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Abstract.
In this paper, we investigate some advanced properties of the contin-

uous dual Hahn polynomials which are orthogonal in a single variable.
In particular, we derive various families of bilinear and bilateral gener-
ating functions from them. We also obtain recurrence relations for these
polynomials with the help of three-term contiguous relations of classical
hypergeometric series. Furthermore, we give some integral representa-
tions.
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1 Introduction

The continuous dual Hahn (CDH) polynomials, which generalize the
Jacobi polynomials, are a family of hypergeometric orthogonal polyno-
mials. We know from [2, 18] that the CDH polynomials reduce to the
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Jacobi polynomials with the help of some limiting procedure. So far, the
CDH polynomials have been studied by many authors (see, for instance,
[7, 10, 12, 3, 4]). They have also appeared in Stieltjes’s (see [16]).

In the present paper, we investigate some advanced properties of
these polynomials. We first derive various families of bilinear and bi-
lateral generating functions from them. Then, we obtain recurrence
relations for the CDH polynomials with the help of three-term contigu-
ous relations of classical hypergeometric series studied by Wilson [17]
and also Chu and Wang [6] (see also [15]). Furthermore, we give some
integral representations in the interval (0, 1), (0,∞) and a triple integral
representation for the CDH polynomials.

Before proceeding further, we first recall the definition of the CDH
polynomials and their generating function relations.

The CDH polynomials is given by (see [11, 18])

Sn(x
2;α, β, γ) = (α+β)n(α+γ)n 3F2 [−n, α+ ix, α− ix;α+ β, α+ γ; 1] ,

(1)
where 3F2 denotes the corresponding generalized hypergeometric series.
Recall that, in general, rFs (r, s ∈ N0 = N ∪ {0}) is defined by

rFs

 α1, . . . , αr;
z

β1, . . . , βs;

 :=
∞∑
n=0

(α1)n . . . (αr)n
(β1)n . . . (βs)n

zn

n!

= rFs (α1, . . . , αr;β1, . . . , βs; z) .

As usual, the Pochammer symbol (µ)s is given by

(µ)s :=
Γ(µ+ s)

Γ(µ)
(µ ∈ C \ Z−

0 )

=

{
1, if ν = 0; µ ∈ C\{0}
µ(µ+ 1)...(µ+ n− 1), if s = n ∈ N; µ ∈ C

provided that the Gamma quotient exists. It is assumed that (0)0 := 1.
The CDH polynomials have the following generating function relations
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(see [11]):

(1− t)−γ+ix 2F1 [α+ ix, β + ix;α+ β; t] =

∞∑
n=0

Sn(x
2;α, β, γ)

(α+ β)nn!
tn, (2)

(1− t)−β+ix 2F1 [α+ ix, γ + ix;α+ γ; t] =
∞∑
n=0

Sn(x
2;α, β, γ)

(α+ γ)nn!
tn, (3)

(1− t)−α+ix 2F1 [β + ix, γ + ix;β + γ; t] =

∞∑
n=0

Sn(x
2;α, β, γ)

(β + γ)nn!
tn, (4)

et 2F2 [α+ ix, α− ix;α+ β, α+ γ;−t] =
∞∑
n=0

Sn(x
2;α, β, γ)

(α+ β)n(α+ γ)nn!
tn.

(5)

2 Mixed Generating Functions

Here, we obtain several families of generating functions for the CDH
polynomials Sn(x

2;α, β, γ) given by (1). We should note such an inves-
tigation has been considered for other polynomials, such as Gottlieb and
Cesaro polynomials, in the recent papers [9, 13].

Throughout this section, let p, s ∈ N; µ, ψ ∈ C; αk ∈ C \ {0} and

Ωµ : Cs −→ C \ {0}

be a bounded function. We also need the following function:

Λµ,ψ [ξ1, ..., ξs; τ ] :=
∞∑
k=0

αkΩµ+ψk(ξ1, ..., ξs)τ
k. (6)

So, we get the following theorems.

Theorem 2.1. Let

Uµ,ψn,p (x;α, β, γ; ξ1, ..., ξs; z)

:=
[n/p]∑
k=0

αk
Sn−pk(x

2;α, β, γ)

(α+ β)n−pk(n− pk)!
Ωµ+ψk(ξ1, ..., ξs)z

k.
(7)
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Then, we have

∞∑
n=0

Uµ,ψn,p

(
x;α, β, γ; ξ1, ..., ξs;

η

tp

)
tn

= (1− t)−γ+ix 2F1 [α+ ix, β + ix;α+ β; t]
×Λµ,ψ [ξ1, ..., ξs; η] ,

(8)

where Λµ,ψ is given by (6).

Proof. Let A denote the left side of (8). Then, using (7), we immedi-
ately get

A =

∞∑
n=0

[n/p]∑
k=0

αk
Sn−pk(x

2;α, β, γ)

(α+ β)n−pk(n− pk)!
Ωµ+ψk(ξ1, ..., ξs)η

ktn−pk.

Replacing n by n+ pk and considering (2), we observe that

A =
∞∑
n=0

∞∑
k=0

αk
Sn(x

2;α, β, γ)

(α+ β)nn!
Ωµ+ψk(ξ1, ..., ξs)η

ktn

=
∞∑
n=0

Sn(x
2;α, β, γ)

(α+ β)nn!
tn

∞∑
k=0

αkΩµ+ψk(ξ1, ..., ξs)η
k

= (1− t)−γ+ix 2F1 [α+ ix, β + ix;α+ β; t] Λµ,ψ [ξ1, ..., ξs; η] ,

which is the right member of (8). □

Theorem 2.2. Let

V µ,ψ
n,p (x;α, β, γ; ξ1, ..., ξs; z)

:=

[n/p]∑
k=0

αk
Sn−pk(x

2;α, β, γ)

(α+ γ)n−pk(n− pk)!
Ωµ+ψk(ξ1, ..., ξs)z

k.

Then, we get

∞∑
n=0

V µ,ψ
n,p

(
x;α, β, γ; ξ1, ..., ξs;

η

tp

)
tn

= (1− t)−β+ix 2F1 [α+ ix, γ + ix;α+ γ; t]

× Λµ,ψ [ξ1, ..., ξs; η] ,

where Λµ,ψ is given by (6).
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Proof. Applying a similar method in the proof of Theorem 2.1 and also
using relation (3), we easily obtain the desired result. □

Theorem 2.3. Let

Wµ,ψ
n,p (x;α, β, γ; ξ1, ..., ξs; z)

:=

[n/p]∑
k=0

αk
Sn−pk(x

2;α, β, γ)

(β + γ)n−pk(n− pk)!
Ωµ+ψk(ξ1, ..., ξs)z

k.

Then, we have

∞∑
n=0

Wµ,ψ
n,p

(
x;α, β, γ; ξ1, ..., ξs;

η

tp

)
tn

= (1− t)−α+ix 2F1 [β + ix, γ + ix;β + γ; t]

× Λµ,ψ [ξ1, ..., ξs; η] ,

where Λµ,ψ is given by (6).

Proof. Applying a similar method in the proof of Theorem 2.1 and also
using relation (4), the proof follows immediately. □

Theorem 2.4. Let

θµ,ψn,p (x;α, β, γ; ξ1, ..., ξs; z)

:=

[n/p]∑
k=0

αk
Sn−pk(x

2;α, β, γ)

(α+ β)n−pk(α+ γ)n−pk(n− pk)!
Ωµ+ψk(ξ1, ..., ξs)z

k.

Then, we have

∞∑
n=0

θµ,ψn,p

(
x;α, β, γ; ξ1, ..., ξs;

η

tp

)
tn

= et 2F2 [α+ ix, α− ix;α+ β, α+ γ;−t]
× Λµ,ψ [ξ1, ..., ξs; η] ,

where Λµ,ψ is given by (6).
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Proof. Again using the idea as in the proof of Theorem 2.1 and con-
sidering relation (5), the proof is easily obtained. □

Since the multivariable function Ωµ+ψk is quite general, we may de-
rive some applications of our results by choosing appropriate functions
Ωµ+ψk(ξ1, ..., ξs), k ∈ N0, s ∈ N. We now introduce some of them.

Example 2.5. Setting s = 1, αk = 1
(α+β)k(α+γ)kk!

, µ = 0, ψ = 1 and
taking the CDH polynomials instead of the function Ωµ+ψk in Theorem
2.1, and also using (5), we get the following class of bilinear generating
functions for the CDH polynomials:

∞∑
n=0

[n/p]∑
k=0

Sn−pk(x
2;α, β, γ)Sk(y

2;α, β, γ)

(α+ β)k(α+ γ)k(α+ β)n−pk(n− pk)!k!
ηktn−pk

= eη(1− t)−γ+ix2F1 [α+ ix, β + ix;α+ β; t]

× 2F2 [α+ iy, α− iy;α+ β, α+ γ;−η] .

Example 2.6. Recall that the Lagrange polynomials g
(α,β)
n (y, z) are

generated by (see [8])

(1− yt)−α (1− zt)−β =

∞∑
n=0

g(α,β)n (y, z) tn, (9)

where |t| < min
{
|y|−1 , |z|−1

}
. If we take s = 2, αk = 1, µ = 0, ψ =

1 and replace the function Ωµ+ψk in Theorem 2.2 with the Lagrange
polynomials, then, using the relation (9) and Theorem 2.2, we obtain

∞∑
n=0

[n/p]∑
k=0

Sn−pk(x
2;α, β, γ)g

(α,β)
n (y, z)

(α+ γ)n−pk(n− pk)!
ηktn−pk

= (1− t)−β+ix (1− yη)−α (1− zη)−β 2F1 [α+ ix, γ + ix;α+ γ; t] ,

which is a class of bilateral generating functions for the CDH polynomials
and the Lagrange polynomials.

Before closing this section, we should note that if Ωµ+ψk is given as
a product of some simpler functions, then by using suitable coefficients
αk, our Theorems 2.1−2.4 contain many families of generating functions
(in the sense of multilinear and multilateral) for the CDH polynomials
(1).
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3 Recurrence Relations

In 2007, by using the modified Abel Lemma Chu and Wang showed the
forms A, B, C and D of contiguous relations satisfied by the 3F2 (1)-
series (see [6]). Furthermore, in [17] Wilson obtained three-term con-
tiguous relations for some orthogonal polynomials. In this section, us-
ing them, we derive five recurrence relations for the CDH polynomials
Sn(x

2;α, β, γ).
We now consider the conditions Re(β + µ− α− γ − η) > 1 (in Part

1− 3) and Re(µ+ η − α− β − γ) > 0 (in Part 4) for the series

3F2

[
α, γ, η;
β, µ;

1

]
.

Furthermore, we need the conditions Re(β+γ)+n−1 > 0 (in Part 1−3)
and Re(β + γ) + n > 0 (in Part 4) for the parameters of all recurrence
relations for the CDH polynomials.

Part 1. For five complex numbers α, β, γ, µ and η, there holds the
three-term relation [6]

3F2

[
α, γ, η;
β, µ;

1

]
= A 3F2

[
α+ 1, γ, η;
β + 1, µ;

1

]
+B 3F2

[
α+ 2, γ + 1, η + 1;

β + 2, µ+ 1;
1

]
,

(10)

where the coefficients A and B are defined by

A =
(1 + α− µ)β + γη

(1 + α− µ)β
,

B =
(1 + α+ γ + η − β − µ)(1 + α)γη

(1 + α− µ)(1 + β)βµ
.

Then, one can get the following theorem.

Theorem 3.1. The CDH polynomials have the following recurrence re-
lation for n ≥ 2 :

Sn(x
2;α, β, γ)

=
[
(α+ γ + n− 1)(α+ β)− (α2 + x2)

]
Sn−1(x

2;α, β + 1, γ)

+
[
(β + γ + n− 1)(1− n)(α2 + x2)

]
Sn−2(x

2;α+ 1, β + 1, γ).
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Proof. If we take α → −n, β → α + β, γ → α + ix, µ → α + γ and
η → α− ix in (10), we have

3F2

[
−n, α+ ix, α− ix;
α+ β, α+ γ;

1

]
= A 3F2

[
−n+ 1, α+ ix, α− ix;
α+ β + 1, α+ γ;

1

]
+B 3F2

[
−n+ 2, α+ ix+ 1, α− ix+ 1;

α+ β + 2, α+ γ + 1;
1

]
,

where

A =
(1− n− α− γ)(α+ β) + (α2 + x2)

(1− n− α− γ)(α+ β)
,

B =
(1− n− β − γ)(1− n)(α2 + x2)

(1− n− α− γ)(1 + α+ β)(α+ β)(α+ γ)
.

Using the definition of the CDH polynomials given by (1), we obtain

Sn(x
2;α, β, γ)

(α+ β)n(α+ γ)n

=

[
(1− n− α− γ)(α+ β) + (α2 + x2)

(1− n− α− γ)(α+ β)

]
Sn−1(x

2;α, β + 1, γ)

(α+ β + 1)n−1(α+ γ)n−1

+

[
(1− n− β − γ)(1− n)(α2 + x2)

(1− n− α− γ)(1 + α+ β)(α+ β)(α+ γ)

]
× Sn−2(x

2;α+ 1, β + 1, γ)

(α+ β + 2)n−2(α+ γ + 1)n−2
,

and then

Sn(x
2;α, β, γ)

=

[
(1− n− α− γ)(α+ β) + (α2 + x2)

(1− n− α− γ)

]
(α+ γ)n
(α+ γ)n−1

Sn−1(x
2;α, β + 1, γ)

+

[
(1− n− β − γ)(1− n)(α2 + x2)

(1− n− α− γ)

]
(α+ γ)n
(α+ γ)n−1

× Sn−2(x
2;α+ 1, β + 1, γ).

So, the desired result easily follows from some simple calculations. □
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Part 2. For five complex numbers α, β, γ, µ and η, there holds the
three-term relation [6]

3F2

[
α, γ, η;
β, µ;

1

]
= C 3F2

[
α− 1, γ, η;
β, µ− 1;

1

]
+D 3F2

[
α, γ + 1, η + 1;

β + 1, µ;
1

]
,

(11)
where the coefficients C and D are defined by

C =
(1 + γ + η − µ)(1− µ)

(1 + γ − µ)(1 + η − µ)
,

D =
(1 + α+ γ + η − β − µ)γη

(1 + γ − µ)(µ− η − 1)β
.

Then we obtain the next result.

Theorem 3.2. The CDH polynomials have the following recurrence re-
lation for n ≥ 0 :[

(1− γ)2 + x2
]
(α+ β + n)Sn(x

2;α, β, γ)

= (γ − α− 1)Sn+1(x
2;α, β, γ − 1)

+ (n+ β + γ − 1)(α2 + x2)Sn(x
2;α+ 1, β, γ − 1).

Proof. Using (11) instead of (10) in the proof of Theorem 3.1, the proof
is completed at once. □

Part 3. For five complex numbers α, β, γ, µ and η, there holds the
three-term relation [6]

3F2

[
α, γ, η;
β, µ;

1

]
= E 3F2

[
α, γ − 1, η − 1;
β − 1, µ− 1;

1

]
+H 3F2

[
α+ 1, γ, η;

β, µ;
1

]
,

(12)
where the coefficients E and H are defined by

E =
(1− β)(1− µ)

(1 + α− β))(1 + α− µ)
,

H =
α(1 + α+ γ + η − β − µ)

(1 + α− β)(1 + α− µ)
.

Then, we get the next result.
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Theorem 3.3. The CDH polynomials have the next relation for n ∈ N :

Sn(x
2;α, β, γ) = Sn(x

2;α− 1, β, γ)− n(1− n− β − γ)Sn−1(x
2;α, β, γ).

Proof. Using (12) instead of (10) in the proof of Theorem 3.1, we get
the proof. □

Part 4. For five complex numbers α, β, γ, µ and η, there holds the
three-term relation [17]

3F2

[
α, β, γ;
µ− 1, η;

1

]
− 3F2

[
α, β, γ;
µ, η;

1

]
=

αβγ

(µ− 1)µη
3F2

[
α+ 1, β + 1, γ + 1;

µ+ 1, η + 1;
1

]
Theorem 3.4. The CDH polynomials have the next relation for n ∈ N :

(α+ β + n− 1)Sn(x
2;α, β − 1, γ)

= (α+ β − 1)Sn(x
2;α, β, γ)− n(α2 + x2)Sn−1(x

2;α+ 1, β, γ).

Proof. If we use the relation in Part 4 instead of (10) in the proof of
Theorem 3.1, the proof is completed. □

4 Integral Representations

Now, we derive various integral representations for the CDH polynomi-
als.

Theorem 4.1. The CDH polynomials have the next representation:

Sn(x
2;α, β, γ) =

Γ(α+ β + n)Γ(γ − ix+ n)

Γ(α− ix)Γ(β + ix)Γ(γ − ix)

×
1∫

0

uβ+ix−1(1− u)α−ix−1(1− tu)−α−ixdu,

where Re(α+ β) > Re(β + ix) > 0 and |arg(1− t)| < π.



ADVANCES IN THE CONTINUOUS DUAL HAHN ... 11

Proof. The hypergeometric function 2F1 has the representation [14]

2F1 [α, β; γ; z] =
Γ(γ)

Γ(β)Γ(γ − β)

1∫
0

uβ−1(1− u)γ−β−1(1− zu)−αdu, (13)

where Re(γ) > Re(β) > 0 and |arg(1− z)| < π. If we use (13) and
binomial theorem for (1− t)−γ+ix in left-hand side of (2), we have

∞∑
n=0

(γ − ix)n
n!

tn
Γ(α+ β)

Γ(β + ix)Γ(α− ix)

1∫
0

uβ+ix−1(1− u)α−ix−1(1− tu)−α−ixdu

=
∞∑
n=0

Sn(x
2;α, β, γ)

(α+ β)nn!
tn.

Then, the proof easily follows from the coefficients of
tn

n!
. □

Theorem 4.2. The CDH polynomials have the next representation:

Sn(x
2;α, β, γ) =

Γ(α+ β + n)Γ(γ − ix+ n)

Γ(α− ix)Γ(β + ix)Γ(γ − ix)
∞∫
0

uα−ix−1(u+ 1)ix−β(u− t+ 1)−α−ixdu,

where Re(α+ β) > Re(β + ix) > 0 and |arg(1− t)| < π.

Proof. The hypergeometric function 2F1 has the following integral rep-
resentation [1]:

2F1 [α, β; γ; z] =
Γ(γ)

Γ(β)Γ(γ − β)

∞∫
0

u−β+γ−1(u+ 1)α−γ(u− z + 1)−αdu,

(14)
where Re(γ) > Re(β) > 0 and |arg(1− z)| < π. Using (14) instead of
(13) in the proof of Theorem 4.1, the proof immediately follows. □
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Theorem 4.3. The CDH polynomials have the next representation:

Sn(x
2;α, β, γ) =

Γ(α+ β + n)

Γ(α+ ix)Γ(α− ix)Γ(β + ix)Γ(γ − ix)

×
∞∫
0

∞∫
0

∞∫
0

e−u1−u2u3−u3uγ−ix−1
1 uα−ix−1

2 (u2 + 1)−β+ixuα+ix−1
3

× (u1 + u3)
ndu1du2du3,

where Re(α+ β) > Re(β + ix) > 0 and |arg(1− t)| < π.

Proof. Using the following fact

α−λ =
1

Γ(λ)

∞∫
0

e−αttλ−1dt, Re (λ) > 0,

and (14) on the left side of (2), we obtain

∞∑
n=0

Sn(x
2;α, β, γ)

(α+ β)nn!
tn

=
1

Γ(γ − ix)

×
∞∫
0

e−u1(1−t)uγ−ix−1
1 du1

Γ(α+ β)

Γ(β + ix)Γ(α− ix)

×
∞∫
0

uα−ix−1
2 (u2 + 1)ix−β(u2 − t+ 1)−α−ixdu2

=
Γ(α+ β)

Γ(γ − ix)Γ(β + ix)Γ(α− ix)

×
∞∫
0

∞∫
0

uα−ix−1
2 (u2 + 1)ix−β(u2 − t+ 1)−α−ixe−u1(1−t) uγ−ix−1

1 du1du2,



ADVANCES IN THE CONTINUOUS DUAL HAHN ... 13

which gives

∞∑
n=0

Sn(x
2;α, β, γ)

(α+ β)nn!
tn

=
Γ(α+ β)

Γ(γ − ix)Γ(β + ix)Γ(α− ix)

×
∞∫
0

∞∫
0

uα−ix−1
2 (u2 + 1)ix−β

1

Γ(α+ ix)

×
∞∫
0

e−u3(u2+1−t)uα+ix−1
3 du3e

−u1(1−t) uγ−ix−1
1 du1du2.

Then, we may write that

∞∑
n=0

Sn(x
2;α, β, γ)

(α+ β)nn!
tn

=
Γ(α+ β)

Γ(γ − ix)Γ(β + ix)Γ(α− ix)Γ(α+ ix)

×
∞∫
0

∞∫
0

∞∫
0

uα−ix−1
2 uγ−ix−1

1 (u2 + 1)ix−βuα+ix−1
3 e−u1−u2u3−u3

× e(u1+u3)tdu1du2du3,

which implies

∞∑
n=0

Sn(x
2;α, β, γ)

(α+ β)nn!
tn

=
Γ(α+ β)

Γ(γ − ix)Γ(β + ix)Γ(α− ix)Γ(α+ ix)

×
∞∫
0

∞∫
0

∞∫
0

uα−ix−1
2 uγ−ix−1

1 (u2 + 1)ix−βuα+ix−1
3 e−u1−u2u3−u3

×
∞∑
n=0

(u1 + u3)
ntn

n!
du1du2du3.
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Then, the proof easily follows from the coefficients of
tn

n!
. □

5 Concluding Remarks

In this paper, we derived advanced properties of the CDH polynomials.
We have obtained some relations for them, such as, bilinear and bilateral
generating function relations, recurrence relations and various integral
representations.

In 2008, Ferreira et al. obtain asymptotic expansions between the
CDH polynomials and Jacobi, Meixner–Pollaczek, Krawtchouk and
Meixner polynomials. From these expansions, we may also derive many
relations for the other polynomials.

Recall that the Meixner-Pollaczek polynomials are defined by [11]

P (λ)
n (x;ϕ) =

(2λ)n
n!

einϕ 2F1

[
−n, λ+ ix; 2λ; 1− e−2iϕ

]
.

The CDH polynomials have the following asymptotic representation with
respect to the Meixner-Pollaczek polynomials (see [10]):

Sn(x
2;α, β, γ)

(α+ β)n n!
=

n∑
k=0

γkP
(C)
n−k (X;A) , (15)

where A ̸= mπ, m ∈ Z, is an arbitrary constant,

C = p1 (x) cosA+
1

2
p1 (x)

2 − p2 (x) ,

X = −
p1 (x) cos (2A) +

[
p1 (x)

2 − 2p2 (x)
]
cosA

2 sinA

with

p1 (x) = γ +
αβ − x2

α+ β
,

p2 (x) =
γ (γ + 1)

2
+

αβγ

α+ β

+
αβ (1 + α) (1 + β)− [γ + 2αβ + (1 + γ) (1 + 2 (α+ β))]x2 + x4

2 (α+ β) (1 + α+ β)
.

(16)
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The Jacobi polynomials are defined by [14]

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

[
−n, n+ α+ β + 1;α+ 1;

1− x

2

]
.

The CDH polynomials have also the following asymptotic representation
with respect to the Jacobi polynomials (see [10]):

Sn(x
2;α, β, γ)

(α+ β)n n!
=

n∑
k=0

ckP
(A,C)
n−k (X) , (17)

where X ̸= ±1 is an arbitrary constant,

A =
1

X + 1

[
2p1 (x)

2 + p1 (x) + 3p1 (x)X − 4p2 (x) +X2 −X − 2
]
,

C =
1

X − 1

[
2p1 (x)

2 + p1 (x) + 3p1 (x)X − 4p2 (x) +X2 +X − 2
]
,

and p1(x), p2(x) are given in (16).
The Meixner polynomials are defined by [5]

Mn (x;β, γ) =2 F1

[
−n,−x;β; 1− 1

γ

]
.

Another asymptotic representation with respect to the Meixner polyno-
mials (see [10]) is given as the following:

Sn(x
2;α, β, γ)

(α+ β)n n!
=

n∑
k=0

ck
(A)n−k
(n− k)!

Mn−k (X;A,C) , (18)

where C ̸= 0, 1 is a constant,

X =
C2

1− C

[
p1 (x)

2 + p1 (x)− 2p2 (x)
]
,

A = (1 + C) p1 (x) + Cp1 (x)
2 − 2Cp2 (x) ,

and p1(x), p2(x) are given in (16).
The Krawtchouk polynomials are defined by [11]

Kn (x; p,N) =2 F1

[
−n,−x;−N ;

1

p

]
.
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Another asymptotic representation with respect to the Krawtchouk poly-
nomials (see [10]) is given by

Sn(x
2;α, β, γ)

(α+ β)n n!
=

n∑
k=0

(
C

n− k

)
ckKn−k (X;A,C) , (19)

where A ̸= 0, 1 is a constant,

X =
A2

1−A

[
p1 (x)

2 − p1 (x)− 2p2 (x)
]
,

C = p1 (x) +
X

A
,

and p1(x), p2(x) are given in (16).

Therefore, we can say that, in Sections 2,3,4, using asymptotic rep-
resentations given respectively by (15), (17), (18) and (19) between the
CDH polynomials and Meixner–Pollaczek, Jacobi, Meixner and
Krawtchouk polynomials, we may also obtain new bilinear and bilat-
eral generating functions relations, recurrence relations and integral rep-
resentations for Jacobi, Meixner–Pollaczek, Krawtchouk and Meixner
polynomials. But we leave the details to the readers.
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