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Abstract

Three ordinary differential equations are used to represent mathematically the breakdown of a phenol and p-

cresol combination in a constantly agitated bioreactor.The research offers a stability analysis of the model’s

equilibrium locations. Three different kernels have also been used to examine the effects of the fractal

dimension and the fractional order on the model with the fractal-fractional derivatives. We have developed

extremely effective computational techniques for phenol, p-cresol, and biomass concentrations. Finally,

computer simulations are used to confirm the correctness of the suggested strategy.

Keywords: Bioreactor Model; Computational Methods, Fractal-Fractional Derivatives, Computational

Simulations.

1. Introduction

There are numerous scientific articles that describe the discovery and work of microbial species that

have greater chemical compound degradation activity [1]. Numerous individual microorganisms have been

studied in [2]. The nature of the particular mixture and the used microbes determine whether one or all

chemical components will biodegrade [3, 4, 5, 6]. FThe classical derivatives have a significant extension

in fractional calculus. Fractional differential equations (FDEs) have recently been used in a variety of

disciplines. Many authors have worked on these equations such as KdV equation [7], advection-dispersion

equation [8], telegraph equation [9], Schrodinger equation [10], heat equation [11], convection diffusion
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equation [12], Fokker Planck equation [13]. Some of the FDEs do not have exact solution, therefore it

is required to work on computational methods to solve the mentioned equations such as solving nonlinear

fractional diffusion wave equation with homotopy analysis technique [14], solving PDEs of fractal order

by Adomian decomposition method [15]. In [1], the authors have given a bioreactor model but they do

not consider the death rate of bacteria and also general configuration of the reactor. We have provided the

bioreactor model with the fractal-fractional derivatives (FFD). The model with fractal-fractional derivatives

has never been analysed so far. Our model includes the death rate of bacteria which is important in

environment of the process. We also consider general configuration of the reactor where our model includes

a membrane and continuous reactor. Additionally, we fractionalize the model and apply a novel computational

technique to get the computational simulations.

We organize our manuscript as follow. Problem formulation is done in Section 2. In Section 3 we have

discussed the analysis of the model in the classical case and presented the equilibria and stability analysis.

Sections 4, 5 and 6 deals with analysis of the model with three different kernels viz the power-law kernel,

the exponential-decay kernel and the Mittag-Leffler kernel respectively and in section 7 we demonstrate the

computational simulations.

2. Preliminaries

The following definitions of FFD and fractal-fractional integral (FFI) with three different kernels are

taken from [16] .

Definition 2.1. The FFD with power-law type kernel is described as:

FFP
c Dα,ηt f (t) =

1
1 − α

d
duη

∫ t

c
f (s)(t − s)−αds, 0 < α, η ≤ 1, (1)

where,
d f (s)
dsη

= lim
t→s

f (t) − f (s)
tη − sη

(2)

Definition 2.2. The FFD with exponential-decay type kernel is described as:

FFE
c Dα,ηt f (t) =

M1(α)
1 − α

d
dtη

∫ t

c
f (s) exp

( −α
1 − α

(t − s)
)
ds, 0 < α, η ≤ 1. (3)

Definition 2.3. The FFD with Mittag-Leffler type kernel is described as:
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FFM
c Dα,ηt f (t) =

AB(α)
1 − α

d
dtη

∫ t

c
f (s)Eα

( −α
1 − α

(t − s)α
)
ds, 0 < α, η ≤ 1, (4)

where, AB(α) = 1 − α + α
Γ(α) .

Definition 2.4. The FFI with power-law type kernel is described as:

FFP
0 Iα,ηt f (t) =

η

Γ(α)

∫ t

0
(t − s)α−1sτ−1ϕ(s)ds. (5)

Definition 2.5. The FFI with exponential-decay type kernel is described as:

FFE
0 Iα,ηt f (t) =

αη

M1(α)

∫ t

0
sα−1 f (s)ds +

τ(1 − α)tτ−1

M1(α)
ϕ(t). (6)

Definition 2.6. The FFI with Mittag-Leffler type kernel is described as:

FFM
0 Iα,ηt f (t) =

αη

AB(α)

∫ t

0
sα−1 f (s)(t − s)α−1ds +

τ(1 − α)tτ−1

AB(α)
f (t). (7)

3. Formation of the model

Here, we provide the model that will be examined in this study. The three-dimensional model is provided

as follows:

dS ph

dt
= D

(
S ph0 − S ph

)
− kph · µ

(
S ph, S cr

)
· X, (8)

dS cr

dt
= D (S cr0 − S cr) − kcr · µ

(
S ph, S cr

)
· X, (9)

dX
dt
= −DβX + µ

(
S ph, S cr

)
X, (10)

µ
(
S ph, S cr

)
=

µmax(ph)S ph

Ks(ph) + S ph +
S 2

ph
ki(ph)
+ Icr/phS cr

+
µmax(cr)S cr

Ks(cr) + S cr +
S 2

cr
ki(cr)
+ Iph/crS ph

, (11)

The model parameters and variables are detailed in [1]. The parameter β is presented in the general

configuration. When β = 1 we have continued the reactor. When β = 0 we have a membrane reactor.

4. Analysis of the model in classical sense

We will now start by performing a traditional analysis of the model’s attributes.
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4.1. Equilibria and Stability analysis

We take into account how many model (8- 10) equilibrium solutions there are. The model clearly has a

branch of the washout specified by: ,

E0 =(S ph, S cr, X) =
(
S ph0, S cr0, 0

)
. (12)

We obtain the steady state solution of (8- 10) by setting to zero the right side. From the model (8- 10),

we have,

S cr =
S cr0kph + kcr(S ph − S ph0)

kph
,

X =
D

(
Sph0 − Sph

)
kph (βD)

.

(13)

f =
(
−kcrµ(sph,scr)X
µ(sph,scr)X

)
→ F =


∂µ(sph,scr)(−kcr)X
∂(sph,scr)X −kcrµ(sph, scr)

∂µ(sph,scr)X
∂(sph,scr)X µ(sph, scr)kcr(sph, scr)



V =
(
−D(scr0−scr)

DβX

)
→ V =


D 0

0 Dβ

 ,V
−1 =


Dβ 0

0 D



FV−1 =


0 −kcrµ(sph, scr)

0 µ(sph, scr)




D 0

0 Dβ

 =


0 −Dkcrµ(sph, scr)

0 Dµ(sph, scr)



det
[

FV−1 − λI2

]
= 0 ,

∣∣∣∣∣∣∣∣∣∣∣∣∣
−λ −Dkcrµ(sph, scr)

0 Dµ(sph, scr) − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

Thus, we obtain λ1 = 0, λ2 = Dµ(sph, scr) = R0

Lemma 4.0.1. The steady state solution E0 is locally asymptotically stable when D > Dcr and is unstable

when D < Dcr .

Proof. We have

E0 = (sph, scr, x) = (sph0, scr0, 0)
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J(E0) =



−D − ∂µ(sph,scr)
∂sph

kphx −
∂µ(sph,scr)
∂sph

kphx −µ(sph, scr)kph

−kcr
∂µ(sph,scr)
∂sph

x −D − ∂µ(sph,scr)
∂sph

kcr x −µ(sph, scr)kcr

∂µ(sph,scr)
∂sph

x −
∂µ(sph,scr)
∂sph

x −Dβ + µ(sph, scr)



J(E0) =


−D 0 −µ(sph0, scr0)kph

0 −D −µ(sph0, scr0)kcr

0 0 −Dβ + µ(sph0, scr0)


where

µ(sph, scr) =
µmax(ph)sph

Ks(ph) + sph +
s2

ph
Ki(ph)
+ Icr/phscr

+
µmax(cr)sph

Ks(cr) + scr +
s2

cr
Ki(cr)
+ Iph/cr sph

det[J(E0) − λI3] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−D − λ 0 −µ(sph, scr)kph

0 −D − λ −µ(sph, scr)kcr

0 0 µ(sph, scr) − Dβ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

=(−D − λ)(−D − λ)(µ(sph, scr) − Dβ − λ) = 0

λ1 = −D, λ2 = −D, λ3 = −βD + µ(sph, scr)

and

µ(sph, scr) =− maxphsph0(ksph + sph0 +
s2

ph0

Ki(ph)
+ Icr/phscr0)−1

+− maxcr scr0(kscr + scr0 +
s2

cr0

Ki(ph)
+ Iph/cr sph0)−1

Dcr =
kicrkph(scr0kph − sph0kcr)−maxcr[

kicrkph(Kscrkph + scr0kph − sph0kcr) + (scrkph − sph0kcr)2
]
β

If D > Dcr, then λ3 < 0. Thus, all eigenvalues are negative. This presents that the steady state solution E0 is

locally asymptotically stable. □
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5. Analysis of the Model with the Power-Law Kernel

Here we analyze the model with FFD using the power-law kernel as:

FFP
0 Dα,ηt S ph = D

(
S ph0 − S ph

)
− kph · µ

(
S ph, S cr

)
· X, (14)

FFP
0 Dα,ηt S cr = D (S cr0 − S cr) − kcr · µ

(
S ph, S cr

)
· X, (15)

FFP
0 Dα,ηt X = −DβX + µ

(
S ph, S cr

)
X (16)

We have [16]:

Dη f (t) =
f ′(t)
ηtη−1 . (17)

Then, we acquire

RL
0 Dαt S ph = ηtη−1

(
D

(
S ph0 − S ph

)
− kph · µ

(
S ph, S cr

)
· X

)
, (18)

RL
0 Dαt S cr = ηtη−1

(
D (S cr0 − S cr) − kcr · µ

(
S ph, S cr

)
· X

)
, (19)

RL
0 Dαt X = ηtη−1

(
−DβX + µ

(
S ph, S cr

)
X
)

(20)

For simplicity, we define

A(t, S ph, S cr, X) = ηtη−1
(
D

(
S ph0 − S ph

)
− kph · µ

(
S ph, S cr

)
· X

)
, (21)

B(t, S ph, S cr, X) = ηtη−1
(
D (S cr0 − S cr) − kcr · µ

(
S ph, S cr

)
· X

)
, (22)

C(t, S ph, S cr, X) = ηtη−1
(
−DβX + µ

(
S ph, S cr

)
X
)

(23)

Then, we obtain

RL
0 Dαt S ph = A(t, S ph, S cr, X) (24)

RL
0 Dαt S cr = B(t, S ph, S cr, X) (25)

RL
0 Dαt X = C(t, S ph, S cr, X) (26)

Applying the Riemann-Liouville integral yields:
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S ph(t) − S ph(0) =
1
Γ(α)

∫ t

0
A(τ, S ph, S cr, X)(t − τ)α−1dτ (27)

S cr(t) − S cr(0) =
1
Γ(α)

∫ t

0
B(τ, S ph, S cr, X)(t − τ)α−1dτ (28)

X(t) − X(0) =
1
Γ(α)

∫ t

0
C(τ, S ph, S cr, X)(t − τ)α−1dτ (29)

Discretizing the above equations at tn+1, we get:

S ph(tn+1) − S ph(0) =
1
Γ(α)

∫ tn+1

0
A(τ, S ph, S cr, X)(tn+1 − τ)α−1dτ (30)

S cr(tn+1) − S cr(0) =
1
Γ(α)

∫ tn+1

0
B(τ, S ph, S cr, X)(tn+1 − τ)α−1dτ (31)

X(tn+1) − X(0) =
1
Γ(α)

∫ tn+1

0
C(τ, S ph, S cr, X)(tn+1 − τ)α−1dτ (32)

S ph(tn+1) − S ph(0) =
1
Γ(α)

n∑
j=0

∫ t j+1

t j

A(τ, S ph, S cr, X)(tn+1 − τ)α−1dτ (33)

S cr(tn+1) − S cr(0) =
1
Γ(α)

n∑
j=0

∫ t j+1

t j

B(τ, S ph, S cr, X)(tn+1 − τ)α−1dτ (34)

X(tn+1) − X(0) =
1
Γ(α)

n∑
j=0

∫ t j+1

t j

C(τ, S ph, S cr, X)(tn+1 − τ)α−1dτ (35)

Two-step Lagrange polynomial is used as:

p j(τ, S ph, S cr, X) =
τ − t j−1

t j − t j−1
A(t j, S ph, S cr, X) −

τ − t j

t j − t j−1
A(t j−1, S ph, S cr, X) (36)

q j(τ, S ph, S cr, X) =
τ − t j−1

t j − t j−1
B(t j, S ph, S cr, X) −

τ − t j

t j − t j−1
B(t j−1, S ph, S cr, X) (37)

s j(τ, S ph, S cr, X) =
τ − t j−1

t j − t j−1
C(t j, S ph, S cr, X) −

τ − t j

t j − t j−1
C(t j−1, S ph, S cr, X) (38)

Then, we obtain
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S ph(tn+1) − S ph(0) =
1
Γ(α)

n∑
j=0

∫ t j+1

t j

p(τ, S ph, S cr, X)(tn+1 − τ)α−1dτ

=

n∑
j=0

[
hαA(t j, S ph, S cr, X)

Γ(α + 2)
(
(n + 1 − j)α(n − j + 2 + α)

−(n − j)α(n − j + 2 + 2α)
)]

−

n∑
j=0

[
hαA(t j−1, S ph, S cr, X)

Γ(α + 2)

(
(n + 1 − j)α+1

−(n − j)α(n − j + 1 + α)
)]

S cr(tn+1) − S cr(0) =
1
Γ(α)

n∑
j=0

∫ t j+1

t j

q(τ, S ph, S cr, X)(tn+1 − τ)α−1dτ

=

n∑
j=0

[
hαB(t j, S ph, S cr, X)

Γ(α + 2)
(
(n + 1 − j)α(n − j + 2 + α)

−(n − j)α(n − j + 2 + 2α)
)]

−

n∑
j=0

[
hαB(t j−1, S ph, S cr, X)

Γ(α + 2)

(
(n + 1 − j)α+1

−(n − j)α(n − j + 1 + α)
)]

X(tn+1) − X(0) =
1
Γ(α)

n∑
j=0

∫ t j+1

t j

s(τ, S ph, S cr, X)(tn+1 − τ)α−1dτ

=

n∑
j=0

[
hαC(t j, S ph, S cr, X)

Γ(α + 2)
(
(n + 1 − j)α(n − j + 2 + α)

−(n − j)α(n − j + 2 + 2α)
)]

−

n∑
j=0

[
hαC(t j−1, S ph, S cr, X)

Γ(α + 2)

(
(n + 1 − j)α+1

−(n − j)α(n − j + 1 + α)
)]

Thus, the computational scheme for the model with power law kernel has been obtained. We used this

scheme and obtained Figures 1-4.
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6. Analysis of the Model with the Exponential-Decay Kernel

Next we analyze the model with FFD using the exponential-decay kernel as:

FFE
0 Dα,ηt S ph = D

(
S ph0 − S ph

)
− kph · µ

(
S ph, S cr

)
· X, (39)

FFE
0 Dα,ηt S cr = D (S cr0 − S cr) − kcr · µ

(
S ph, S cr

)
· X, (40)

FFE
0 Dα,ηt X = −DβX + µ

(
S ph, S cr

)
X (41)

The relationship between the fractal derivative and the classical derivative produces:

CF
0 Dαt S ph = ηtη−1

(
D

(
S ph0 − S ph

)
− kph · µ

(
S ph, S cr

)
· X

)
, (42)

CF
0 Dαt S cr = ηtη−1

(
D (S cr0 − S cr) − kcr · µ

(
S ph, S cr

)
· X

)
, (43)

CF
0 Dαt X = ηtη−1

(
−DβX + µ

(
S ph, S cr

)
X
)

(44)

For simplicity, we define

K(t, S ph, S cr, X) = ηtη−1
(
D

(
S ph0 − S ph

)
− kph · µ

(
S ph, S cr

)
· X

)
, (45)

L(t, S ph, S cr, X) = ηtη−1
(
D (S cr0 − S cr) − kcr · µ

(
S ph, S cr

)
· X

)
, (46)

M(t, S ph, S cr, X) = ηtη−1
(
−DβX + µ

(
S ph, S cr

)
X
)

(47)

Then, we obtain

CF
0 Dαt S ph = K(t, S ph, S cr, X) (48)

CF
0 Dαt S cr = L(t, S ph, S cr, X) (49)

CF
0 Dαt X = M(t, S ph, S cr, X) (50)

Applying the CF integral yields [17]:
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S ph(t) − S ph(0) =
1 − α
M(α)

K(t, S ph, S cr, X) +
α

M(α)

∫ t

0
K(τ, S ph, S cr, X)dτ

S cr(t) − S cr(0) =
1 − α
M(α)

L(t, S ph, S cr, X) +
α

M(α)

∫ t

0
L(τ, S ph, S cr, X)dτ

X(t) − X(0) =
1 − α
M(α)

M(t, S ph, S cr, X) +
α

M(α)

∫ t

0
M(τ, S ph, S cr, X)dτ

Discretizing the above equations at tn+1 and tn we get:

S n+1
ph = S 0

ph +
1 − α
M(α)

K(tn, S n
ph, S

n
cr, X

n)

+
α

M(α)

∫ tn+1

0
K(τ, S ph, S cr, X)dτ

S n+1
cr = S 0

cr +
1 − α
M(α)

L(tn, S n
ph, S

n
cr, X

n)

+
α

M(α)

∫ tn+1

0
L(τ, S ph, S cr, X)dτ

Xn+1 = X0 +
1 − α
M(α)

M(tn, S n
ph, S

n
cr, X

n)

+
α

M(α)

∫ tn+1

0
M(τ, S ph, S cr, X)dτ

and

S n
ph = S 0

ph +
1 − α
M(α)

K(tn−1, S n−1
ph , S

n−1
cr , X

n−1)

+
α

M(α)

∫ tn

0
K(τ, S ph, S cr, X)dτ

S n
cr = S 0

cr +
1 − α
M(α)

L(tn−1, S n−1
ph , S

n−1
cr , X

n−1)

+
α

M(α)

∫ tn

0
L(τ, S ph, S cr, X)dτ

Xn = X0 +
1 − α
M(α)

M(tn−1, S n−1
ph , S

n−1
cr , X

n−1)

+
α

M(α)

∫ tn

0
M(τ, S ph, S cr, X)dτ

Thus, we reach
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S n+1
ph = S n

ph +
1 − α
M(α)

(
K(tn, S n

ph, S
n
cr, X

n) − K(tn−1, S n−1
ph , S

n−1
cr , X

n−1)
)

+
α

M(α)

∫ tn+1

tn
K(τ, S ph, S cr, X)dτ

S n+1
cr = S n

cr +
1 − α
M(α)

(
L(tn, S n

ph, S
n
cr, X

n) − L(tn−1, S n−1
ph , S

n−1
cr , X

n−1)
)

+
α

M(α)

∫ tn+1

tn
L(τ, S ph, S cr, X)dτ

Xn+1 = Xn +
1 − α
M(α)

(
M(tn, S n

ph, S
n
cr, X

n) − M(tn−1, S n−1
ph , S

n−1
cr , X

n−1)
)

+
α

M(α)

∫ tn+1

tn
M(τ, S ph, S cr, X)dτ

Using the two-step Lagrange polynomial yields:

S n+1
ph = S n

ph +
1 − α
M(α)

(
K(tn, S n

ph, S
n
cr, X

n) − K(tn−1, S n−1
ph , S

n−1
cr , X

n−1)
)

+
α

M(α)

(
3h
2

K(tn, S n
ph, S

n
cr, X

n) −
h
2

K(tn−1, S n−1
ph , S

n−1
cr , X

n−1)
)

S n+1
cr = S n

cr +
1 − α
M(α)

(
L(tn, S n

ph, S
n
cr, X

n) − L(tn−1, S n−1
ph , S

n−1
cr , X

n−1)
)

+
α

M(α)

(
3h
2

L(tn, S n
ph, S

n
cr, X

n) −
h
2

L(tn−1, S n−1
ph , S

n−1
cr , X

n−1)
)

Xn+1 = Xn +
1 − α
M(α)

(
M(tn, S n

ph, S
n
cr, X

n) − M(tn−1, S n−1
ph , S

n−1
cr , X

n−1)
)

+
α

M(α)

(
3h
2

M(tn, S n
ph, S

n
cr, X

n) −
h
2

M(tn−1, S n−1
ph , S

n−1
cr , X

n−1)
)

As a result, the model’s computational scheme for the exponential decay kernel has been discovered.

We used this scheme and obtained Figures 5-8.

7. Analysis of the Model with the Mittag-Leffler Kernel

Now we analyze the model with FFD using the Mittag-Leffler kernel as:

FFM
0 Dα,ηt S ph = D

(
S ph0 − S ph

)
− kph · µ

(
S ph, S cr

)
· X, (51)

FFM
0 Dα,ηt S cr = D (S cr0 − S cr) − kcr · µ

(
S ph, S cr

)
· X, (52)

FFM
0 Dα,ηt X = −DβX + µ

(
S ph, S cr

)
X (53)

11



Then, we obtain

AB
0 Dαt S ph = ηtη−1

(
D

(
S ph0 − S ph

)
− kph · µ

(
S ph, S cr

)
· X

)
, (54)

AB
0 Dαt S cr = ηtη−1

(
D (S cr0 − S cr) − kcr · µ

(
S ph, S cr

)
· X

)
, (55)

AB
0 Dαt X = ηtη−1

(
−DβX + µ

(
S ph, S cr

)
X
)

(56)

For simplicity, we define

Y(t, S ph, S cr, X) = ηtη−1
(
D

(
S ph0 − S ph

)
− kph · µ

(
S ph, S cr

)
· X

)
, (57)

Z(t, S ph, S cr, X) = ηtη−1
(
D (S cr0 − S cr) − kcr · µ

(
S ph, S cr

)
· X

)
, (58)

T (t, S ph, S cr, X) = ηtη−1
(
−DβX + µ

(
S ph, S cr

)
X
)

(59)

Then, we get

AB
0 Dαt S ph = Y(t, S ph, S cr, X), (60)

AB
0 Dαt S cr = Z(t, S ph, S cr, X), (61)

AB
0 Dαt X = T (t, S ph, S cr, X) (62)

Applying the AB integral gives,

S ph(t) − S ph(0) =
1 − α
AB(α)

Y(t, S ph, S cr, X) +
α

AB(α)Γ(α)

∫ t

0
(t − p)α−1Y(p, S ph, S cr, X)dp

S cr(t) − S cr(0) =
1 − α
AB(α)

Z(t, S ph, S cr, X) +
α

AB(α)Γ(α)

∫ t

0
(t − p)α−1Z(p, S ph, S cr, X)dp

X(t) − X(0) =
1 − α
AB(α)

T (t, S ph, S cr, X) +
α

AB(α)Γ(α)

∫ t

0
(t − p)α−1T (p, S ph, S cr, X)dp

Discretizing the above equations at tn+1, we get:

12



S n+1
ph = S 0

ph +
1 − α
AB(α)

Y(tn+1, S n
ph, S

n
cr, X

n)

+
α

AB(α)Γ(α)

∫ tn+1

0
(tn+1 − p)α−1Y(p, S ph, S cr, X)dp

S n+1
cr = S 0

cr +
1 − α
AB(α)

Z(tn+1, S n
ph, S

n
cr, X

n)

+
α

AB(α)Γ(α)

∫ tn+1

0
(tn+1 − p)α−1Z(p, S ph, S cr, X)dp

Xn+1 = X0 +
1 − α
AB(α)

T (tn+1, S n
ph, S

n
cr, X

n)

+
α

AB(α)Γ(α)

∫ tn+1

0
(tn+1 − p)α−1T (p, S ph, S cr, X)dp

Then, we obtain

S n+1
ph = S 0

ph +
1 − α
AB(α)

Y(tn+1, S n
ph, S

n
cr, X

n)

+
α

AB(α)

n∑
i=0

hαY(ti, S n
ph, S

n
cr, X

n)

Γ(α + 2)
(
(n + 1 − i)α(n − i + 2 + α)

−(n − i)α(n − i + 2 + 2α)
)]

−
α

AB(α)

n∑
i=0

hαY(ti−1, S n−1
ph , S

n−1
cr , X

n−1)

Γ(α + 2)

(
(n + 1 − i)α+1

−(n − i)α(n − i + 1 + α)
)]

S n+1
cr = S 0

cr +
1 − α
AB(α)

Z(tn+1, S n
ph, S

n
cr, X

n)

+
α

AB(α)

n∑
i=0

hαZ(ti, S n
ph, S

n
cr, X

n)

Γ(α + 2)
(
(n + 1 − i)α(n − i + 2 + α)

−(n − i)α(n − i + 2 + 2α)
)]

−
α

AB(α)

n∑
i=0

hαZ(ti−1, S n−1
ph , S

n−1
cr , X

n−1)

Γ(α + 2)

(
(n + 1 − i)α+1

−(n − i)α(n − i + 1 + α)
)]
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Xn+1 = X0 +
1 − α
AB(α)

T (tn+1, S n
ph, S

n
cr, X

n)

+
α

AB(α)

n∑
i=0

hαT (ti, S n
ph, S

n
cr, X

n)

Γ(α + 2)
(
(n + 1 − i)α(n − i + 2 + α)

−(n − i)α(n − i + 2 + 2α)
)]

−
α

AB(α)

n∑
i=0

hαT (ti−1, S n−1
ph , S

n−1
cr , X

n−1)

Γ(α + 2)

(
(n + 1 − i)α+1

−(n − i)α(n − i + 1 + α)
)]
.

Thus, the computational scheme for the model with Mittag Leffler kernel has been obtained. We used this

scheme and obtained Figures 9-12.

Remark 1. The ability to impactively define models for systems with memory impacts is a key and significant

advantage of FFD. Fractal-fractional operators with varied memories are related to various non-local

dynamical systems’ relaxation processes. Models with FFD are therefore more helpful and impactive.

8. Results and Discussions

This section includes computational simulations for various fractional order and fractal dimension values.

We discuss the results with the three different kernels as described in sections 5, 6 and 7. In these figure

α, β and η are between zero and one. In these simulations, β is the parameter given on the model, η is

fractal dimension and α is the fractional order. In Figure 1, we show the computational simulations for

β = 1 and the fractal dimension η = 1 for different values of fractional order α with the power-law kernel.

In this figure, we can see the impact of the fractional order α. In Figure 2, we show the computational

simulations for β = 1 and the fractal dimension η = 0.8 for different values of fractional order α with the

power-law kernel. In this figure, we can see the impact of the fractional order α. In Figure 3, we show the

computational simulations for β = 0.5 and the fractal dimension η = 1.0 for different values of fractional

order αwith the power-law kernel. In this figure, we can see the impact of the fractional order α. In Figure 4,

we show the computational simulations for β = 0.5 and the fractal dimension η = 0.9 for different values of

fractional order α with the power-law kernel. In this figure, we can see the impact of the fractional order α.

In Figure 5, we show the computational simulations for β = 1 and the fractal dimension η = 1 for different

values of fractional order α with the exponential-decay kernel. In this figure, we can see the impact of the
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fractional order α. In Figure 6, we show the computational simulations for β = 1 and the fractal dimension

η = 0.7 for different values of fractional order α with the exponential-decay kernel. In this figure, we can

see the impact of the fractional order α. In Figure 7, we show the computational simulations for β = 0.8

and the fractal dimension η = 1 for different values of fractional order α with the exponential-decay kernel.

In this figure, we can see the impact of the fractional order α. In Figure 8, we show the computational

simulations for β = 0.8 and the fractal dimension η = 0.7 for different values of fractional order α with the

exponential-decay kernel. In this figure, we can see the impact of the fractional order α. In Figure 9, we

show the computational simulations for β = 1.0 and the fractal dimension η = 1.0 for different values of

fractional order α with the Mittag-Leffler kernel. In this figure, we can see the impact of the fractional order

α. In Figure 10, we show the computational simulations for β = 1.0 and the fractal dimension η = 0.5 for

different values of fractional order α with the Mittag-Leffler kernel. In this figure, we can see the impact

of the fractional order α. In Figure 11, we show the computational simulations for β = 0.5 and the fractal

dimension η = 1.0 for different values of fractional order α with the Mittag-Leffler kernel. In this figure,

we can see the impact of the fractional order α. In Figure 12, we show the computational simulations for

β = 0.5 and the fractal dimension η = 0.6 for different values of fractional order α with the Mittag-Leffler

kernel. In this figure, we can see the impact of the fractional order α. In these figures, we can also see the

impact of the parameter β and the impact of fractal dimension η.

Figure 1: Computational simulations for β = 1 and the fractal dimension is 1 with the power-law kernel
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Figure 2: Computational simulations for β = 1 and the fractal dimension is 0.8 with the power-law kernel

Figure 3: Computational simulations for β = 0.5 and the fractal dimension is 1 with the power-law kernel

Figure 4: Computational simulations for β = 0.5 and the fractal dimension is 0.9 with the power-law kernel
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Figure 5: Computational simulations for β = 1.0 and the fractal dimension is 1 with the exponential-decay kernel

Figure 6: Computational simulations for β = 1.0 and the fractal dimension is 0.7 with the exponential-decay kernel

Figure 7: Computational simulations for β = 0.8 and the fractal dimension is 1.0 with the exponential-decay kernel
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Figure 8: Computational simulations for β = 0.8 and the fractal dimension is 0.7 with the exponential-decay kernel

Figure 9: Computational simulations for β = 1.0 and the fractal dimension is 1.0 with the Mittag-Leffler kernel

Figure 10: Computational simulations for β = 1.0 and the fractal dimension is 0.5 with the Mittag-Leffler kernel
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Figure 11: Computational simulations for β = 0.5 and the fractal dimension is 1.0 with the Mittag-Leffler kernel

Figure 12: Computational simulations for β = 0.5 and the fractal dimension is 0.6 with the Mittag-Leffler kernel

9. Conclusion

In a continuously stirred bioreactor, a mathematical model for the breakdown of a phenol and p-cresol

mixture was suggested in this manuscript. The model was based on three nonlinear ordinary differential

equations. Analysis of their stability and determination of the model’s equilibrium points were presented.

Utilizing three alternative kernels, we also examined the model with the FFD and looked into the impacts

of the fractional order and fractal dimension. For the concentrations of phenol, p-cresol, and biomass, we

developed incredibly efficient computational approaches. To demonstrate the accuracy of the suggested

technique, we gave the computational simulations for different values of α and β..

Conflict of interest

The authors declare no conflict of interest.

19



References

[1] N. Dimitrova, P. Zlateva, Global Stability Analysis of a Bioreactor Model for Phenol and Cresol

Mixture Degradation. Processes 2021, 9, 124.

[2] J. S. Seo, Y. S. Keum, Q. X. Li, Bacterial degradation of aromatic compounds. Int. J. Environ. Res.

Public Health 2009, 6, 278–309. [CrossRef] [PubMed].

[3] N. K. Sharma, L. Philip, S. M. Bhallamudi, Aerobic degradation of phenolics and aromatic

hydrocarbons in presence of cyanide. Bioresour. Technol. 2012, 121, 263–273. [CrossRef] [PubMed].

[4] M. C. Tomei, M. C Annesini, Biodegradation of phenolic mixtures in a sequencing batch reactor: A

kinetic study. Environ. Sci. Pollut. Res. 2008, 15, 188–195. [CrossRef] [PubMed].

[5] H. Yemendzhiev, P. Zlateva, Z. Alexieva, Comparison of the biodegradation capacity of two fungal

strains toward a mixture of phenol and cresol by mathematical modeling. Biotechnol. Biotechnol.

Equip. 2012, 26, 3278–3281. [CrossRef].

[6] A. Kietkwanboot, S. Chaiprapat, R. Müller, O. Suttinun, Biodegradation of phenolic compounds

present in palm oil mill effluent as single and mixed substrates by Trameteshirsuta AK04. J. Environ.

Sci. Heal. Part A Toxic/Hazard. Subst. Environ. Eng. 2020, 55, 989–1002. [CrossRef].

[7] S. Momani, An explicit and computational solutions of the fractional KdV equation. Math. Comput.

Simul. 70, No 2 2005, 110–118.

[8] C. Li and J. Cao, A finite difference method for time-fractional telegraph equation, IEEE/ASME

International Conference on Mechatronics and Embedded Systems and Applications (MESA), 2012,

314–318.

[9] F. Huang, F. Liu, The fundamental solution of the space-time fractional advection-dispersion

equation. J. Appl. Math. Comput. 18, No 1-2 (2005), 21-36.

[10] A.H. Bhrawy, E.H. Doha, S.S. Ezz-Eldien and Robert A. Van Gorder, A new Jacobi spectral

collocation method for solving (1 + 1)fractional Schrodinger equations and fractional coupled

Schrodinger systems, Eur. Phys. J. Plus (2014) 129: 260.

20



[11] T. Karatay, S. R. Bayramoglu, A. Sahin, Implicit difference approximation for the time fractional heat

equation with the nonlocal condition, Applied Computational Mathematics 61 (2011) 1281–1288.

[12] Y. Chen, M. Yi, C. Chen, C. Yu, Bernstein Polynomials Method for Fractional Convection-Diffusion

Equation with Variable Coefficients, CMES, vol.83, no.6, pp.639-653, 2012.

[13] F. Liu, V. Anh, I. Turner, Computational solution of space fractional FokkerPlanck equation. Journal

of Computational and Applied Mathematics, vol. 166, pp. 2004, 209 -219.

[14] S. Momani, Z. Odibat, Comparison between the homotopy perturbation method and the variational

iteration method for linear fractional partial differential equations. Comput. Math. Appl. 54, No 7-8

(2007), 910–919.

[15] A.M.A. El-Sayed, M. Gaber, The Adomian decomposition method for solving partial differential

equations of fractal order in finite domains. Phys. Lett. A. 359, No 3 (2006), 175–182.

[16] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and

fractional calculus to predict complex, system, Chaos, Solitons and Fractals 102, 2017 396–406.

[17] M. Toufik, A. Atangana, New computational approximation of fractional derivative with non-local

and non-singular kernel: application to chaotic models, The European Physical Journal Plus 132

(10), 444.

[18] H. Mohammadi, S. Kumar, Sh. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio

fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos, Solitons and

Fractals, 2021, 144, 110668. https://doi.org/10.1016/j.chaos.2021.110668

[19] D. Baleanu, A. Jajarmi, H. Mohammadi, Sh. Rezapour, A new study on the mathematical modelling

of human liver with Caputo-Fabrizio fractional derivative, Chaos, Solitons and Fractals, 2021, 134,

109705. https://doi.org/10.1016/j.chaos.2020.109705

[20] J. Alzabut, A. Selvam, R. Dhineshbabu, S. Tyagi, M. Ghaderi, Sh. Rezapour, A Caputo

discrete fractional-order thermostat model with one and two sensors fractional boundary conditions

depending on positive parameters by using the Lipschitz-type inequality, Journal of Inequalities and

Applications, 2022, 1–24. https://doi.org/10.1186/s13660-022-02786-0

21



[21] Z. Heydarpour, J. Izadi, R. George, M. Ghaderi, Sh. Rezapour, On a Partial Fractional Hybrid

Version of Generalized Sturm–Liouville–Langevin Equation Fractal and Fractional, 2022, 6(5), 269.

https://doi.org/10.3390/fractalfract6050269

[22] R. George, M. Houas, M. Ghaderi, Sh. Rezapour, S. K. Elagan, On a coupled system of pantograph

problem with three sequential fractional derivatives by using positive contraction-type inequalities,

Results in Physics, 2022, 39, 105687. https://doi.org/10.1016/j.rinp.2022.105687

[23] M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar, S. Etemad, Sh. Rezapour, Investigation

of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional

derivatives, Advances in Difference Equations, 2021, 2021:68. https://doi.org/10.1186/s13662-021-

03228-9

[24] S. Etemad, I. Avci, P. Kumar, D. Baleanu, S. Rezapour, Some novel mathematical analysis on the

fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version, Chaos,

Solitons and Fractals, 2022, 162, 112511.

22


