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Abstract: In this paper we will consider the crossed product
C(T ) ×α Z, where T is the unit circle, α(n) = αn is a rotation
through the angle −2πnθ for n ∈ Z, and θ is a fixed irrational
number. We will apply some results about patial actions to repre-
sent this crossed product as a C∗-subalgebra of B(L2(T )). Also, by
a different method form the proof of Davidson, we show that this
crossed product is isomorphic to the irrational rotation algebra.
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1. Introduction

Let G be a discrete group and θ = ({θt}, {Ut})t∈G be a partial homeo-

morphism [3] of a locally compact space X. Put Dt = C0(Ut) and define

αt : Dt−1 → Dt by

αt(f)(x) := f(θt−1(x)) , for f ∈ Dt−1 and x ∈ Ut.
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Then α = ({αt}, {Dt})t∈G is a partial action of G on the C∗-algbera

C0(X) in the sense of [2] and [6], which is called the partial action of G

on C0(X) corresponding to θ ([4]).

Definition 1.1. ([4]) The partial dynamical system (C0(X), G, α) is

topologically free if for every t ∈ G\{e}, the set

Ft := {x ∈ Ut−1 : θt(x) = x}

has empty interior.

The concepts of reduced and full crossed products for actions are

generalized by McClanahan in [6] to parital actions. It is surprising that

in some situations the faithfulness of a representation of the reduced

crossed product C0(X) ×r G depends only on that of C0(X). In this

relation we bring the following theorem. For the proof see [4, Theorem

2.6].

Theorem 1.2. Suppose (C0(X), G, α) is topologically free. A represen-

tation of the reduced crossed product C0(X)×r G is faithful if and only

if it is faithful on C0(X).

We remark that when G is an amenable group (especially when G is

abelian), the reduced and full crossed products are identified with each
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other, and so in this case, the preceding theorem is valid for the full

crossed product, with a similar proof.

2. Main Result

Fix an irrational number θ. Let Rθn be the rotation through the angle

2πnθ. That is, Rθn : T → T is defined by Rθn(z) = ze2πinθ for n ∈ Z.

So the map Rθ : n 7→ Rθn is a partial action (indeed, an action) on Z.

It is clear that Rθn is a homeomorphism on the compact space T . Thus,

Rθ is a partial homeomorphism.

Now, let α be the partial action ofZ on C0(T ) = C(T ) corresponding

to Rθ. So αn : C(T ) → C(T ) is defined by

αn(f)(z) = f(Rθ−n(z)) = f(ze−2πinθ)

for f ∈ C(T ) and z ∈ T. Note that α is an action in this case.

To identify the crossed product C(T )×αZ ([1], [6]), more explicitely,

first we find a faithful representation of C(T )×αZ. Indeed, we represent

the crossed product as a C∗-subalgebra of B(L2(T )). Let M : C(T ) →

B(L2(T )) be given by

Mf (g) = fg
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for f ∈ C(T ) and g ∈ L2(T ). Also, define λ : Z → B(L2(T )) by

λn(ξ)(z) = ξ(ze−2πinθ)

for ξ ∈ L2(T ) and z ∈ T .

Note that λ∗n = λ−n and λn = λn
1 . It is clear that M is a non-

degenerate representation and λ is a unitary representation. Also it can

be easily verified that

M(αn(f)) = λnoMfoλ∗n

for f ∈ C(T ). Therefore, (M, λ,L2(T )) is a covariant representation of

the C∗-dynamical system (C(T ),Z, α). By the correspondence between

the covariant representations of a partial action and the representations

of the associated crossed product [6], we conclude that M × λ is a rep-

resentation of C(T ) ×α Z. Since Z is an abelian group, we can identify

C(T )×α Z with C(T )×r Z. On the other hand, M is faithful on C(T ).

So Theorem 1.2 implies that M × λ is a faithful representation. Note

that Theorem 1.2 can be used because for every irrational θ, Rθ is topo-

logically free. In fact, for n ∈ Z\{0}, Fn = {z ∈ T : ze−2πinθ = z} = ∅

because θ is an irrational number and so e2πinθ 6= 1.

We know that (M × λ)(fδn) = Mfλn = Mfλn
1 , where fδn is a
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generator of C(T )×α Z. Since ι(z) = z, generates the C∗-algebra C(T )

and 1 generates the groupZ, we have (M×λ)(C(T )×αZ) = C∗(Mz, λ1).

We can summarize the above discussions in the following lemma.

Lemma 2.1. Assume that Mz and λ1 are defined as following

Mz(g) = zg

for g ∈ L2(T ), and

λ1(ξ)(z) = ξ(ze−2πiθ)

for ξ ∈ L2(T ) and z ∈ T . Then

C(T )×α Z ' C∗(Mz, λ1).

Remark 2.2. Set U = Mz and V = λ1. Then U and V are unitaries

satisfying

(∗) UV = e2πiθV U.

Lemma 2.3. Assume that U and V are two unitaries in B(L2(T )), sat-

isfying the relation (∗). Let π be the representation of C(T ) on B(L2(T ))

taking ι to U , where ι(z) = z for all z in T . Also let Λ be the repre-

sentation of Z on B(L2(T )) taking 1 to V . Then (π, Λ) is a covariant

representation of (C(T ),Z, α).
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Proof. It is clear that π is a non-degenerate representation and Λ is a

unitary representation. It suffices to show that

Λnπ(g)Λ∗n = π(αn(g))

for all g ∈ C(T ) and n ∈Z. Since U is unitary, Proposition 4.1.1 (iii) of

[5] implies that sp(U) ⊂ T . On the other hand, sp(U) is invariant under

the rotation Rθ through the irrational angle 2πθ, because

e2πiθsp(U) = sp(e2πiθU) = sp(V ∗UV ) = sp(UV ∗V ) = sp(U).

Thus considering the fact that θ is irrational, we conclude that sp(U) =

T . So we can use the Functional Calculus. For any polynomial p(z) =
N∑

k=−N

akz
k, one has

V p(U)V ∗ =
N∑

k=−N

ak(V UV ∗)k =
N∑

k=−N

e−2πikθakU
k = α1(p)U.

Similarly, we have V ∗p(V )V = α−1(p)U . It is easily verified by induction

that

V np(U)V n∗ = αn(p)U for all n ∈Z.

So we have

Λnπ(p)Λ∗n = V np(U)V n∗ = αn(p)U = p(e−2πinθU) = π(αn(p)).
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Since C(T ) is the closure of such these polynomials, the result follows.¤

In [1] K. R. Davidson has defined the irrational rotation algebra Aθ

as the following:

Definition 2.4. The universal C∗-algebra Aθ satisfying (∗) is called the

irrational rotation algebra.

Recall that Aθ is universal for the relation (∗) provided that it is

generated by two unitaries Ũ and Ṽ satisfying (∗), and whenever A =

C∗(U, V ) is another C∗-algebra satisfying (∗), there is a homomorphism

of Aθ onto A which carries Ũ to U and Ṽ to V .

Remark 2.5. Let (A, G, α) be a C∗-dynamical system. Then the crossed

product A×α G has the universal property [1]. That is, if (π, Λ) is any

covariant representation of (A, G, α), then there is a representation of

A×α G into C∗(π(A), Λ(G)) obtained by setting

σ(f) =
∑

t∈G

π(At)Λt for f =
∑

t∈G

Atδt ∈ AG

and then extending by continuity. In the unital case, this map is surjec-

tive.

Theorem 2.6. The crossed product C(T ) ×α Z can be identified with
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the irrational rotation algebra Aθ.

Proof. By Remark 2.2, Mz and λ1 are unitaries satisfying (∗). Now,

since Aθ is simple, by Theorem VI.1.4 of [1], C∗(Mz, λ1) is isomorphic

to Aθ. Thus Lemma 2.1 implies that C(T )×α Z ' Aθ. ¤

Remark 2.7. There is another proof of the theorem due to Davidson

[1] which we bring here.

Suppose that Aθ = C∗(Ũ , Ṽ ) such that Ũ and Ṽ are unitaries

satisfying (∗). Then by Lemma 2.3, (π, Λ) is a covariant representa-

tion of (C(T ),Z, α), where π : ι 7→ Ũ and Λ : 1 7→ Ṽ . By Remark

2.5, there is a homomorphism of C(T )×α Z onto C∗(π(C(T )), Λ(Z)) =

C∗(π(ι), Λ(1)) = C∗(Ũ , Ṽ ) = Aθ. Conversely, by Remark 2.2, Mz and

λ1 are unitaries satisfying (∗). Therefore, the universal property of Aθ

implies that there is a homomorphism of Aθ onto C∗(Mz, λ1), and so by

Lemma 2.1, there is a homomorphism of Aθ onto C(T ) ×α Z. Clearly

these homomorphims are inverses.
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