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1 Introduction

Marshall and Olkin [5] have introduced a new distribution by adding a
new parameter to a distribution family. They have started from F(x)
(survival function) and they introduced a new family of survival func-
tions:

- aF(x)

G(:L‘;CL) = m, (1)

in equation (1), —oo < x < o0 and 0 < a < oo. The interesting aspect
of this distribution is that the random variable of N having geometric
distribution with parameter a (0 < a < 1) (in other words P(N =n) =
a(l—a)® ', n=1,2,3,--), then Uy = min(Xy,---, Xy) has survival
function (1). Also, if @ > 1 and P(N = n) = a (1 —a )" !, n =
1,2,--+ then Vy = max(Xj,---,Xy) has the survival equation (1).
Some statistics experts have tried to add a new parameter to Marshall-
Olkin distribution. Jayakumar and Thomas [3] have introduced and
assessed the bellow survival function:

Sy B aF(x) b
G(z;a,b) = [W] . (2)

Nadarajeh et al. [(] have introduced a new family of survival function:

1—ab

Glrab) = [(F(:U)+aF(x)>_b—1],

in which € R, @ > 0 and b > 0. Note that if a — 1 then G(z;a,b) —
F(x) and if b — 1 then G(z;a,b) approaches to survival function of
Marshall-Olkin.

The distribution function, the probability density function and the haz-
ard unction of this distribution are as follows:

— F(z)al’ — ab _
h[l_ F]Zaf)cz)]b](l —ay = (=) —d' - F@a™ ()

G(x;a,b) =
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aba® f(x)
1—ab)[1 — F(z)a)b+?

g(@;a,b) = ( = aba’f(zx)(1-a")"  (4)
x[1 — F(x)a)~ )

abF (x)rp(x)

[1 - F(x)a} [1 - (F(a:) + aF(::;))b]
— abF(z)rp(z) [1 _ F(x)a] o {1 _ <1 _ F(m)&) b} )
in which @ = 1 — a, F(z) = 1 — F(x) and rp(z) is the hazard function

of X.
For analyzing the shape of

ra(z;a,b) =

TG(Q;a,b)
rr(x)
ra(z;a,b) ba
rp(z) (— (;1(1—ab))’

ba ra(z;a,b
@i-a) = e S L
It is worth mentioning that

, we have that when 0 < a < 1

decreases and 1 < and when a > 1 the function

increases and

. ba .
im rg(z;a,b) = ol — ) im g (2)

and

mgl—}—loo ra(z;a,b) = xgr-sl—loo rp(x).

This article consists of three sections. In the second part, we will deal
with the Two-Parameter Marshall-Olkin Extended Weibull family, and
in the third part, we will deal with the Bayesian statistics of this family.

2 Two-Parameter Marshall-Olkin Extended
Weibull Family (TPMOEW)

The extended Weibull (EW) distribution class was introduced and dis-
cussed by Gorvich et al. [2] They gained a prominent position in lifetime
models. Cumulative distribution function (cdf) of these models is as fol-
low:

F($7a7£) =1- exp[—aH(x,ﬁ)], reDC R+> a > Oa (6)
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That H(x; €) is a non-negative differentiable and ascending function that
depends on the parametric vector £&. The probability density function
F' is denoted by the following equation.

f(x;a,8) = ah(z; §) exp[—aH (x;§)], (7)

where h(x; €) is the derivative of H(x; &) equation. The survival equation
of this distribution is defined based on bellow equation:

F(x;a,8) = exp[—aH (z; €], (8)
Special and important cases of H(x; &) are brought in (6) equation bel-
low:
(A) H(x;&) = x gives the exponential function.
(B) H(x;\,v) = x7 exp(Az) prepares extended Weibull function.
(C) H(x;B) = B~ texp(Bz) — 1] provides Gompertz distribution.
In this paper, we obtain a new family of distributions by combining the
two-parameter Marshall-Olkin class and the exponential Weibull class.
The family of two-parameter, Extended Marshall-Olkin Weibull (TP-
MOEW) distributions includes special models.
The TPMOEW distribution function is described by the following equa-
tion:

[1 — aexp[—aH (x; S)]} b —ab
G(x;a,b,0,8) = -, w€DCR,,
(1)1 - aexpl-at ()]

a,b,a > 0.

The survival function, density function and hazard function are deter-
mined by Equations (9), (10) and (11), respectively.

b
ab — ab [1 — aexp[—aH (z; 5)]]
G(z;a,b,a,€) =

(1= )1 - aexpl-ai(s s)]]b

a’bacch(z; &) exp|—aH (x; €)]

(1)1 - ael-at (@ )] -

g(z;a,b,a,€) = (10)
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baah(z; &) exp|—aH (x; )]

’I”G(.I;CL, b,Oé,E) = - Z

Y
1 —aexp|—aH (z;€)] {1 — |1 — aexp[—aH(x;&)] }

ba exp[—aH($-§ §lrr(x)

- - - 7D
1-aesl-ati(n )] {1- [ -aepl-an@ )] |

Three Special Models

We look at three special TPMOEW models. Case 1: Two-Parameter
Marshall-Olkin Exponential Distribution (TPMOEX), Case 2: Two-
Parameter Marshall-Olkin Modified Weibull (TPMOMW), Case 3: Two-
Parameter Marshall-Olkin Gompertz (TPMOGO).

2.1 Two-parameter Marshall-Olkin Exponential distribu-

tion (TPMOEX)

In this distribution H(z;¢) =z, h(z;¢) =1, a=1-aand G =1-G

ra(z;a,b,\) =

[1 - dexp(—)\x)} ’ —ab

G(z;a,b,)) = " [1 ) ELeXp()\x)] b
b
i) o — o [1 - C_LeXp(—)\x)] i
(1—ab) [1 — anp(Ax)]
g(z;a,b,\) = a’ba) exp(—Az)

(1— ab) [1 - aexp(—)\m)} "

ba\ exp(—A\x)

[1 - aexp(—/\x)] {1 —(1- aexp(—)\:c))_b]

)
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2.2 Two-parameter Marshall-Olkin modified Weibull
(TPMOMW)

For H(x; A, ) = 27 exp(Az) and h(z;\,7) = 27 exp(A\z)(y + Az), we
will have TPMOMW distribution. Probability density function is based
on bellow:

abbacx’ ' exp(\x)(y + Ax) exp[—az? exp(\z)]

g(x;aab’a7A77) = b
(1 —ab) {1 — aexp|—az? exp()\:v)]}

abbacx’ ™ (y + Ax) exp[Ar — oz exp(\z)]

)

(1— ab) [1 — aexp|—az? exp()\a:)]] ’

in which A,~v > 0 is distribution function and hazard rate function is
based on bellow, respectively:

1 ab

G(.ﬁU;(I,b,OZ,)\,’}’): 1_ab - 1_ab

[1 _ Gexpl—az” exp()\x)]] -

bacx? L exp(Az) (v + Az)

[1 — Gexp[—ax? eXp()\x)]]

T(.Z‘;a, b,Oé,/\,’Y) =

exp|—az? exp(Ax)]

’ O PE——

2.3 Two-parameter Marshall-Olkin Gompertz (TPMOGO)

For H(z;8) = B [exp(Bz) — 1] and h(z; ) = exp(Bx) TPMOGO dis-
tribution is obtained. The density function of this distribution is as
follows:

J /B€R7

abba exp(fz) exp [ — afVexp(Bz) — 1]]
g(x;a,b,a,8) = [

(1—ab) [1 —aexp | —af~exp(fz) — UH

ZL‘GRJF
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The distribution function and the hazard rate function of the TPMOGO
model are as follows:

1 ab
l—ab® 1-—a

Glaia,b.a,B) = : [1 ~ Gexp [— o exp(B) - 1]“_b,

baa exp(fx)

r(z;a,b,a,B) = [1 _dexp [_ af~texp(Bz) — 1]“

exp [ — B fexp(Az) — 1]]

{1-]1-aew | - astiesp(on) - 1] |}

3 Bayesian Statistics

X

Since it plays an important role in estimating the Bayesian loss func-
tion, the Bayesian estimation of Two-Parameter Marshall-Olkin Expo-
nential Distribution (TPMOEX), Two-Parameter Marshall-Olkin Mod-
ified Weibull (TPMOMW) and Two-Parameter Marshall-Olkin Gom-
pertz (TPMOGO) is presented under the functions of loss error square,
entropy, Linex, error square in logarithm and modified Linex. In the
following, we express the Bayesian estimator of # under the different
loss functions in Table 1.

Suppose we are looking for Bayesian estimators for the Gorvich distri-
bution. A formal choice for the previous distribution of a, A and ~
could be three independent gamma distributions, namely gamma(J, 3),
gamma(d, () and gamma(n, ), respectively.

Suppose we are looking for Bayesian estimators for the Gorvich dis-
tribution. A formal choice for the previous distribution of o, A and ~
could be three independent gamma distributions, namely gamma(J, 3),
gamma(6, () and gamma(n, €), respectively.
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Table 1: The Bayesian estimators of 6 under different loss functions

Loss function Formula Estimator
Square error L, =k(0 —0)? 0,=E@0|z)
=[0m(0 | x)do
4 é A 1
Entropy Lg=g5—Ing—1 O = )
Linex Lp=e00 —@—-0)-1 b, =—-InE(e?|2)
Modified Linex L1, = 51 — (g -1)—-1 E(éeeeL ] a:)
“exp B(} | 2)
Square error in Logarithm Lg; = (lné — Inf)? g = eEinflz)

Therefore, the prior densities o, A and ~ are as follows.

fspla) o o lems
foc(A) M—le=A¢
faelr) o e

Therefore, the prior density function of the parameters a, A and  are
as follows.

fla, My |z) = ka® IA0-lyn—leaB=A=yeqn H $Z(»y—1) H(’y + A\z;)
=1 i=1

n
X H exp(Azx; — oza:;ye/\“)
i=1

kfl _ ///a6l)\@l,ynleaﬁ)\C'yeaonl("Y_l) H<7+)\xz)
aJAJy

i=1 i=1

X H exp(\z; — ax] e )da dX dy
i=1
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Table 2: The estimation of MCMC based on different loss functions

Loss function Estimation
Square error 9:5 = w17 Zi]\iM_H )
Entropy 0p = =11
DUEMA1 ()
N ZN My 6_9(’i>
: _ i=M+1
Linex 0 = —Inq =3 3—

. . A _1 N (©]
Square error in logarithm fgp = eN-M 2izar inf
1
1

Modified linex éMLINEX = <N_1M Zﬁ\;Mﬂ(e(i))_c) )

The posterior density function has an integral in the denominator that is
not closed form and therefore the parameters of Bayesian statistics has
not explicit form. There are various methods for solving such integrals.
We use the Lindley method to approximate those integrals.

3.1 Bayesian estimators for TPMOEX

For the TPMOEX distribution, the Bayesian estimation of the param-
eters under the loss functions of square error, entropy, Linex, square
error in logarithm and modified Linex is presented in Table 2, where in
general form 0 is the estimator of the parameter 6.

Mont Carlo Markov Chain (MCMC) for TPMOEX Chain
Method

As observed in Bayesian statistics, calculating the posterior distribution
is not always simple and in many cases the denominator of the Bayesian
fraction is not analytically possible due to computational complexity.
Even if the posterior distribution can be computed analytically, char-
acteristics of the posterior distribution mean, variance, etc. can not be
calculated. In general, the calculation of posterior expectations have
encountered with various troubles due to the inability in calculating the
posterior distribution or inability to calculate the corresponding integral.

Eg(60 | ) = / 9(0)7(8 | )do
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Therefore, in the previous section, the Lindley approximation method
was examined based on different loss functions. This section introduces
Mont Carlo Markov Chain methods for sampling posterior distributions
and for approximating such integrals. There are many algorithms for
producing Markov chains with a specific mean distribution. Among
these algorithms, Gibbs and Metropolis-Hastings sampling algorithms
are more acceptable in the statistical literature.

Gibbs sampling algorithm

The Gibbs algorithm uses conditional posterior distributions of various
parameters provided that other parameters that are called Posterior dis-
tribution full conditional, are used to sample the posterior distribution.
This algorithm for TPMOEX model is done in three steps as follows:
1. Consider the initial amount () = (a© (®) \(©)),

2. In the (£ 4 1) stage based on the obtained amounts from (t) stage, a,
b and A are updated based as bellow:

a™ ~ Pla| b \D 1)
b(t+1) ~ P(b ’ G,(H_l), )\(t),w)
AED o P e a0 1)

3. Repeat the second stage until the Marcov chain reaches to its Station-
ary distribution. Posterior distribution full conditional of the parameters
from the model are obtained as follow:

anb

P(a | b,A) < a® Lexp(— ozﬁ)( an T H (1 — aexp(—Az;))~ ¢t (12)
=1

nbbn
P(b | a, A) X beil exp( b'}’)m

x [J(1 = aexp(—Az))~+ (13)
=1

a™pn
n+n—1
P(A|a,b) oc A" exp( sz—&—a) A=y

n

x [J(1 = aexp(—Az;))~C*+) (14)
=1
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When the conditional posterior distributions, such as distributions (12)
o (14), do not have a known shape, the metropolis-Hastings algorithm
can be used to the sample of the posterior distribution. In this study, be-
cause Posterior distribution full conditional of the parameters have not
a known shape, the Metropolis-Hastings algorithm is used for Bayesian
inferences.

Metropolis-Hastings algorithm

This algorithm has a structure of rejection and acceptance and evaluates
the observations proposed by a proposed distribution as possible exam-
ples of a posterior distribution based on a probabilistic rule and accepts
them with a certain probability. Therefore, to use this algorithm, a pro-
posed distribution is required, the choice of which affects the accuracy
and speed of convergence of the algorithm. One of the desirable features
of this algorithm is that it is sufficient to know the posterior distribution
proportionally. The steps of this algorithm for TPMOEX model are as
follows:

1. Consider the initial amount 8©) = (a(®,b® (),

2. In the (t+1) stage based on the () stage, update a, b and X as follow:
a. From the proposed distribution g(a*,b*, A* | a®, ") X®) produce
(a*,b*, \*) amount.

b. Calculate the Hastings ratio based on bellow:

£(a*, ", \* | £)P(a*,b*, \*)q(a®, b AO | a* b*, \*)

H= £(a®, 6 O | 2)P(a®,b® X)) g(a*, b*, X* | a®), b1 (1))

(15)

Calculate the amount of & = min(H, 1), then produce a sample from
homogeneous distribution namely U, such that:

(a0 pEHD A = (g%, b \*) ifa<U,

(a1 pHD NEHDY = (o) s NOY if 4 > U

3. Repeat the second stage until the Marcov chain reaches to its sta-
tionary distribution.

Pay attention that in equation (15), I(- | @) is considered the probability
function, P(-) is considered the posterior’s distribution and g(a(®, () A(®) |
a*,b*, \*) is the proposed distribution that here is considered indepen-
dent semi-normal triple variable.

11
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Based on this, if this chain is repeated N times, and M number of them
is considered as burnt variables, we will have:

E((0|v) = [9®)r(® )6 =~ > 4(6)

i=M+1

As a result, the parameter estimates based on different loss functions
are summarized in Table 3 and 4.

Simulation studies

In this section, a simulation study is performed to apply Bayesian mcmec
and Lindley methods based on different loss functions. Since in Bayesian
approach, the selection of posterior distribution super parameters is very
important, then in order to examine the different values of the super pa-
rameters on the final results, informative and ignorant backgrounds are
used. In the case of previous informative backgrounds, the hyper pa-
rameters are adjusted so that the average of the previous distributions
is equal to a guess value of the model parameters. For further investi-
gation, two sets of hyper parameters can be considered, in the first case
the variance of posteriors is small and in the second case the variance
of the posteriors is large. But in the unconscious state, it was assumed
that no information about the super parameters was available and their
value was considered zero. In this simulation study, the model param-
eters are considered as a = b = X\ = 2. In the case of informational
backgrounds with small variance, the super parameters are assumed to
bea=60=n=4,58 =~ =¢ = 2, and as a result for this case the
mean and variance of the previous distributions are 2 and 1, respectively.
However, in the case of informative distributions with large variance, the
super parameters are assumed as a =60 =17 =04, 8 =v=¢=0.2, in
this case, the average of the posteriors is obtained as before 2, but their
variance is larger than the previous case and equal to 10.

There are different methods to show the convergence of Monte Carlo
chains to their meaning distribution, including the effect diagram, which
is shown in Figure 1 for a simulated sample type with size of n = 50 and
for each unconscious state, this figure shows the created convergence as
well.
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Table 3: The Bayesian estimators of the parameters under different

loss functions

Loss function

TPMOEX

Square error

a+ l}aé'aa + % |:6'aa (i/aaaé'aa + ilbbaa'bb + [A//\Aaa'kk>:|
b+ pyou, + 3 {&bb (f/aab?faa + Loppbus + li,\xb?f)\xﬂ

A padan+ 3 [&M (i’aaA&aa + Lupaduy + ﬁM,\&M)]

Entropy b{l + (5% - %ﬁb)&bb - Q%?Tbb <i/aaba'aa + Lipp6p
-1
+ LAAba'A)\):|
A [1 + (;12 - %ﬁx)&w\ - 215\6'>\)\ (ﬁaa)\a'aa + Lypadmo
1-1
+ LMA&M)
a— Ln{l + {(% - ﬁa)&aa - %&aa (i/aaaa'aa + Lbbaa'bb
+ ﬁMa@\x) }
Linex b— Ln{l + {( — Pb)8bb — 35bb (ﬁaab&m + Lopb0ob

1
2
+ iMbﬁx,\) }

(

A- Ln{l + — PN)OAx — 50 (ﬁaa,\&aa + Lipr6up

M~ I

+ flAA)ﬁ'AA)}

Square log error

a exp |:&2ada ( — % + 2pa + (i/aaaa'aa + i’bba&bb + i/)\kaa'kk))}

@

bexp [ e ( - i +20p + (Laabdaa + Loppdun + i/kAba'AA)>:|

@
>
>

Xexp [ 3 (* % +2px + (LaarGaa + Loprdps + io\)&ﬁ')d))}
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Table 4: Continue Table 3

Loss function Parameters TPMOEX
a d{l + <7C(262;1) - %ﬁa)é'aa - Tzé'aa <[A/aaa5'aa + Lbba&bb
_1
+ iAAa&AA>:|
Modified Linex b 8[1 + (‘3(;;21) -4 ﬁb>&bb — S6u (imb&w + Lopnoon
_1
+ zAAba'AA):| )
N cle+l) e ~ _ ¢ 4 > ~ > ~
A M+ =577 = $A2 )0ax = 5592 | LaarGaa + Lovadob
_1
+ z)\)\A&)\A>i|
trace of a
[}
I:D. -
N —
o -
—
o]
T T T T T
ul 1000 2000 3000 4000
trace of b
o]
o
- T T T T T
u} 1000 2000 3000 4000
trace of &
L
D'_! -
L
I:D_ -
- T T T T T
ul 1000 2000 3000 4000

Figure 1: Diagram of the effect of TPMOEX distribution parameters for
unconsciousness with size of n = 50.
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Table 5: Average error for the prior case informative with low variance

MCMC LINDLEY
Sample size  Loss function a b A a b A
Square error 3.72 0.19 0.60 4.82 0.39 097
Entropy 3.36 0.18 0.57 4.71 0.35 0.87
20 Linex 3.13 0.18 0.55 465 0.31 0.84
Square error in logarithm  3.39  0.18 0.58 4.58 0.30 0.82
Square error 2.69 0.17 047 3.09 0.23 0.60
Entropy 2.63 0.16 0.45 3.37 030 0.74
30 Linex 2,51 0.16 0.51 3.33 0.28 0.67
Square error in logarithm  2.66 0.17  0.56 3.21 0.28 0.77
Square error 2.31 0.15 041 2.87 0.14 0.53
Entropy 1.69 0.14 0.39 2.13 0.16 0.69
50 Linex 1.62 0.14 0.48 2.31 0.20 0.53
Square error in logarithm 1.71  0.14  0.50 230 0.13 0.61

In the following, 1000 simulated samples with sizes of n = 20, 30, 50

will be generated from the TPMOEX distribution and Bayesian esti-
mates are obtained based on both methods and different loss functions,
and finally their average error squares are reported in the relevant tables.
Note that to implement the MCMC method for obtaining Bayesian es-
timates of the parameters and to achieve convergence of the parameters
as well as convergence of the generated Markov chain to its stationary
distributions, this chain is repeated 4000 times and the initial 1000 re-
peats are disregarded to calculate the estimates.
According to Tables 5 to 7, it is clear that not much difference in differ-
ent loss functions in Bayesian estimates in both methods can be found.
Also, it is clear that both Lindley and Monte Carlo Markov chains have
almost the same function in estimating the parameters, but as it is clear,
MCMC method estimations have a lower MSE than Lindley estimation
with the same loss function, however this difference in b and X is neg-
ligible. In estimating the (a) parameter, this difference can be used as
a criterion for comparing the performance of the two methods and it
can be concluded that MCMC estimates are more optimal than Lindley
approximation. It should also be noted that in all cases, with increas-
ing sample volume the MSE values decrease, and this indicates that the
estimates obtained in this study are consistent. It is worth mention-
ing that the lower the prior information of the hyper parameters, their
MSE increases, and this subject can be clearly seen in the comparison
of Tables 5, 6 and 7.

15
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Table 6: Average error for the prior case informative with high variance

MCMC LINDLEY
Sample size  Loss function a b A a b A
Square error 6.95 0.57 0.93 7.84 076 1.28
Entropy 5.89 0.59 0.92 7.06 0.75 1.12
20 Linex 5.69 0.57 0.81 764 076 1.10
Square error in logarithm  5.92  0.67 0.93 744 0.78 1.14
Square error 5.67 0.45 0.78 6.57 0.51 0.90
Entropy 5.62 046 0.78 6.56 0.56 0.88
30 Linex 549 045 0.77 6.16 0.69 0.93
Square error in logarithm  5.64 0.45 0.78 6.23 0.58 0.99
Square error 4.02 0.36 0.63 5.33 0.48 0.87
Entropy 3.87 0.37 0.61 433 039 0.74
50 Linex 3.79 0.29 0.50 4.16 0.25 0.87
Square error in logarithm  3.89 0.30 0.52 586 0.39 0.90

Table 7: Average error for the prior cases in unconsciousness

MCMC LINDLEY
Sample size  Loss function a b A a b A
Square error 10.87 1.589 1.58 11.68 1.89 2.68
Entropy 9.23 1.52 1.72 11.82 146 2.21
20 Linex 8.18 1.63 1.73 10.32 198 2.15
Square error in logarithm 8.82 1.74  1.25 9.65 1.85 1.32
Square error 10.03 1.12 1.41 10.57 1.45 2.23
Entropy 8.84 0.98 1.20 9.56 1.12 2.01
30 Linex 7.87 1.25 1.02 812 1.23 1.93
Square error in logarithm 8.14 141 1.11 9.24 1.58 2.02
Square error 9.23 0.96 1.12 9.58 1.14 1.98
Entropy 7.74 0.95 1.11 896 1.02 1.85
50 Linex 6.84 1.08 0.97 7.96 1.05 1.23
Square error in logarithm 7.92 1.13 1.08 871 1.29 1.58
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Table 8: The results of the good fit criteria

Loss function MCMC LINDLEY
-loglik AIC  BIC -loglik  AIC BIC
Square error 41.65 89.30 91.61 46.49  98.98 101.30
Entropy 41.21 88.43 90.74 47.32 100.65 102.97
Linex 41.06 88.12 90.44 47.81 101.62 103.94

Square error in logarithm  42.22 90.45 92.77 47.54 101.09 103.41

Practical example

In this section a series of real data sets to implement the proposed
method are used. This data actually shows the failure time of software
release with an average length of 1000 hours.

0.519 0.968 1.43 1.893
2.49 3.058 3.625 4.442
5.218 5.823 6.539 7.083
7.485 7.846 8.205 8.564

Table 8 shows the values with good criteria for logLik, AIC and BIC fit
from the fit of the TPMOEX distribution with respect to different loss
functions and both Lindley MCMC methods that considering them, it is
conducted that Markov Mont Karlov chain method considering all loss
functions have better fit and among these, Bayesian estimation under
the Linux loss function has the best fit criteria than others, so it is
conducted that it has created a better fit.

As a result, the amounts of parameter estimations are reported in
Table 9:

3.2 Bayesian statistics for TPMOMW

The estimation of parameters for both models will be done based on
Lindley and MCMC methods based on different loss functions. The
Metropolis-Hastings algorithm will be used to generate a sample from
the complete conditional distributions of the parameters. Consider that
if the Markov chain is repeated N times, then the first M samples are
considered as the burnt samples. In this case, the estimation of MCMC
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Table 9: Parameter estimations

Loss function MCMC LINDLEY

a b A a b A
Square error 8.48 2.23 0.49 8.24 2.99 0.48
Entropy 8.47 2.10 0.48 8.38 3.04 0.47
Linex 8.43 2.12 0.49 8.61 3.08 0.47

Square error in logarithm 8.47 2.17 0.46 8.63 3.02 047

parameters is obtained based on different loss functions in Tables 10 to
12.

For the reason that in Bayesian approach, selection of super param-

eters in posterior distribution is very important, hence for analyzing
various amounts of super parameters on the final results, consciousness
and unconsciousness posteriors are used. In the case of previous back-
grounds, the super parameters are adjusted so that the average of the
previous distributions is equal to a conjuctured value of the model pa-
rameters. For further investigations, two sets of super parameters can
be considered, in the first case the variance of the antecedents is small
and in the second case the variance of the antecedents is large. But in
the unconscious state, it was assumed that no information about the
super parameters was available and their value was considered zero. In
this research, for simulation, the actual value of all parameters is consid-
ered equal to 2, and based on this, the super parameters of the previous
gamma distributions can be defined as follow:
A. Awareness with low variance: In this case, the parameters of dis-
tribution shape and gamma distribution scale are considered 4 and 2,
respectively. In this case, the previous mathematical expectation of the
parameters will be equal to their actual value (i.e, 2) and the variance
of the previous distribution of the parameters will be equal to one.

B. Awareness with high variance: In this case, the shape parameters and
the scale of the gamma distribution parameters are considered equal to
0.4 and 0.2, respectively. It is clear that in this case the average of the
parameters as in the previous case is equal to 2 but their variance is
equal to 10.
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Table 10: The Bayesian estimators of the parameters under different

loss functions

Loss functions Parameters TPMOMW
a a+ ﬁa&aa + % |:a'aa (Laaaa'aa + [A/bba&bb + LOAOAG&&&
+i/>\)\aa'/\>\ + £77a677>j|
b b+ pyou, + 5 [3171: (i/a,ab&au. + LipsGob + LaabGaa + Laxpdar
+ i“y%‘ﬂv)}
Square error o &+ pabaa + % |:6'aa (i/aaaa'aa + Lypa8pp + Laaadaa + Larxadax
+ i'y'ya‘}w)
A A+ padar + 3 [5A,\ (ﬁaa,\&aa + Lipr6ob + LaarGaa + Laxaoan
+ iv“/%&ww)
Yy ’3/ + ﬁ'yOA"y'y + % |:0A"y'y (i/aa’yé'aa + f/bb/\/&bb + i/aa'ya'aa + ﬁAAW&AA
+ vaw&vw)
a a |:1 + (&% - %ﬁa)&aa - %a’aa ([Alaaaa'aa + i/bbaa'bb + ﬁaaa&aa
-1
+L>\>\aa’>\>\ + L'y'yaa"y’y>
b 5[1 + (b% - %ﬁb) Obp — i&bb <l:aaba'aa + Lopb6sb + LaabFaa
-1
+ LxxbOax + Lyypyy }
EntrOpy « & |:1 + (dlz - éﬁa)a'aa - 21& a’aa (f/aaaa'aa + i/bba&bb + i/aaaa'aa
1-1
+ LA)\aa'A)\ + vaa&vw
A A {1 + (5\12 - %ﬁx)fux - 215\ A (/iaaA?Taa + Lipadob + Loarbaa
1-1
+ Laxx6ax + LyyaGyy
v 'AY [1 + (’AY% - %ﬁv)é’yw - %&’y'y (Lau.'ya'aa + i/bb—ya'bb + i/aay&aa

+ LaxyGax & Lyyy Gy

1-1
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Table 11: Continue Table 10

Loss functions

TPMOMW

Square error in logarithm

&exp |:&2ada ( - % + 2/3(1 + (i/aaaa'aa + -t/bbaa'bb + -t/aaaa'aa
+ Laxabar + iwaﬁw)”

bexp {0“’ ( — 5 +2pp + ( wabFaa + LobsGop + LaabFaa

+Lxx0an + ﬁwb&w) )}

2&

& exp &O‘»a ( - é + 2pa + (Laaaa'aa + ibba&bb + i/aaaé'aa

+ ﬁAAa&AA + L’V’YQ&’Y’Y>>

+ Lo + ﬁywﬁw)

5‘eXp Zaa ( -+ + Qﬁ)\ + ([A/aa)\a'aa + [A/bb)\a'bb + zaa)\a'&&

'Ayexp 0-2’?{ ( - % + Qﬁw + Laa’y&ua + [A/bb'y&bb + [A/aa'ya'aog

+LanyGan + iw*ﬁw))]

Modified Linex

|:1 + (C(C+1) - gﬁ )a'aa - %a’aa (i/aau&aa + Z/bba&bb
l

+ Laaabaa + [Az/\Aaa')\/\ + [A/»y,yaé',y.y):|

8|:1 + (C(;;D - %ﬁb)&bb

( wabFaa + LobbGop
+ Loabbaa + Laxsdax + waUWH

[=})

[ -+ 1 ~ N ~ # ~ z ~
1+ (% - %pa)o'aa - 22 Oaa (Laaaa'aa + LppaObb

+ i/aaaa'aa + i)&\a&)\k + i/'y'yaa"y'y):|

[ cle+l) ¢4 ~ c =
_”( 237 ;PA)"A 2%

M LaarGaa + Lppr6op
+ LaoarGaa + Laxadax + L»w,\&w)

>

Y

1+ (C(C+l) - %ﬁw)&'w — 550y (Aaa-ya'aa + [Azbb.y@'bb
+ [Afaa'y&aa + lAzAAA/&AA + [A/»W—yé'ﬁw :|
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Table 12: Continue Table 10

Loss functions  Parameters TPMOMW

a a—lIn [1 + (% - ﬁa)&aa - %&aa <i/aaaé'aa + ﬁbba&bb + ﬁaaa&aa

+ zAAa&A/\ + [A/'y'yaé"y'y):|

b b—in {1 + (3 — Pb)obs — 56bb (ﬁaabﬁaa + Lipp0b + Laabaa

+ Laxpéan + IAzwafw)}

Linex 62 &—In|l+ (% - ﬁa)é'aa - %&aa (i/aaaé'aa + i/bbaé'bb + i/aaaé'aa

+ Laxa0ax + ffwa&w)}

A A—ln|1+ (3 —pAr)oxx — 35ax ([A/aa)\a'aa + Lopadvs + LaarGaa

+ Laaéar + l:awxéw)}

~ 1

v A =n|14 (3 = py)oyy — 264+ (ﬁam&aa + Lypy G0 + LaayGaa

=

+ I:AM&M + ﬁvvv&w)}
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Table 13: The parameter estimates based on different loss functions

Loss function Parameter estimates

A 1 N [
s = N7 DoieM+1 al?)

Square error bs N,1 M ZfV:MH A0

< N ;
As = wtm Dicara AV

N~ N-—-M
ap = >N T
i=M+1 (7))
Entropy bp = EN]\[;Ml
i=M+1 3(3)
3 N-—-M
)\E = ZN 1
i=M+1 (7))
—a(®)
P ZzN=M+1 e
arp = —Ln{ NAT
_p(@)
. T Zﬁikﬂrl e?
Linex bL = —Ln{w
_2\)
N Zz‘l\;MH e
)\L = —Ln{N_M
asr = 6N71M Sarq Lna®
. . 2 _1_ N (%)
Square error in logarithm bgp = eN=11 Si=n+1 Inb

~ 1 N i
)\SL — eN-M Zi:M-H LnA®
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C. Unconsciousness: In this value, all super parameters are considered
zero. This mode is used when the researcher has no information about
the actual value of the previous distribution super parameters. And,
therefore for showing convergence of the generated chains to its station-
ary distribution, the plot of parameter effect will be used. Figure 2
shows the effect of the TPMOMW parameters for a simulated sample
with n = 50 size and for the unconciousness mode, where the created
convergence by the Monte Carlo Markov chain is seen as well.

In the following, 1000 simulated samples with sizes of n = 30, 50, 70

will be produced from TPMOMW and Bayesian estimates and it is ob-
tained based on both methods and different loss functions, and finally
the mean squares of their error are reported in the relevant tables. Note
that in order to implement the MCMC method to obtain Bayesian esti-
mates of the parameters and to achieve convergence of the parameters
as well as convergence of the generated Markov chain to its mean distri-
butions, this chain is repeated 4000 times and the initial 1000 iterations
are omitted to calculate the estimates.
Considering Tables 14 to 16, it is clear that there is not much difference
in various loss functions in Bayesian estimates in both methods. It is
also defined that the Lindley method has produced more appropriate
estimates because it has a smaller MSE than the MCMC method, and
it can be seen that by increasing the sample size, the quadratic values of
the squares error become smalle, which indicates the compatibility of the
estimators. It is also observed that with decreasing prior information,
the MSE estimators’ values increase.

23
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Figure 2: Diagram of the effect of TPMOMW distribution parameters for
unconciousness with size n = 50.
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Table 14: The amount of total square error in the previous cases of
consciousness with low variance (TPMOMW)

n = 30
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 8.2184 7.3135 8.2761 7.5778 7.4097
b 8.5979 8.3028 8.3875 8.3671 7.5179
LINDLEY « 7.0113 6.2331 6.3274 6.4246 6.9259
ol 9.8631 9.8971 9.1321 10.3501 9.7418
A 5.8436 4.8618 5.0181 5.4814 5.7123
a 14.8828 15.8604  16.0664 14.5365 15.4199
b 12.0279 11.3904  11.4569 11.6387 12.8003
MCMC «a 12.0498 11.6041 12.1761 11.7003 11.5330
o' 11.3189 9.9851  11.1938 11.2490 10.5979
A 8.7283 8.0027 8.1950 8.2865 8.6764
n = 50
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 5.0680 6.1482 5.7079 4.5039 5.2269
b 5.6194 5.6321 6.2656 4.6564 6.4466
LINDLEY « 4.1204 4.0825 4.6564 4.6868 4.2785
o' 6.1905 7.8764 7.3787 6.5224 6.7595
A 1.6368 2.2915 2.9264 2.3722 3.8301
a 12.0750 13.6014  13.5839 12.1522 13.6306
b 10.0379 9.1825 9.1279 10.2037 10.1124
MCMC a 9.1458 8.2067 9.7831 7.5984 9.7724
ol 8.4768 7.8344 8.3746 7.5886 8.2571
A 6.4948 5.1409 5.4786 6.3033 5.8315
n="70
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 3.4265 3.1411 4.4089 2.8112 3.3820
b 4.2670 3.9709 3.8853 3.4916 4.4514
LINDLEY « 1.9585 2.2564 3.3654 2.9032 2.0262
ol 5.7972 6.1664 5.2831 5.1886 5.1244
A 0.6319 0.6734 1.1897 0.6382 2.0504
a 10.3469 11.9402  11.7098 10.1217 11.4566
b 7.8353 7.3869 7.7387 9.0312 7.9452
MCMC «a 8.0291 7.3405 7.4899 7.4759 7.8920
ol 7.0665 6.2230 7.0547 6.6189 7.2703
A 5.5671 4.0208 3.9761 4.0385 5.2993
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Table 15: Total values of square error in the case of high-variance
consciousness case (TPMOMW)

n = 30
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 10.5462 9.9581  10.4080 9.9990 10.3731
b 11.2691 10.8650  11.1901 10.8801 10.3416
LINDLEY « 9.5678 8.7241 9.2349 8.7066 9.1856
¥ 11.9213 12.1923  11.7355 12.5431 11.8550
A 7.9913 7.6303 7.2656 7.5252 7.9398
a 17.3437 18.3015  18.1825 17.2390 18.3107
b 14.6019 14.2093  14.1603 14.5034 15.0004
MCMC «a 14.1915 13.8062  14.5870 14.3145 14.0956
o' 13.7307 12.9726  13.8894 13.7954 13.4282
A 11.3786 10.9441  10.8305 11.1559 10.7117
n = 50
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 7.6903 8.3593 8.2233 7.4030 8.1871
b 7.7419 7.7921 8.2719 7.6546 8.6864
LINDLEY « 7.0116 6.8519 6.8944 7.3346 6.5061
o' 8.7122 9.9246 9.5523 8.7462 9.4475
A 4.6128 4.4340 5.5532 5.3652 6.0003
a 14.4989 15.7353  16.1969 14.5878 15.8437
b 12.3819 11.6488  12.1223 12.6688 12.2586
MCMC a 11.6218 10.7564  12.4803 10.5327 12.0337
o7 10.6661 10.4015 11.2674 10.4415 10.6460
A 9.2144 8.0690 7.6920 8.4756 8.6077
n="70
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 5.9605 6.1401 6.8552 5.7735 5.8885
b 6.3809 6.1411 6.8366 6.3539 7.1692
LINDLEY « 4.2511 5.2489 5.8686 5.3123 4.3528
ol 8.1545 8.5507 7.7888 7.3689 7.9817
A 3.1710 3.0139 3.6596 3.6212 4.4135
a 12.4563 13.9733  14.5366 12.3945 13.5952
b 10.3722 9.5846  10.4824 11.3793 10.6800
MCMC «a 10.6391 9.8666  10.3398 9.7635 10.3919
ol 9.4135 8.9513  10.0450 9.0261 9.7471
A 8.1745 6.3927 6.8051 6.6646 7.5478
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Table 16: Total error values in unconscious previous case (TPMOMW)

n = 30
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 12.7748 12.7558  12.7385 12.7654 12.7558
b 13.2768 13.2368  13.2040 13.2569 13.2368
LINDLEY « 11.6383 11.6009  11.5778 11.6196 11.6009
¥ 14.6463 14.6086  14.5853 14.6274 14.6086
A 10.2267 10.1956  10.1788 10.2111 10.1956
a 19.4113 20.8696  20.6423 19.3178 20.8696
b 17.3456 17.0027 17.1513 17.3698 17.0027
MCMC « 16.3236 16.2548  16.7895 16.3249 16.3256
ol 15.9025 15.9060  15.9043 15.9043 15.9060
A 13.9864 13.5221  12.9685 13.5211 13.5723
n = 50
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 10.1365 10.6977  10.7038 10.2362 10.4445
b 10.7016 10.5660  10.7584 10.5343 10.8595
LINDLEY « 9.0119 9.2466 9.5602 9.3821 9.0400
¥ 11.6636 12.4175  12.0266 11.6467 11.7413
A 7.5255 7.2469 7.7725 7.8043 8.0035
a 17.0042 18.1156  18.6282 16.6011 18.3759
b 14.8463 14.1712  14.7426 15.2163 14.7539
MCMC a 14.0875 13.7026  14.5586 13.4191 14.3156
o' 13.3729 13.2529  13.7688 12.9498 13.2316
A 11.9252 10.6303  10.1970 11.2982 11.1585
n =170
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 8.8681 8.7613 9.5471 8.5475 8.7574
b 9.2415 8.9832 9.3274 8.6123 9.8407
LINDLEY « 7.1383 8.0344 8.3299 7.4730 7.2189
o' 10.5596 10.6604  10.4766 10.1171 10.5062
A 6.1267 5.9774 6.3517 6.6008 6.4147
a 15.2826 16.8429  17.2891 15.1303 16.5823
b 13.3040 12.3917  13.0748 14.0324 12.9003
MCMC « 12.9994 12.0412  12.6152 11.8609 12.7879
o7 12.0986 11.4566  12.4962 11.6787 12.1152
A 10.7255 8.9300 8.8431 9.4993 10.1236
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Table 17: The Bayesian estimators for TPMOGO under different loss
functions

Loss function  Parameters TPMOGO

a a + ﬁa&aa + % |:a'aa (Laaa&aa + [A/bbu,&bb + Laaaa'aa
+ Eﬁﬁa&/ﬁﬁ)}
b b+ pobes + 5 |:&bb (i/a,ab&au. + Loy + LaabFaa
+ zﬂﬁb&ﬁﬁ)}
Square error « &+ pabaa + % |:6'aa (ima&aa + i/bbaé'bb + Laaabaa
+ iﬁﬂa?fﬁﬁﬂ
B8 B+ Pposs + % {&ﬁg (f/aaﬁ&aa + ﬁbbﬁ&bb + ﬁaaﬁ&aa

+ zﬁﬁﬁ&ﬂﬁ)}

a d|:1 + (;2 — %ﬁa)&aa — %&aa ([A/aaaa'aa + i/bbaé'bb
—1
+ LaaaGoa + LBBQ&BB)

b 3[1 + (1%2 - %ﬁb)&bb - ?ll;&bb <zaab5'aa + Luos6op
-1
+ LaabGoaa + Lﬁﬁba—ﬁﬂ)]

1
2

&

Entropy (67 & |:1 + ( - éﬁa)é'aa - 2164 Gaa (i/aaoca'aa + i/bba&bb
-1
+ LaaaGaa + Lﬁﬂa&ﬂﬁ)}

B /3’{1 + (ﬁ% - %ﬁ[j)&ﬁﬁ - 213 688 (i/aaﬁa'aa + Lopgony

-1
+ LoapGaa + LBBB&L?B)]

a a—In |:1 + (% — pa)0aa — %&aa (zaaa&aa + Z/bbaa'bb

+Laaa&aa + ﬁﬁﬁa&ﬁﬁ>:|

b b—In {1 + (3 = )b — 26u (ﬁaab&aa + LipbGob

+ i/aab&aa + [A’Bﬁb&ﬁﬂ)]

Linex a &—1In [1 + (% — pa)baa — %&aa (iau.oc&aa + Lipabb
+f1aaa&aa + iﬁﬂa&ﬁﬂ)]

B8 ,B—ln|:l+(% —pB)oss — %6’55 (i/aaﬁé'aa'f‘i/bbﬁé'bb

+ zaaﬁ&aa + f/ﬁﬁﬁé'ﬁﬁ>:|




BAYESIAN ESTIMATION OF PARAMETERS UNDER
TWO-PARAMETER EXTENDED ”...”

3.3 Bayesian statistics for TPMOGO

Figure 3 shows the effect of the TPMOGO model parameters for a sim-
ulated sample with n = 50, which shows the convergence created by the
model Monte Carlo Markov chains.

As before, 1000 simulated samples with sizes of n = 30, 50, 70 will be

generated from the TPMOGO distribution and Bayesian estimates are
obtained based on both methods and based on different loss functions,
and finally their mean squares of errors are reported in the relevant ta-
bles. Note that in order to implement the MCMC method to obtain
Bayesian estimates of the parameters and to achieve convergence of the
parameters as well as convergence of the generated Markov chain to its
mean distributions, this chain is repeated 4000 times and the initial 1000
iterations are omitted to calculate the estimates.
According to Tables 19 to 21, it is clear that not much difference in var-
ious loss functions can be found in Bayesian estimates in both methods.
It is also concluded that the Lindley method has generated more appro-
priate estimates because it has smaller MSE than the MCMC method,
and it is also observed that as the sample size increases, the quadratic
values of the squares error become smaller, which indicates the compat-
ibility of the estimators.
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Table 18: Continue Table 17

Loss function

Parameters TPMOGO

a G exp {52‘1; (— % +2pa + ( LacaGaa + Lypabb + LaaaGaa

i)

b Bexp {@( %
+ L,@BbaﬁB))}

+2pp + (ﬁaabéaa + Lopp6ob + LaabFaa

Square error in logarithm « & exp [ < s 2P0 + (ﬁaaa&m + ibba&bb + iaaa&aa
+ Lﬁﬂa%ﬁ)”
B Bexp [ ( % 2pp + (ﬁaaﬂﬁaa + Livgbuh + Laastaa
+ Lﬁﬁﬁ”ﬁﬁ))}
a |:1 + (C<C+1) %ﬁa) &aa - To'aa ([A/aaaa'aa + i/bba&bb + i/aaaa'aoc

Modified Linex

_1
+ ﬁBBa‘}BB)}

- 1 N . N S s PO
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+ ﬁﬁﬁb&ﬁﬁ)}
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Figure 3: Diagram of the effect of TPMOGO distribution parameters for
unconsciousness mode with size of n = 50.
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Table 19: the amount of total error squares in the case of low-variance
consciousness case (TPMOGO)

n = 30
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 10.589 10.229 9.720 10.276 9.355
b 10.551 9.550 9.538 9.473 9.781
LINDLEY g 10.339 9.509 9.215 10.270 10.710
«a 10.011 10.180 9.869 9.692 9.692
a 12.770 13.766  12.655 13.474 12.561
b 13.958 12.738  12.365 12.763 13.838
MCMC B 12.871 13.470 14.031 12.954 13.724
a 14.158 12.580 13.164 13.023 14.121
n = 50
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 7.741 6.902 6.413 6.472 8.352
b 6.737 6.523 7.794 6.426 8.492
LINDLEY g 6.695 7.239 7.717 7.285 6.743
« 7.524 7.111 7.248 6.908 8.142
a 9.992 11.576 9.374 12.253 10.921
b 11.545 8.441 8.891 8.062 10.587
MCMC B 9.969 10.298  10.442 9.883 10.355
« 11.998 8.623  10.520 9.678 9.967
n ="70
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 5.178 4.434 3.470 2.902 3.928
b 4.291 3.127 3.384 3.758 5.005
LINDLEY g 2.630 4.191 5.231 4.681 4.150
a 4.285 3.983 5.335 4.287 4.648
a 7.225 9.535 5.455 7.331 5.954
b 8.630 5.379 5.492 6.319 6.631
MCMC B 5.993 6.229 6.992 7.867 6.761
«a 9.387 6.370 7.428 7.573 8.194
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Table 20: Total values of error squares in the case of high-variance
consciousness case (TPMOGO)

n = 30
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 12.801 12.618  12.672 12.830 12.177
b 12.566 12.364  12.442 12.202 12.415
LINDLEY g 12.898 12.291  12.198 12.540 12.910
«a 12.856 12.848 12.615 12.235 12.238
a 14.813 16.759  15.121 16.358 15.109
b 16.270 14.821  15.204 15.639 15.942
MCMC B 14.982 15.834 16.785 15.753 15.935
«a 16.622 14.749  15.210 15.837 16.542
n = 50
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 10.625 9.506 8.785 9.192 10.717
b 9.443 8.879  10.250 9.042 10.994
LINDLEY g 8.812 9.971  10.490 9.678 9.732
« 10.124 9.232 10.135 9.278 10.334
a 12.553 14.122 11.768 14.306 12.931
b 13.838 11.294  11.244 10.869 13.221
MCMC B 12.076 12.879  13.389 12.564 12.499
« 14.178 11.293  12.523 12.146 12.409
n =170
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 7.815 7.232 5.866 5.868 6.613
b 6.385 5.771 6.314 5.925 7.283
LINDLEY g 5.460 6.359 7.946 7.187 6.976
a 6.625 6.946 7.922 6.469 7.371
a 9.283 11.917 8.349 9.874 8.944
b 11.444 7.955 7.969 9.128 9.612
MCMC B 8.595 8.711 9.751 10.400 9.036
a 11.874 8.603 9.981 9.587 10.229
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Table 21: Total values of square error in the previous state of uncon-
scious (TPMOGO)

n = 30
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 14.109 14.109  14.109 14.109 14.109
b 14.109 14.109  14.109 14.109 14.109
LINDLEY g 14.109 14.109  14.109 14.109 14.109
«a 14.109 14.109  14.109 14.109 14.109
a 16.186 18.034 16.135 17.957 16.526
b 17.718 16.201  16.260 16.662 17.219
MCMC B 16.524 17.380 17.819 17.190 17.114
«a 17.963 16.520 16.421 17.065 17.780
n = 50
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 12.085 10.916  10.281 10.280 11.970
b 11.046 10.175  11.894 10.386 12.001
LINDLEY g 10.404 11.157  11.711 11.629 11.444
«a 11.589 11.007  12.066 10.925 11.824
a 14.101 16.022  12.909 15.626 13.939
b 15.499 13.263  12.657 12.815 15.125
MCMC B 13.238 14.278  14.889 14.409 13.787
« 15.346 12.946 14.374 13.429 14.218
n =170
Square error  Entropy  Linex Square error in logarithm  Modified linex
a 9.620 8.257 7.537 7.700 8.467
b 7.462 7.520 8.190 7.216 8.614
LINDLEY g 6.547 7.429 9.376 9.085 8.280
a 7.779 8.776 9.154 7.938 9.065
a 11.244 13.206  10.266 11.810 10.871
b 12.932 9.434 9.635 10.753 11.229
MCMC B 10.562 10.534  11.048 11.898 10.081
a 12.961 9.783 11.583 11.169 11.624




BAYESIAN ESTIMATION OF PARAMETERS UNDER

TWO-PARAMETER EXTENDED ”...”
Table 22: Goodness of fit statistics for TPMOMW model

LIND MCMC
Loss function LOG AIC BIC LOG AIC BIC
Square error 73.80 155.61 160.15 220.23 448.47  445.91
Entropy 59.37 124.87 130.58 201.42 410.84  408.29
Linex 68.26  144.52  149.06 196.68 401.376  398.82
Square error in logarithm  59.01  126.03  130.57 209.12 426.24  423.69
Modified Linex 57.39 122.78 127.32 210.56 429.12  426.56

Practical example

This section uses a series of real data sets to implement the proposed
methods. These data actually include 23 secondary failure times of
reactor pumps that have been used in studies such as Beibington et al.

[1]-

0.0620 0.0700  0.1010 0.1500
0.1990 0.2730 0.3470 0.3580
0.4020 0.4910 0.6050 0.6140
0.7460 0.9540 1.0600 1.3590
1.9210 2.1600 3.4650  4.0820
4.9920 5.3200 6.5600

The Tables 22-24 show the values of good criteria logLik, AIC and BIC
fits resulting from the fit of the two proposed models with respect to
different loss functions, according to which it is concluded that Lindley
estimates have a better fit with respect to all loss functions, and hence
Bayesian Lindley estimates is the best model for the TPMOMW model
under the modified Lynx loss function because it has better fit criteria
than the others.
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Table 23: Goodness of fit statistics for TPMOGO model

LIND MCMC
Loss function LOG AIC BIC LOG AIC BIC
Square error 1010.66  2031.33 2037.01 1420.77  2851.54  2848.35
Entropy 984.73 1979.46 1985.14 1246.41  2502.82  2499.63
Linex 984.73  1979.46 1985.1 1330.77  2671.54  2668.35
Square error in logarithm 999.67 2009.34 2015.02 1430.77 2871.54  2868.35
Modified Linex 964.34  1938.68  1944.35 1176.78  2363.56  2360.36

Table 24: Lindley estimation of parameters of TPMOMW model based
on modified Linex loss function

1]

2]

a b y « A
2.1278 | 0.5450 | 3.3166 | 0.7631 | 0.5308
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Appendix: Lindley Estimation In [!], Lindley showed that the ratio
of two integrals can be estimated and the omitted part is o(n~?) and
the main part that is used for estimation is o(n=1).

[w(8)e"® a0
[v(0)eL®)do

In the above integral ratio @ = (601,02, -- ,6,,) is the vector parameter
and L(0) is the logarithm of the likelihood function

L(6) = 3 log pla; | 0)

where x1, 9, ,z,, observation from p(- | @). In the application we
should place v(0) = 7(8), that 7(0) is the prior density function of the
0 parametric vector. Therefore, the dominator is the integral ratio of
the normalizer constant in the Bayesian theory and w(0) = u(0)m(0)
such that the integral ratio becomes E(u(0) | x1,x2,- - ,xy).

In Bayesian estimation, by placing p(6) = log (), the integral ratio
changes to

[ u(0)e0)+r0) g
[ eL®)+r(0)q0

That the new integral ratio is estimated as follow by Lindly:
A+1Z(A + 20;)0 +1Z£ 0166
a4 Qs 4 605 )Gs 4 = i G
9 ij iPi)0ij 9 ijkWLOi5O0kL
The first term is o(1) and the other terms are o(n ') in the above phrase.

U = u(é17é27”' 7ém)

. - 5 dg
gi = gi(th,02,--- ,0p) = 9, lo—o
o . 82g
A’LH — j'e,e,"',em = — A
Gij g]( 1,Y2 ) 89189] |070
o . &g
Gijk = Gijk(01,02, -+ ,0n) = o [g_p
gjk g]k( 1,72 ) 89169389,@ ’9_0
And 6 = (él, O, - - - ,ém) is the maximum probability estimation of 6 =

(61,02, ,0,,) and &;; is obtained from the matrix relation (6;5) =
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(=Li;)~". Therefore:

I(z) = E(u(61,02,- ,6m)| X =)
f u(@l, 027 - ,Hm)eL(91,02,--- 0m)+p(01,02,-- ,9m)d91 L d@g
f el (01,02, ,0m)+p(01,02,+ ,0m) O - - - O

But in this equation 61,6, -, 0,, are independent, so

0010, =" = 00 10,, = 0

And by considering page 227 of Lindly article, this estimation is de-
creased to the following equation:

IRy
U+ 5 Z Ui + 2Uipi)Gii + 5 > Likt b6

According to Lindley’s approximation, this mathematical expectation
for the number of different random variables (m) is as follows

m=2

I(“’) = u(él’ é2) + |:(7:L9101 + 21191[)91)69191 + (ﬂ9292 + 2@92ﬁ92)&9292:|

N~ N

+ [fbel <L910101 06,6,00,0, + Lo,6,0, 392925’9101>

+ g, (Lelalogﬁelel 0,0, + L920292&929269292>]

I(x) = wu(fy,0s,0)

1

+§ |:(ﬁ9191 + 2ﬁ91ﬁ91)&9191 + (ﬁ9292 + 2@92,592)5'9292 + (ﬂ9393 + 2ﬁ93ﬁ93)&9393:|

+§ g, | L6,60,6,00,6,06.0, + L026,0,0050,00,0, + L05650,0050500,6,

|

‘|’ﬂ62 <L019162 5'0191 69262 + L029292 5‘929259292 + L939392 5‘93936'9292>

+lg, <L919103&0191 00305 + L0562030050500565 + L63056506560500505
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m=4

I(z) = u(f,62,05,04)

Iy, . L s . e s
+§ |:(u9191 + 2u91p91)09191 + <u9292 + 2'LL92,092)09292

—l—(ﬂ9393 + ﬂ93:693)5-9393 + (09494 + 2@94/694)5'9494

1. (- A . - A - A

"‘5 01 L0101910'01610'0101 + L0202010929209191 + L9393910939309191
+Lg,0,6, &949469191>
+ﬂ@<me@6mm&@%-%L@®@6@@&@@-%L%%@6%%&@@
+L94049250494&9202>
+ﬂ93 (L919193&9191 6'9393 + L92929369292 5’9393 + L93939369393 5’9393
+L949493579494§9393>

+g, (L9191945610159494 + L0,020,0020,00,0, + L03050,0050,00,0,

+L94949459494?79494>}
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m=>5

I(x) = wu(f,6,03,04,05)

17 . A a . PN,
+§ |:(“9191 + 2u91p91)00191 + (u9292 + 2u92p92)09292

+(ﬂ9393 + 27103/693)6'9393 + (7:69494 + 2€694ﬁ€4)&9494 + <Tl9595 + 27195[)95)&9595
1(. - . . - N R - - N

i) [Um <L0191910910109191 + L0,6050,0050,00,01 + L:63036,0050506,0,
+i/949401 5’9494 (}9191 + i’959591 69595 69191)

+ﬁ¢92 <£919192&9191 6'09292 + £929292&9292 &9292 + £939392 60393 &9202
+1A—/049492 00404000, + j—’959592 &9505&9292>

+ g, (E919193&0101 00505 + ﬁ929293&9292 00405 + f’939363&9393 00305
+i/049403 &9494&9393 + IA/959593 69595&9393)

+ﬁw(ﬁmmm6mm&w@-%ﬁﬁ%@&@%&&%‘%ﬁ%%%6%%&%%
+ﬁ@@@5&@5@h‘%ﬁ%%&5%%&%%>

+lg, <L9191955'9101 00505 T L056205060,0500505 + L630565065605006505

+L,0,0500,0,005605 + Lo50565 &9595&9595) }
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