Irrational Rotation Algebra as a Crossed Product

S. Haghkhah
Islamic Azad University - Sepidan Branch
M. Faghih Ahmadi
Islamic Azad University - Sepidan Branch

Abstract

In this paper we will consider the crossed product $C(T) \times{ }_{\alpha} \mathbf{Z}$, where T is the unit circle, $\alpha(n)=\alpha_{n}$ is a rotation through the angle $-2 \pi n \theta$ for $n \in \mathbf{Z}$, and θ is a fixed irrational number. We will apply some results about patial actions to represent this crossed product as a C^{*}-subalgebra of $B\left(L^{2}(T)\right)$. Also, by a different method form the proof of Davidson, we show that this crossed product is isomorphic to the irrational rotation algebra.

AMS Subject Classification: 47L65.
Keywords and Phrases: Partial action, partial homeomorphism, crossed product, rotation algebra, topologically free.

1. Introduction

Let G be a discrete group and $\theta=\left(\left\{\theta_{t}\right\},\left\{U_{t}\right\}\right)_{t \in G}$ be a partial homeomorphism [3] of a locally compact space X. Put $D_{t}=C_{0}\left(U_{t}\right)$ and define $\alpha_{t}: D_{t^{-1}} \rightarrow D_{t}$ by

$$
\alpha_{t}(f)(x):=f\left(\theta_{t^{-1}}(x)\right), \quad \text { for } \quad f \in D_{t^{-1}} \quad \text { and } \quad x \in U_{t}
$$

Then $\alpha=\left(\left\{\alpha_{t}\right\},\left\{D_{t}\right\}\right)_{t \in G}$ is a partial action of G on the C^{*}-algbera $C_{0}(X)$ in the sense of [2] and [6], which is called the partial action of G on $C_{0}(X)$ corresponding to $\theta([4])$.

Definition 1.1. ([4]) The partial dynamical system $\left(C_{0}(X), G, \alpha\right)$ is topologically free if for every $t \in G \backslash\{e\}$, the set

$$
F_{t}:=\left\{x \in U_{t^{-1}}: \theta_{t}(x)=x\right\}
$$

has empty interior.
The concepts of reduced and full crossed products for actions are generalized by McClanahan in [6] to parital actions. It is surprising that in some situations the faithfulness of a representation of the reduced crossed product $C_{0}(X) \times{ }_{r} G$ depends only on that of $C_{0}(X)$. In this relation we bring the following theorem. For the proof see [4, Theorem 2.6].

Theorem 1.2. Suppose $\left(C_{0}(X), G, \alpha\right)$ is topologically free. A representation of the reduced crossed product $C_{0}(X) \times{ }_{r} G$ is faithful if and only if it is faithful on $C_{0}(X)$.

We remark that when G is an amenable group (especially when G is abelian), the reduced and full crossed products are identified with each
other, and so in this case, the preceding theorem is valid for the full crossed product, with a similar proof.

2. Main Result

Fix an irrational number θ. Let $R_{\theta_{n}}$ be the rotation through the angle $2 \pi n \theta$. That is, $R_{\theta_{n}}: T \rightarrow T$ is defined by $R_{\theta_{n}}(z)=z e^{2 \pi i n \theta}$ for $n \in \mathbf{Z}$. So the map $R_{\theta}: n \mapsto R_{\theta_{n}}$ is a partial action (indeed, an action) on \mathbf{Z}. It is clear that $R_{\theta_{n}}$ is a homeomorphism on the compact space T. Thus, R_{θ} is a partial homeomorphism.

Now, let α be the partial action of \mathbf{Z} on $C_{0}(T)=C(T)$ corresponding to R_{θ}. So $\alpha_{n}: C(T) \rightarrow C(T)$ is defined by

$$
\alpha_{n}(f)(z)=f\left(R_{\theta_{-n}}(z)\right)=f\left(z e^{-2 \pi i n \theta}\right)
$$

for $f \in C(T)$ and $z \in T$. Note that α is an action in this case.
To identify the crossed product $C(T) \times{ }_{\alpha} \mathbf{Z}([1],[6])$, more explicitely, first we find a faithful representation of $C(T) \times{ }_{\alpha} \mathbf{Z}$. Indeed, we represent the crossed product as a C^{*}-subalgebra of $B\left(L^{2}(T)\right)$. Let $M: C(T) \rightarrow$ $B\left(L^{2}(T)\right)$ be given by

$$
M_{f}(g)=f g
$$

for $f \in C(T)$ and $g \in L^{2}(T)$. Also, define $\lambda: \mathbb{Z} \rightarrow B\left(L^{2}(T)\right)$ by

$$
\lambda_{n}(\xi)(z)=\xi\left(z e^{-2 \pi i n \theta}\right)
$$

for $\xi \in L^{2}(T)$ and $z \in T$.
Note that $\lambda_{n}^{*}=\lambda_{-n}$ and $\lambda_{n}=\lambda_{1}^{n}$. It is clear that M is a nondegenerate representation and λ is a unitary representation. Also it can be easily verified that

$$
M\left(\alpha_{n}(f)\right)=\lambda_{n} o M_{f} o \lambda_{n}^{*}
$$

for $f \in C(T)$. Therefore, $\left(M, \lambda, L^{2}(T)\right)$ is a covariant representation of the C^{*}-dynamical system $(C(T), \mathbf{Z}, \alpha)$. By the correspondence between the covariant representations of a partial action and the representations of the associated crossed product [6], we conclude that $M \times \lambda$ is a representation of $C(T) \times{ }_{\alpha} \mathbf{Z}$. Since \mathbf{Z} is an abelian group, we can identify $C(T) \times{ }_{\alpha} \mathbf{Z}$ with $C(T) \times r \mathbf{Z}$. On the other hand, M is faithful on $C(T)$. So Theorem 1.2 implies that $M \times \lambda$ is a faithful representation. Note that Theorem 1.2 can be used because for every irrational θ, R_{θ} is topologically free. In fact, for $n \in \mathbf{Z} \backslash\{0\}, F_{n}=\left\{z \in T: z e^{-2 \pi i n \theta}=z\right\}=\emptyset$ because θ is an irrational number and so $e^{2 \pi i n \theta} \neq 1$.

We know that $(M \times \lambda)\left(f \delta_{n}\right)=M_{f} \lambda_{n}=M_{f} \lambda_{1}^{n}$, where $f \delta_{n}$ is a
generator of $C(T) \times{ }_{\alpha} \mathbf{Z}$. Since $\iota(z)=z$, generates the C^{*}-algebra $C(T)$ and 1 generates the group \mathbf{Z}, we have $(M \times \lambda)\left(C(T) \times{ }_{\alpha} \mathbf{Z}\right)=C^{*}\left(M_{z}, \lambda_{1}\right)$.

We can summarize the above discussions in the following lemma.

Lemma 2.1. Assume that M_{z} and λ_{1} are defined as following

$$
M_{z}(g)=z g
$$

for $g \in L^{2}(T)$, and

$$
\lambda_{1}(\xi)(z)=\xi\left(z e^{-2 \pi i \theta}\right)
$$

for $\xi \in L^{2}(T)$ and $z \in T$. Then

$$
C(T) \times_{\alpha} \mathbf{Z} \simeq C^{*}\left(M_{z}, \lambda_{1}\right)
$$

Remark 2.2. Set $U=M_{z}$ and $V=\lambda_{1}$. Then U and V are unitaries satisfying

$$
\begin{equation*}
U V=e^{2 \pi i \theta} V U \tag{*}
\end{equation*}
$$

Lemma 2.3. Assume that U and V are two unitaries in $B\left(L^{2}(T)\right)$, sat-
isfying the relation (*). Let π be the representation of $C(T)$ on $B\left(L^{2}(T)\right)$ taking ι to U, where $\iota(z)=z$ for all z in T. Also let Λ be the representation of \mathbf{Z} on $B\left(L^{2}(T)\right)$ taking 1 to V. Then (π, Λ) is a covariant representation of $(C(T), \mathbf{Z}, \alpha)$.

Proof. It is clear that π is a non-degenerate representation and Λ is a unitary representation. It suffices to show that

$$
\Lambda_{n} \pi(g) \Lambda_{n}^{*}=\pi\left(\alpha_{n}(g)\right)
$$

for all $g \in C(T)$ and $n \in \mathbb{Z}$. Since U is unitary, Proposition 4.1.1 (iii) of [5] implies that $s p(U) \subset T$. On the other hand, $s p(U)$ is invariant under the rotation R_{θ} through the irrational angle $2 \pi \theta$, because

$$
e^{2 \pi i \theta} s p(U)=s p\left(e^{2 \pi i \theta} U\right)=s p\left(V^{*} U V\right)=s p\left(U V^{*} V\right)=s p(U)
$$

Thus considering the fact that θ is irrational, we conclude that $s p(U)=$ T. So we can use the Functional Calculus. For any polynomial $p(z)=$ $\sum_{k=-N}^{N} a_{k} z^{k}$, one has

$$
V p(U) V^{*}=\sum_{k=-N}^{N} a_{k}\left(V U V^{*}\right)^{k}=\sum_{k=-N}^{N} e^{-2 \pi i k \theta} a_{k} U^{k}=\alpha_{1}(p) U
$$

Similarly, we have $V^{*} p(V) V=\alpha_{-1}(p) U$. It is easily verified by induction that

$$
V^{n} p(U) V^{n^{*}}=\alpha_{n}(p) U \text { for all } n \in \mathbb{Z}
$$

So we have

$$
\Lambda_{n} \pi(p) \Lambda_{n}^{*}=V^{n} p(U) V^{n^{*}}=\alpha_{n}(p) U=p\left(e^{-2 \pi i n \theta} U\right)=\pi\left(\alpha_{n}(p)\right)
$$

Since $C(T)$ is the closure of such these polynomials, the result follows.

In [1] K. R. Davidson has defined the irrational rotation algebra \mathcal{A}_{θ} as the following:

Definition 2.4. The universal C^{*}-algebra \mathcal{A}_{θ} satisfying (*) is called the irrational rotation algebra.

Recall that \mathcal{A}_{θ} is universal for the relation (*) provided that it is generated by two unitaries \tilde{U} and \tilde{V} satisfying (*), and whenever $\mathcal{A}=$ $C^{*}(U, V)$ is another C^{*}-algebra satisfying $(*)$, there is a homomorphism of \mathcal{A}_{θ} onto \mathcal{A} which carries \tilde{U} to U and \tilde{V} to V.

Remark 2.5. Let (\mathcal{A}, G, α) be a C^{*}-dynamical system. Then the crossed product $\mathcal{A} \times{ }_{\alpha} G$ has the universal property [1]. That is, if (π, Λ) is any covariant representation of (\mathcal{A}, G, α), then there is a representation of $\mathcal{A} \times{ }_{\alpha} G$ into $C^{*}(\pi(\mathcal{A}), \Lambda(G))$ obtained by setting

$$
\sigma(f)=\sum_{t \in G} \pi\left(A_{t}\right) \Lambda_{t} \quad \text { for } \quad f=\sum_{t \in G} A_{t} \delta_{t} \in \mathcal{A} G
$$

and then extending by continuity. In the unital case, this map is surjective.

Theorem 2.6. The crossed product $C(T) \times{ }_{\alpha} \mathbf{Z}$ can be identified with
the irrational rotation algebra \mathcal{A}_{θ}.

Proof. By Remark 2.2, M_{z} and λ_{1} are unitaries satisfying (*). Now, since \mathcal{A}_{θ} is simple, by Theorem VI.1.4 of [1], $C^{*}\left(M_{z}, \lambda_{1}\right)$ is isomorphic to \mathcal{A}_{θ}. Thus Lemma 2.1 implies that $C(T) \times{ }_{\alpha} \mathbb{Z} \simeq \mathcal{A}_{\theta}$.

Remark 2.7. There is another proof of the theorem due to Davidson [1] which we bring here.

Suppose that $\mathcal{A}_{\theta}=C^{*}(\tilde{U}, \tilde{V})$ such that \tilde{U} and \tilde{V} are unitaries satisfying $(*)$. Then by Lemma $2.3,(\pi, \Lambda)$ is a covariant representation of $(C(T), \mathbf{Z}, \alpha)$, where $\pi: \iota \mapsto \tilde{U}$ and $\Lambda: 1 \mapsto \tilde{V}$. By Remark 2.5 , there is a homomorphism of $C(T) \times{ }_{\alpha} \mathbf{Z}$ onto $C^{*}(\pi(C(T)), \Lambda(\mathbb{Z}))=$ $C^{*}(\pi(\iota), \Lambda(1))=C^{*}(\tilde{U}, \tilde{V})=\mathcal{A}_{\theta}$. Conversely, by Remark $2.2, M_{z}$ and λ_{1} are unitaries satisfying $(*)$. Therefore, the universal property of \mathcal{A}_{θ} implies that there is a homomorphism of \mathcal{A}_{θ} onto $C^{*}\left(M_{z}, \lambda_{1}\right)$, and so by Lemma 2.1, there is a homomorphism of \mathcal{A}_{θ} onto $C(T) \times{ }_{\alpha} \mathbf{Z}$. Clearly these homomorphims are inverses.

Acknowledgement: We are indebted to Dr. B. Tabatabaie for his helpful comment on the article.

References

[1] K. R. Davidson, C^{*}-Algebras by Example, American Mathematical Society, 1996.
[2] R. Exel, Partial actions of groups and actions of inverse semigroups, Proc. Amer. Math. Soc., 126 (1998), 3481-3494.
[3] R. Exel, M. Laca, Cuntz-krieger algebras for infinite matrices, J. Reine Angew. Math., 512 (1999), 119-172.
[4] R. Exel, M. Laca, J. Quigg, Partial dynamical systems and C^{*}-algebras generated by partial isometries, J. Operator Theory, 47 (2002), 169-186.
[5] R. V. Kadison, J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Academic Press, 1983.
[6] K. McClanahan, K-theory for partial crossed products by discrete groups, J. Funct. Anal., 130 (1995), 77-117.

Sareh Haghkhah

Islamic Azad University - Sepidan Branch
Sepidan, Iran
E-mail: haghkhah@shirazu.ac.ir
Masoumeh Faghih Ahmadi
Islamic Azad University - Sepidan Branch
Sepidan, Iran
E-mail: faghiha@shirazu.ac.ir

