contributions: This study was produced from first au-
thor Naci Taşar’s doctoral thesis. Naci Taşar made the calculations.
Second author F. Müge Sakar was the supervisor and checked all the
calculations. Third author Bilal Şeker revised the manuscript.
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[5] S. M. Aydoğan, On a k-dimensional system of hybrid
fractional differential equations with multi-point bound-
ary conditions, J. Math. Extension, 15(5) (2021), 1-18.
https://doi.org/10.30495/JME.SI.2021.2065



14 N. TAŞAR AND F. M. SAKAR AND B. ŞEKER
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