On the Weighted Hardy Spaces

K. Jahedi

Islamic Azad University-Shiraz Branch

B. Yousefi

Shiraz University

Abstract: Let $\left\{\beta(n)\right\}_{n=0}^{\infty}$ be a sequence of positive numbers and $1 . We consider the weighted Hardy space <math>H^p(\beta)$. We investigate the relation between the generating function and the functional of point evaluations. Also, under a sufficient condition we determine the structure of all non-zero multiplicative linear functionals on $H^p(\beta)$.

AMS Subject Classification: Primary 47B37; Secondary 47B20. Keywords and Phrases: The Banach space of formal power series associated with a sequence β , bounded point evaluation, generating function.

1. Introduction

First in the following, we generalize the definitions coming in [3]. Let

 $\{\beta(n)\}\$ be a sequence of positive numbers with $\beta(0) = 1$ and 1 .

We consider the space of sequences $f = \left\{\hat{f}(n)\right\}_{n=0}^{\infty}$ such that

$$||f||^p = ||f||^p_\beta = \sum_{n=0}^\infty |\hat{f}(n)|^p \beta(n)^p < \infty.$$

The notation $f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$ shall be used whether or not the series converges for any value of z. These are called formal power series. Let $H^p(\beta)$ denotes the space of such formal power series. It is usually called as weighted Hardy spaces. These are reflexive Banach spaces with the norm $\|.\|_{\beta}$ and the dual of $H^p(\beta)$ is $H^q(\beta^{\frac{p}{q}})$ where $\frac{1}{p} + \frac{1}{q} = 1$ and $\beta^{\frac{p}{q}} = \{\beta(n)^{\frac{p}{q}}\}_n$ ([4]). Also if

$$g(z) = \sum_{n=0}^{\infty} \hat{g}(n)z^n \in H^q(\beta^{\frac{p}{q}}),$$

then

$$||g||^q = \sum_{n=0}^{\infty} |\hat{g}(n)|^q \beta(n)^p.$$

The Hardy, Bergman and Dirichlet spaces can be viewed in this way when p=2 and respectively $\beta(n)=1, \beta(n)=(n+1)^{-1/2}$ and $\beta(n)=(n+1)^{1/2}$. It is convenient and helpful to introduce the notation $\langle f,g\rangle$ to stand for g(f) where $f\in H^p(\beta)$ and $g\in H^p(\beta)^*$. Note that

$$\langle f, g \rangle = \sum_{n=0}^{\infty} \hat{f}(n) \overline{\hat{g}(n)} \beta(n)^{p}.$$

Let $\hat{f}_k(n) = \delta_k(n)$. So $f_k(z) = z^k$ and then $\{f_k\}_k$ is a basis such that $||f_k|| = \beta(k)$. Clearly M_z , the multiplication operator by z on $H^p(\beta)$ shifts the basis $\{f_k\}_k$.

Remember that a complex number λ is said to be a bounded point evaluation on $H^p(\beta)$ if the functional of point evaluation at λ, e_{λ} , is bounded. The functional of evaluation of the j-th derivative at λ is dentoed by $e_{\lambda}^{(j)}$. These spaces are also studied in [1, 2, 4, 5, 6, 7, 8].

If Ω is a bounded domain in the complex domain \mathcal{C} , then by $H(\Omega)$ we mean the set of analytic functions on Ω . We will denote the open unit disc by U.

2. Main Results

We will investigate the relation between the generating function and the functional of point evaluations on $H^p(\beta)$. Also we will determine the structure of all non-zero linear functionals on $H^p(\beta)$ that are multiplicative. This extends some results of [1] into Banach spaces of formal power series. The differential of functionals of point evaluations are also considered.

Definition 1. The generating function for the weighted Hardy space $H^p(\beta)$ is the function

$$g(z) = \sum_{n=0}^{\infty} \frac{z^n}{\beta(n)^q}$$

where
$$\frac{1}{p} + \frac{1}{q} = 1$$
.

Lemma 2. If g is the generating function for a weighted Hardy space contained in H(U), then $g \in H(U)$.

Proof. Let g be the generating function for the weighted Hardy space $H^p(\beta)$ where $H^p(\beta) \subset H(U)$. Define

$$\hat{f}(n) = \begin{cases} 0 & n = 0\\ \frac{1}{n\beta(n)} & n \neq 0 \end{cases}$$

and let $f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$. Now we have

$$\sum_{n=0}^{\infty} |\hat{f}(n)|^p \beta(n)^p = \sum_{n=1}^{\infty} \frac{1}{n^p} < \infty.$$

So $f \in H^p(\beta)$ and by assumption, it is analytic in the open unit disk U.

Thus the radius of convergence of its power series, R, is at least 1. Thus

$$\frac{1}{R} = \limsup_{n \to \infty} |\hat{f}(n)|^{\frac{1}{n}} = \limsup_{n \to \infty} (\frac{1}{n\beta(n)})^{\frac{1}{n}} \leqslant 1,$$

and so

$$\limsup_n (\frac{1}{\beta(n)^q})^{\frac{1}{n}} = \limsup_n \left[(\frac{1}{n\beta(n)})^{\frac{1}{n}} \right]^q \leqslant 1,$$

which implies that $g \in H(U)$. This completes the proof. \square

The next theorem shows the principle role of g: it generates the reproducing kernels for $H^p(\beta)$.

Lemma 3. Let $H^p(\beta)$ be a weighted Hardy space contained in H(U). For each point λ in U, the functional of evaluation at λ , e_{λ} , is a bounded linear functional and $\|e_{\lambda}\|^q = g(|\lambda|^q)$.

Proof. For $|\lambda| < 1$, the analyticity of g on U implies that e_{λ} is in $H^q(\beta^{\frac{p}{q}})$. Indeed,

$$||e_{\lambda}||^q = ||\sum_{n=0}^{\infty} \frac{\bar{\lambda}^n}{\beta(n)^p} z^n||^q = \sum_{n=0}^{\infty} \frac{|\lambda|^{nq}}{\beta(n)^q} = g(|\lambda|^q) < \infty.$$

This completes the proof. \Box

Theorem 4. If g, the generating function for $H^p(\beta)$, satisfies $g(1) = \infty$, then each non-zero bounded linear functional H on $H^p(\beta)$ such that $\langle fh, H \rangle = \langle f, H \rangle \langle h, H \rangle$ whenever f, h and fh are in $H^p(\beta)$ is in the form of $H = e_{\lambda}$ for some point λ in U.

Proof. Suppose $H \in H^p(\beta)^*$ such that H is non-zero and satisfies

$$\langle fh, H \rangle = \langle f, H \rangle \langle h, H \rangle$$

whenever f, h and fh are in $H^p(\beta)$. Since the polynomials are dense in $H^p(\beta)$, this holds when f and h are polynomials.

Also, we note that

$$\langle f, H \rangle = \langle f_0 f, H \rangle = \langle f_0, H \rangle \langle f, H \rangle$$

for all f in $H^p(\beta)$, hence $\langle f_0, H \rangle = 1$. Letting $\lambda = \langle f_1, H \rangle$, it follows that

$$\langle f_2, H \rangle = \langle f_1 f_1, H \rangle = \langle f_1, H \rangle^2 = \lambda^2.$$

By induction, $\langle f_n, H \rangle = \lambda^n$ for all $n \in \mathbb{N}$. Remember that if

$$f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n \in H^p(\beta)$$

and

$$G(z) = \sum_{n=0}^{\infty} \hat{G}(n)z^n \in H^q(\beta^{\frac{p}{q}}),$$

then

$$\langle f, G \rangle = \sum \hat{f}(n) \overline{\hat{G}(n)} \beta(n)^p.$$

Now if
$$H(z) = \sum_{n=0}^{\infty} \hat{H}(n)z^n$$
, we have
$$1 = \langle f_0, H \rangle = \overline{\hat{H}(0)}\beta(0)^p = \overline{\hat{H}(0)},$$

$$\lambda = \langle f_1, H \rangle = \overline{\hat{H}(1)}\beta(1)^p,$$

$$\vdots$$

$$\lambda^n = \langle f_n, H \rangle = \overline{\hat{H}(n)} \beta(n)^p.$$

So if $|\lambda| < 1$, then

$$H(z) = 1 + \sum_{n=1}^{\infty} \frac{\overline{\lambda^n}}{\beta(n)^p} z^n = e_{\lambda}(z),$$

and so H is the linear functional of evaluation at λ . If $|\lambda| \ge 1$, then we get

$$||H||^q = \sum_{n=0}^{\infty} \frac{|\lambda|^{nq}}{\beta(n)^q} \geqslant \sum_{n=0}^{\infty} \frac{1}{\beta(n)^q} = g(1) = \infty,$$

which contradicts the boundedness of the linear functional determined by H. This completes the proof. \square

As we saw, for λ in U,

$$e_{\lambda}(z) = \sum_{n=0}^{\infty} \frac{1}{\beta(n)^p} (\bar{\lambda})^n z^n \in H^q(\beta^{p/q}).$$

This is not true in general if λ is on the unit circle.

Lemma 5. Let
$$j \in \mathbb{N} \cup \{0\}$$
. If $\sum_{n=j}^{\infty} \frac{n^{qj}}{\beta(n)^q} < \infty$, then $e_{\lambda}^{(j)} \in H^q(\beta^{p/q})$ and $\langle f, e_{\lambda}^{(j)} \rangle = f^{(j)}(\lambda)$ for all λ in \bar{U} and f in $H^p(\beta)$.

Proof. For λ in \bar{U} we have

$$e_{\lambda}^{(j)}(z) = \sum_{n=j}^{\infty} \frac{n(n-1)\cdots(n-j+1)}{\beta(n)^p} (\bar{\lambda})^{n-j} z^n,$$

and so

$$||e_{\lambda}^{(j)}(z)||^{q} = \sum_{n=j}^{\infty} \left(\frac{n(n-1)\cdots(n-j+1)}{\beta(n)^{p}}\right)^{q} |\lambda|^{(n-j)q} \beta(n)^{p}$$

$$\leq \sum_{n=j}^{\infty} \frac{(n(n-1)\cdots(n-j+1))^{q}}{\beta(n)^{q}}$$

$$\leqslant \sum_{n=j}^{\infty} \frac{n^{qj}}{\beta(n)^q} < \infty.$$

Thus $e_{\lambda}^{(j)} \in H^q(\beta^{p/q})$. Now if

$$f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n \in H^p(\beta),$$

then by a Theorem in [4], for all λ in \bar{U} we have:

$$\begin{split} \langle f, e_{\lambda}^{(j)} \rangle &= \sum_{n} \widehat{f}(n) (\overline{e_{\lambda}^{(j)}}(n)) \beta(n)^{p} \\ &= \sum_{n=j}^{\infty} \widehat{f}(n) \frac{n(n-1) \cdots (n-j+1)}{\beta(n)^{p}} \lambda^{n-j} \beta(n)^{p} \\ &= \sum_{n=j}^{\infty} n(n-1) \cdots (n-j+1) \widehat{f}(n) \lambda^{n-j} = f^{(j)}(\lambda). \end{split}$$

This completes the proof. \Box

Note that if $\sum_{n=j}^{\infty} \frac{n^{qj}}{\beta(n)^q} < \infty$, then $H^p(\beta)$ is very small and for every function in $H^p(\beta)$, the j-th derivative exists and is continuous on the unit circle.

Corollary 6. If $\sum_{n=0}^{\infty} \frac{1}{\beta(n)^q} < \infty$, then the generating function belongs to $H^p(\beta)$.

Proof. Let g be the generating function. Thus $g(z) = \sum_{n} \frac{1}{\beta(n)^q} z^n$ and

$$||g||^q = \sum_n |\hat{g}(n)|^p \beta(n)^p = \sum_n \frac{1}{\beta(n)^q} < \infty.$$

So $g \in H^p(\beta)$. \square

Corollary 7. If $\sum_{n} \frac{1}{\beta(n)^q} < \infty$ and $\liminf_{n} \beta(n)^{1/n} = 1$, then the generating function is in H(U).

Proof. Clearly we can see that $H^p(\beta) \subset H(U)$ and so by the Lemma 2, the proof is complete. \square

Theorem 8. In the weighted Hardy space $H^p(\beta)$ for which $g(1) = \infty$ for all integer $j \ge 0$, the normalized functional of point evaluations, $\frac{e_{w_n}^{(j)}}{\|e_{w_n}^{(j)}\|}$, tends to zero weakly as $w_n \longrightarrow \xi \in \partial U$.

Proof. For j = 0, the norm of the functional of point evaluations are given by the generating function g and indeed $||e_{w_n}||^q = g(|w_n|^q)$. Since

$$\lim_{n} g(|w_{n}|^{q}) = g(1) = \sum_{n} \frac{1}{\beta(n)^{q}} = \infty,$$

it follows that $||e_{w_n}||$ tends to infinity and for every polynomial p,

$$\lim_{m} |\langle p, \frac{e_{w_n}}{\|e_{w_n}\|} \rangle| = \lim_{n} \frac{|p(w_n)|}{\|e_{w_n}\|} = 0.$$

But the polynomials are dense in $H^p(\beta)$, thus $\frac{e_{w_n}}{\|e_{w_n}\|} \longrightarrow 0$ weakly as $n \longrightarrow \infty$. If j > 0, then

$$\lim_{n} \|e_{w_{m}}^{(j)}\|^{q} = \lim_{m} \sum_{n=j}^{\infty} \left(\frac{n(n-1)\cdots(n-j+1)}{\beta(n)}\right)^{q} |w_{m}|^{q(n-j)}$$

$$= \sum_{n=j}^{\infty} \left(\frac{n(n-1)\cdots(n-j+1)}{\beta(n)}\right)^{q}$$

$$\geq \sum_{n=j}^{\infty} \frac{1}{\beta(n)^{q}} = \infty.$$

Thus $||e_{w_m}^{(j)}||$ tends to infinity and for every polynomial p,

$$\lim_{m} \left| \langle p, \frac{e_{w_m}^{(j)}}{\|e_{w_m}^{(j)}\|} \rangle \right| = \lim_{m} \frac{|p^{(j)}(w_m)|}{\|e_{w_m}^{(j)}\|} = 0.$$

Since the polynomials are dense in $H^p(\beta)$, the proof is complete.

References

- [1] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, CRC press, Inc. , 1995.
- [2] K. Seddighi and B. Yousefi, On the refrexivity of operators on function spaces, *Proceedings of the American Mathematical Society*, 116 (1992), 45-52.
- [3] A. L. Shields, Weighted shift operators and analytic function theory, *Mathematical Survey, A. M. S. Providence*, 13 (1974), 49-128.
- [4] B. Yousefi, On the space $l^p(\beta)$, Rendiconti Del Circolo Matematico Di Palermo, Serie II. Tomo XLIX (2000), 115-120.
- [5] B. Yousefi, Unicellularity of the multiplication operator on Banach spaces of formal power series, *Studia Mathematica*, 147 (2001), 201-209.
- [6] B. Yousefi and K. Jahedi, Application of the Rosenthal-Dor Theorem on Banach spaces of formal power series, *Islamic Azad University Journal* of sciences, Fall (2001), 3147-3168.
- [7] B. Yousefi and S. Jahedi, Composition operators on Banach spaces of formal power series, *Bollettino Della Unione Mathematica Italiana*, (8) 6-B (2003), 481-487.

[8] B. Yousefi, On the eighteenth question of Allen shields, *International Journal of Mathematics*, 16 (1) (2005), 37-42.

Khadijeh Jahedi

Department of Mathematics Islamic Azad University - Shiraz Branch Shiraz, Iran

E-mail: Mjahedi80@yahoo.com

Bahman Yousefi

Department of Mathematics College of Sciences Shiraz University Shiraz 71454, Iran

E-mail: Yousefi@Math.Susc.ac.ir