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1 Introduction

The time-series data includes various sources and applications and has
been receiving increasing attention in recent years. Some examples of
time series are first expressed, daily sales data for demand prediction,
yearly macroeconomic data for long-term political planning, sensor data
from a smartwatch for analyzing a workout session, the steps in a Data
Science cycle for accessing to transforming, modeling, evaluating, and
deploying time series data. Also, the application of time-series analysis
is currently one of the most active topics in statistics. Due to the in-
creasing development and application of time series data, many studies
have been deduced in this field and the branch of statistics called Time
Series analysis. It could also be that the time-series data is not avail-
able at regular intervals and can only be collected from random event
points. In some cases, the analysis cannot be examined because of the
unknown sample size. Therefore, we cannot effectively use time-series
data to model, parameter estimation, forecast, and predict real practi-
cal problems. A sequential procedure is one of the proposed approaches
to overcome this problem and determine the required sample size in
practice when the sample size is unknown in advance.

The sequential procedures offer a strategy for the best decision for
stopping the sampling procedure that is an alternative to the best-fixed
sample size procedure for such conditions. For the first time, an alterna-
tive inferential method is introduced for point and interval estimation of
an unknown population mean by Anscombe [1], Robbins[39] and Chow
and Robbins [8] that the required sample size is determined by sequen-
tially stopping rules. The sequential procedures are distinguished by
different stopping strategies in order to determine the sample size so
that different names are appropriately assigned. The most widely used
sequential procedures are purely sequential, two-stage, modified two-
stage and three-stage procedures. Many researchers have dealt with
how sequential procedures can be used to tackle some unsolved prob-
lems in point and interval estimation that we give a glimpse of several
of them. Stein[46, 47] was first to introduce a two-stage procedure that
used this procedure for the problem of constructing a fixed-width con-
fidence interval and hypothesis testing by considering the mean in a
normal population.
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Mukhopadhyay [31] studied a two-stage procedure for constructing
a confidence interval of the mean in a normal population under the
condition, assuming the variance is unknown. Sriram [42, 43] investi-
gated a parameter estimating of a first-order autoregressive model via
a purely sequential sampling scheme. Basawa, McCormick, and Sriram
[2] became interested in examining a sequential sampling procedure for
dependent observations and, as a result of their study, estimated the
autoregressive parameters in a non-explosive first-order autoregressive
process with Weibull errors. Fakhre-Zakeri and Lee [10] have estimated
the mean vector parameters in a multivariate linear process within the
framework of a purely sequential procedure. Mukhopadhyay and Sriram
[36] considered the problem of point estimation of a linear combination
of means of p-independent non-explosive first-order autoregressive mod-
els via purely sequential. Lee [24] published his review about sequential
point and confidence interval estimation in a p-the order autoregressive
model. Mukhopadhyay and Duggan [33] with the idea of reducing the
weaknesses of the two-stage procedure, modified a two-stage procedure
to estimate the mean in a normal population for a confidence interval
with a known positive lower bound for variance.

Basu and Das [3] extended purely sequential estimation of autore-
gressive parameters to multiple pth-order autoregressive models. Lee
and Sriram [26] generalized their studies of a purely sequential proce-
dure to the nonlinear threshold AR(1) model and examined the perfor-
mance of the procedure for point estimation. Sriram [44], by presenting
a supplementary study of a purely sequential procedure, investigated
fixed-size confidence regions in single and multiple first-order threshold
autoregressive models. Lee [25] studied a purely sequential procedure
in a stochastic regression model. Kashkovsky and Konev [22] consid-
ered the sequential procedure for first-order RCA models and suggested
a strongly consistent sequential estimator of coefficients of a univari-
ate p-order RCA model. Gombay [12] applied a sequential procedure
for estimating a confidence interval of time-series observations to check
the performance of a sequential procedure. In the case of the unknown
variance, Mukhopadhyay and Zacks [37] studied a two-stage and purely
sequential procedure by using a modified Linex loss function in a normal
distribution. Karmakar and Mukhopadhyay [17, 18], reviewed a sequen-



4 S. SAJJADIPANAH et al.

tial procedure for estimating parameters in a single and multivariate
random coefficient autoregressive pth-order model.

Under the squared error loss plus the linear cost of sampling, Hu
and Mukhopadhyay [13] studied the minimum risk point estimation
(MRPE) problem for an unknown normal mean by defining a new class
of purely sequential MRPE methodologies when the variance remains
unknown. Mukhopadhyay and Bapat [32] designed purely sequential
bounded-risk methodologies to estimate an unknown mean of negative
binomial distribution under different forms of loss functions including
customary and modified Linex loss as well as squared error loss. Mah-
moudi, Khalifeh, and Nekoukhou [27] demonstrated the application of a
two-stage procedure to estimate a parameter in a stress-strength model.
Sriram and Samadi [45] reviewed the performance of a purely sequential
procedure in an AR(1) model that was previously studied by Sriram
[43]. Mukhopadhyay and Zhuang [38] designed two-stage and purely
sequential methodologies for testing hypotheses regarding the difference
of mean values from two independent (or dependent) normal popula-
tions when their variances are unknown and unequal. Joshi and Bapat
[16] proposed improved accelerated sequential procedures to estimate
the unknown mean of an inverse Gaussian distribution when the scale
parameter is unknown. Khalifeh, Mahmoudi, and Chaturvedi [20] dis-
cussed the challenge of constructing a confidence interval for a param-
eter via a two-stage procedure in the case of an exponential distribu-
tion. Hu and Zhuang [15] proposed an innovative and general class
of modified two-stage sampling schemes by assuming the squared error
loss. Chaturvedi, Bapat and Joshi [7] considered developing sequential
procedures for point estimating the mean of an Inverse Gaussian (IG)
distribution when the population coefficient of variation (CV) is known.

Chaturvedi, Bapat, and Joshi [6] studied a two-stage procedure and
a purely sequential procedure for the generalized positive exponential
family of distributions for point and interval estimation. Also, Sajjadi-
panah, Mahmoudi, and Zamani [40] discussed a two-stage procedure for
point and interval estimation in AR(1) model. Furthermore, they com-
pared the performance of this procedure with the purely sequential pro-
cedure. Sajjadipanah, Mahmoudi, and Zamani [41] investigated a mod-
ified two-stage procedure for the mean of the autoregressive model for
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point and interval estimation. Hu and Pham [14] proposed an alterna-
tive three-stage sampling procedure with termination defined via Ginis
mean difference for the problem of minimum risk point estimation for an
unknown normal mean when the variance is unknown. Mukhopadhyay,
Hu, and Wang [35] considered sequential minimum risk point estima-
tion (MRPE) problems for two independent normal populations, with
all parameters, assumed unknown, under the squared error loss (SEL)
plus the linear cost of sampling. Mahmoudi, Nemati, and Khalifeh [29]
investigated a two-stage sequential sampling procedure to estimate the
mean of an exponential distribution under the modified square error
loss function. Bishnoi and Mukhopadhyay [5] developed a new class of
purely sequential methodologies under an assumption that the popu-
lation distribution belongs to a location-scale family. Malinovsky and
Zacks [28] proposed two-stage and purely sequential procedures to esti-
mate the unknown parameter of a binomial distribution with unknown
parameter p. Christensen and Sohr [9] investigated both discrete time
and continuous time stopping problems for general Markov processes on
the real line with general linear costs as they naturally arise in many
problems in sequential decision making.

As mentioned earlier, the purely sequential procedure has been in-
vestigated in some linear and nonlinear time series models. Also, the
two-stage procedure has recently been studied in the time series linear
model because of its simplicity of implementation, operational savings,
and simpler execution. Also, the stein two-stage procedure and the
purely sequential procedure share the same asymptotic first-order prop-
erties that the two-stage procedure is operationally much more conve-
nient because of sampling at most two batches. But, the stein two-stage
procedure is oversampling on average, even asymptotically. Indeed, a
major drawback of the two-stage procedure in confidence interval es-
timation is that for a very small fixed-width confidence interval, the
procedure ended up with a large sample at the second stage regardless
of the fixed value of the initial sample size. This weakness of the pro-
cedure encouraged scholars to seek an appropriate two-stage strategy
that the modified two-stage procedure is the best option. Researchers
offer a modified two-stage procedure based on the simplicity of two-stage
procedure, more accurate than the two-stage procedure. In other words,
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the simplicity of execution and more accuracy in determining the sample
size are important considerations to evaluate the performance of modi-
fied two-stage procedure due to the importance of time and the cost of
sampling. Also, in the two-stage procedure, gathering one observation
at-a-time beyond a pilot sample size and following along a stopping rule
may be operationally inconvenient. These intuitive reasons, therefore,
encouraged the authors to explore the behavior of the modified two-stage
procedure in the linear model.

Among the sampling procedures that have been presented so far, the
modified two-stage procedure and the three-stage procedure are very
similar according to the relevant stopping rule. The simplicity in the
execution to determine sample size even compared to similar procedures
in terms of the stopping rule encouraged the authors to investigate the
properties of this procedure. To check the performance of the proce-
dure, we were looking for an idea to provide a suitable stopping rule
based on the strategy of the procedure. As mentioned, Mukhopadhyay
and Zacks [33] modified a two-stage stopping rule with a known posi-
tive lower bound for variance, which is asymptotic second-order bounds.
Furthermore, Hu and Zhuang [15] examined the variables introduced by
Mukhopadhyay and Zacks [33] and the modified two-stage as a class of
modified two-stage variables in independent data. The idea considered
by these authors encouraged us to investigate the class of modified two-
stage analogy with the best-fixed sample size in terms of different modi-
fied two-stage variables. Three methods least squares, Yule-Walker, and
Burgs can be mentioned among the common methods of the estimation
of the autoregressive parameters. Also considering that the Yule-Walker
estimators and the least-squares estimators are asymptotically the same
for large samples. We examine the performance of the procedure based
on the Yule-Walker estimators considering that it has not been studied
so far.

The objective of this study is to prove the properties of the procedure,
such as asymptotic efficiency, asymptotic risk efficiency, and asymptotic
consistency. Also, the performance of this procedure has been investi-
gated using Monte Carlo simulation for an autoregressive model. Finally,
we evaluated the performance of the procedure with real data.

The rest of the paper is segmented organized as follows. In Section 2,



CLASS OF MODIFIED TWO-STAGE PROCEDURE IN A
AUTOREGRESSIVE PROCESS 7

we first review the AR(1) model, derive the main properties of the point,
and fixed-width confidence interval estimation of the procedure. Also,
the results are discussed and are generalized to AR(p) model. In Section
3, comprehensive simulation studies are presented to validate our theo-
retical results and the functionality of the proposed modified two-stage
procedure. Finally, in Section 4, numerical studies with an application
of real-time series data is considered to illustrate the applicability of the
modified two-stage procedure.

2 A Broader Class of Modified Two-Stage

A first-order autoregressive model with | β |< 1 takes the form,

Xi = βXi−1 + εi, i = 1, 2, ...,

where the sequence of {εi, i ≥ 1} is assumed iid random variables with an
unknown distribution F with E[εi] = 0, E[ε2i ] = σ2 ∈ (0,∞). Moreover,
the initial variable X0 is supposed to be independent of {εi, i ≥ 1} with
E[X0

2] <∞. As we know, the least-squares estimator of β is given by

β̂n =

∑n
i=1XiXi−1∑n
i=1X

2
i−1

.

The loss function by assuming the reciprocal of the cost of estimation
error (A) is given by

Ln(β̂n, β) = An−1
∑n

i=1
X2
i−1(β̂n − β)2 + n.

It is well known that the asymptotic distribution of β̂n when | β |< 1 is

(
∑n

i=1
X2
i−1)

1/2(β̂n − β)
d−→ N(0, σ2). (1)

Sriram [43] proved that
{

(
∑n

i=1X
2
i−1)

1/2(β̂n − β), n > 1
}

is uniformly

integrable, under certain regularity conditions. The risk function of
β̂n can be written due to uniformly integrable property along with the
asymptotic normality result

Rn = E
[
Ln(β̂n, β)

]
= An−1(σ2 + o(1)) + n

= An−1σ2 + n+ o(n−1),
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where σ is known. The best fixed sample size is calculated by ignoring
the o(n−1) term which is nA ≈ A1/2σ. Then, the associated minimum
risk is approximately yielded RnA ≈ 2A1/2σ.

It is clear if σ is unknown, the best-fixed sample size procedure can-
not be used. So, we have to look for an alternative method to this end,
we investigate the modified two-stage procedure based on two different
stopping rules. Also, the stopping rules are called the traditional mod-
ified two-stage and the modified two-stage with known lower bound for
variance that the results of the studies are presented in subsections 2.1
and 2.2. Both point as well as confidence interval estimation techniques
are considered.

2.1 Traditional modified two-stage procedure

In this subsection, we review the performance of a traditional modified
two-stage procedure for point and interval estimation. The first step is
determining the pilot sample size for defining the stopping variable for
point estimation. According to the procedure strategy, the pilot sample
size is defined as follows

m = max{m0, [A
1/2(1+γ)] + 1},

where γ ∈ (1/2,∞) and m0 ≥ 2 are a fixed integer. Now, due to the
pilot sample size, we determine the final sample size analogy with nA

Nm = max{m, bA1/2σ̂mc+ 1}, (2)

where bxc denotes the largest integer smaller than x. To remind, the
least-squares estimator of σ̂2n is defined as n−1

∑n
i=1(Xi − β̂nXi−1)

2 =

n−1
∑n

i=1 ε
2
i − n−1Qn such that Qn = (

∑n
i=1X

2
i−1)(β̂n − β)2, for any n.

One of the main results of this subsection is Theorem 2.2, which demon-
strates the properties of the procedure as A→∞. Before presenting the
theorem, it is necessary to express the following lemma. The Lemma
2.1 is needed for proving the asymptotic efficiency property of the pro-
cedure and indicates the rate of convergence on the tail behavior of the
stopping variable Nm.
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Lemma 2.1. Assume that E | ε1 |4s<∞ and E | X0 |4s<∞ for s ≥ 1.
In addition if m0 = o(A1/2) for γ ∈ (1/2,∞). Then for any 0 < θ < 1,

P
(
Nm < (1− θ)A1/2σ

)
= O

(
A−s/2(1+γ)

)
,

P
(
Nm >

[
(1 + θ)A1/2σ

]
+ 1
)

= O
(
A−s/2(1+γ)

)
.

Proof. The argument of proof is similar to Lemma 1 [40] and is omitted.
�

Theorem 2.2. Suppose for s > 1 that E | ε1 |4s< ∞, E | X0 |4s< ∞
and m0 = o(A1/2) for γ ∈ (1/2,∞). Then as A→∞,

Nm

nA

a.s−→ 1, (3)

E
[
Nm

nA

]
→ 1, (asymptotic efficiency), (4)

RNm
RnA

→ 1, (asymptotic risk efficiency). (5)

Proof. From (2) note that

σ̂mA
1/2 ≤ Nm ≤ σ̂mA1/2 +mI(Nm=m).

The assertion of equation(3) follows from this inequality, definition of
Nm and σ̂m

a.s−−→ σ2, as A → ∞. Then, equation (4) is yielded by the
expectation of the above inequality and in view of equation(3). Finally,
assertion of equation (5) is similar to Theorem 2.1 [40] and the proof is
completed. �

In this part, we want to construct a fixed-width (2d) confidence in-
terval of β with the confidence coefficient at least 1− α based on the
traditional modified two-stage stopping variable. By assuming two pre
- assigned constants α ∈ (0, 1) and d > 0, the best fixed sample size is

achieved kd = bd−2(1− β2)z2(1−α)/2c. Also, Ikd =
[
β̂kd − d, β̂kd + d

]
de-

notes the fixed-width confidence interval based on the best fixed sample
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size for β. Note that

P (β ∈ Ikd) = P
(
| β̂kd − β |< d

)
= P

(√
kd | β̂kd − β |√

1− β2
<

√
kdd√

1− β2

)
−→ 1− α, as d→ 0.

As we know, if β is unknown, the best fixed-sample size (kd) is unknown.
Thus to determine the final sample size, we employ the proposed proce-
dure. The traditional modified two-stage stopping rule for γ ∈ (1/2,∞)
and m0 ≥ 2 analogy with kd is defined as

md = max{m0, [(z(1−α)/2/d)2/(1+γ)] + 1},

Nd
m = max{md, bz2(1−α)/2d

−2(1− β̂2md)c+ 1}. (6)

The second main result of this subsection is presented under Theorem
2.3. Results show asymptotically efficient and asymptotically consistent
properties, as d → 0. It should be noted that INd

m
is the confidence

interval of β based on the stopping variable Nd
m.

Theorem 2.3. Assume for s > 1, E| ε1 |4s < ∞, E| X0 |4s < ∞ and
m0 = o(d−2). Then as d→ 0,

Nd
m

kd

a.s−−→ 1, (7)

E
[
Nd
m

kd

]
→ 1, (asymptotic efficiency) (8)

P
(
β ∈ INd

m

)
→ 1− α, (asymptotic consistency) (9)

Proof. From (6) note that

(1− β̂2md)z
2
(1−α)/2d

−2 ≤ Nd
m ≤ (1− β̂2md)z

2
(1−α)/2d

−2 +mdI(Nd
m=md).

Obviously, by division of above inequality by kd and taking the limit as
d → 0 yields equation (7) since β̂2

md
a.s−−→ β2 and O(d2/(1+γ)) as well as
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I(Nd
m=md)

a.s−−→ 0. Similarly, taking the expectation and the limit as d→ 0
yields equation (8). The proof of equation (9) is similar to Theorem 2.2
[40] and we refuse to mention it again. �

2.2 Modified two-stage procedure with known positive
lower bound for variance

In this subsection, the performance of the proposed procedure is ex-
amined with more information about the process, and the appropriate
stopping rule is also provided. To this end, we assume σ > σl > 0 while
σ and σl are unknown and known respectively. To consider the stopping
rule, we first define the pilot sample size due to σl

m1 = max{m0, [σlA
1/2] + 1},

Then, the final sample size is given by

Tm1 = max{m1, bA1/2σ̂m1c+ 1}, (10)

As before, in order to present one of the main results of this subsection,
Theorem 2.5, we express a practical and important lemma.

Lemma 2.4. Assume that E | ε1 |4s<∞ and E | X0 |4s<∞ for s ≥ 1.
In addition if A1/2(1+η) 6 m1 for some η > 0 and m0 = o(A1/2). Then
for any 0 < θ < 1,

P
(
Tm1 < (1− θ)A1/2σ

)
= O

(
A−s/2(1+η)

)
,

P
(
Tm1 >

[
(1 + θ)A1/2σ

]
+ 1
)

= O
(
A−s/2(1+η)

)
.

Proof. The argument is similar to the proof of Lemma 1 [40], and we
refuse to review it again. �

Theorem 2.5. Suppose for s > 1 that E | ε1 |4s< ∞, E | X0 |4s< ∞,
A1/2(1+η) 6 m1 for some η ∈ (0, (s+ 1)/2− 1) and m0 = o(A1/2). Then
as A→∞,

Tm1

nA

p−→ 1, (11)
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E
[
Tm1

nA

]
→ 1, (asymptotic efficiency) (12)

RTm1

RnA
→ 1, (asymptotic risk efficiency), (13)

Proof. From (10) note that

σ̂m1A
1/2 ≤ Tm1 ≤ σ̂m1A

1/2 +m1I(Tm1=m1).

Clearly, m1/nA → σl/σ and σ̂m
a.s−−→ σ2 as A → ∞, divide throughout

above inequality by nA. The assertion of equation (11) is followed
immediately from Lemma 2.4, as A→∞,

m1I(Tm=m1)
p−→ 0

In view of equation (11), equation(12) is achived. Finally, the argument
of proof equation (13) is similar to Theorem 2.1 [40] and the proof is
complete. �

In the following, we intend to construct a fixed-width (2d) confi-
dence interval of β with the confidence coefficient at least 1− α. Also,
α ∈ (0, 1), d > 0, and kd are assumed two pre-assigned constants and
the best-fixed sample size, respectively. As before, we determine the fi-
nal sample size via the modified two-stage strategy with the mentioned
condition. After, the pilot sample size and the final sample size due to
βl known are defined as follows

m2 = max{m0, [z
2
(1−α)/2d

−2(1− βl2)] + 1},

T dm2
= max{m2, bz2(1−α)/2d

−2(1− β̂2m2
)c+ 1}. (14)

The performance of the proposed procedure is presented under the theo-
rem. The following important lemma is essential to prove the properties
of the procedure.

Lemma 2.6. Assume that E | ε1 |4s<∞, E | X0 |4s<∞ for s ≥ 1 and
m0 = o(d−2). So,

P (T dm2
= m2) = O

(
m−s2

)
.
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Proof.

P (T dm2
= m2) = P

(
m−12

∑m2

i=1
ε2i −m2

−1Qm2 < m2d
2z2(1−α)/2

)
≤ P

(
m−12

∑m2

i=1
(1− ε2i ) > (1− (m2d

2z2(1−α)/2))/2
)

+ P
(
m−12 Qm2 > (1− (m2d

2z2(1−α)/2))/2
)

= O
(
m−s2

)
.

where the last equality is obtained from Theorem 1 of [24], the Markov
inequality, and the Rosentall inequality [30]. �

Theorem 2.7. Assume for s > 1, E| ε1 |4s < ∞, E| X0 |4s < ∞ and
m0 = o(d−2). Then as d→ 0,

T dm2

kd

a.s−→ 1, (15)

E

[
T dm2

kd

]
→ 1, (asymptotic efficiency), (16)

P
(
β ∈ IT dm2

)
→ 1− α, (asymptotic consistency). (17)

Proof. From (14), we have

(1− β̂2m2
)z2(1−α)/2d

−2 ≤ T dm2
≤ (1− β̂2m2

)z2(1−α)/2d
−2 +m2I(T dm2

=m2).

The equations (15) and (16) due to the following equation and similar
to Theorem 2.3 are concluded. Also, equation (17) proves similar to
Theorem 2.2 [40], so the proof is complete.

m2I(T dm2
=m2)

a.s−→ 0.

�

2.3 Extention the class of modified two-stage procedure
to AR(p)

In this subsection, the results obtained in the previous subsections are
presented for the p-order autoregressive model for point and region es-
timation. For this purpose, we state the corresponding stopping rules
and the resulting theorems.
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A p-order autoregressive model (AR(p)) with | βi |< 1 is given by,

Xi = β1Xi−1 + . . .+ βpXi−p + εi, i = 1, 2, ...,

where the sequence of independent and identically distributed random
variables {εi, i ≥ 1} has an unknown distribution F . Also, let E[εi] = 0
and E[ε2i ] = σ2 ∈ (0,∞). The initial state X0 = (X0, . . . , X−p+1)

′
is

F0 measurable random vector with E(X0) = 0 and E(X2
i ) < ∞, i =

−p + 1, ..., 0 where F0 is independent of {εi, i ≥ 1}. The least-squares
estimators of β is given by

β̂n = (β̂n1, . . . , β̂np)
′ = (

∑n

i=1
Xi−1X

′
i−1)

−1(
∑n

i=1
X ′i−1Xi),

where Xi = (Xi, . . . , Xi−p+1)
′
. A positive-definite p × p matrix (Σ) is

assumed that (i, j)-th entry is γ(i − j). It should be noted that γ(.)
denotes the autocovariance function of the process {Xi, i ≥ 1}. Also, we
also know from [4] as n→∞,

n−1(
∑n

i=1
Xi−1X

′
i−1)

a.s−→ Σ.

It is well known that the asymptotic distribution of β̂n from [23] is

(
∑n

i=1
Xi−1X

′
i−1)

1/2(β̂n − β)
d−→ N(0, σ2Ip),

where Ip is the p × p identity matrix. Let εt = (εi, . . . , εi−p+1)
′. It is

supposed that
∑n

i=1Xi−1X
′
i−1 and

∑n
t=p εtε

′
t are non singular for all

sufficiently large n. The loss function for estimating of β is given by

Ln(β̂n,β) = A

[
n−1

((
β̂n − β

)′ (∑n

i=1
Xi−1X

′
i−1

)(
β̂n − β

))]
+ n

= An−1Qn + n,

which Qn is considered as follows

Qn =
(
β̂n − β

)′ (∑n

i=1
Xi−1X

′
i−1

)(
β̂n − β

)
= (

∑n

i=1
Xi−1εi)

′(
∑n

i=1
Xi−1X

′
i−1)

−1(
∑n

i=1
Xi−1εi).
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when σ is known, the risk function is achived Rn = n−1(Ap)σ2 + n +
o(n−1). The best fixed sample size is approximately obtained nA ≈
(Ap)1/2σ that the o(n−1) term is ignored. Then, the corresponding
minimum risk function is calculated RnA ≈ 2(Ap)1/2σ.

In the usual case, σ is unknown in advance so it is difficult to deter-
mine the best-fixed sample size in practice. Moreover, the least squares

estimator σ̂n is defined σ̂2n = n−1
∑n

i=1 (Xi − β̂1Xi−1 − . . .− β̂pXi−p)
2

=
n−1

∑n
i=1 ε

2
i−n−1Qn for any n. As noted earlier, the traditional modified

two-stage stopping rule and the modified two-stage stopping rule with
known positive lower bound for variance (σl) are the proposed solution
to overcome the limitation that are defined respectively as follows

m3 = max{m0, [(Ap)
1/2(1+γ)] + 1},

Nm3 = max{m3, b(Ap)1/2σ̂m3c+ 1},

and

m4 = max{m0, [σl(Ap)
1/2] + 1},

Tm4 = max{m4, b(Ap)1/2σ̂m4c+ 1}.

The introduced stopping rules demonstrate asymptotically risk efficient
and asymptotically efficient that we mention these properties as theo-
rems.

Lemma 2.8. Assume that E | ε1 |4s< ∞, max
−p+1≤j≤0

E | Xj |4s< ∞ and

m0 = o(A1/2) for s ≥ 1. Then for any 0 < θ < 1,

P
(
Nm3 < (1− θ)(Ap)1/2σ

)
= O

(
A−s/2(1+η)

)
,

P
(
Nm3 >

[
(1 + θ)(Ap)1/2σ

]
+ 1
)

= O
(
A−s/2(1+η)

)
.

Proof. The argument of proof is similar to Lemma 1 [40], which is
omitted. �

Theorem 2.9. Suppose for s > 1 that E | ε1 |4s< ∞, max
−p+1≤j≤0

E |

Xj |4s<∞ and m0 = o(A1/2). Then as A→∞,
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Nm3

nA

a.s−→ 1,

E
[
Nm3

nA

]
→ 1, (asymptotic efficiency)

RNm3

RnA
→ 1, (asymptotic risk efficiency).

Proof. Simply by the same argument as Theorem 2.2 and we refuse to
mention it. �

Lemma 2.10. Assume that E | ε1 |4s< ∞, max
−p+1≤j≤0

E | Xj |4s< ∞,

m0 = o(A1/2) and A1/2(1+η) 6 m4 for some η ∈ (0, (s + 1)/2 − 1) for
s ≥ 1. Then for any 0 < θ < 1,

P
(
Tm4 < (1− θ)(Ap)1/2σ

)
= O

(
A−s/2(1+η)

)
,

P
(
Tm4 >

[
(1 + θ)(Ap)1/2σ

]
+ 1
)

= O
(
A−s/2(1+η)

)
.

Proof. The argument of proof is similar to Lemma 1 [40], which is
omitted. �

Theorem 2.11. Suppose for s > 1 that E | ε1 |4s< ∞, max
−p+1≤j≤0

E |

Xj |4s< ∞, m0 = o(A1/2) and A1/2(1+η) 6 m4 for some η ∈ (0, (s +
1)/2− 1). Then as A→∞,

Tm4

nA

p−→ 1,

E
[
Tm4

nA

]
→ 1, (asymptotic efficiency)

RTm4

RnA
→ 1, (asymptotic risk efficiency).
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Proof. The proof is similar to Theorem 2.5, which is not mentioned.
�

In the following, in order to construct a confidence set for β in p-
dimensional Euclidean space Rp with the maximum diameter 2d (d >
0), we suppose the confidence region, based on the random sequence
{Xi, i ≥ 1}, has the coverage probability approximately equal to 1 − α
(0 < α < 1) as d tends to 0. An ellipsoidal confidence region of β is

Sn = {z :
(
β̂n − z

)′ (∑n

i=1
Xi−1X

′
i−1

)(
β̂n − z

)
≤ d2λmin

(∑n

i=1
Xi−1X

′
i−1

)
},

where λmin(C) is assumed the smallest eigenvalue of a p× p matrix C.
As in the previous subsections, the sample size required via a traditional
modified two-stage stopping rule is define for the main study

m5 = max{m0, [(χ
2
p(1− α)/d)2/(1+γ)] + 1},

Nd
m5

= max{m5, bd−2σ̂2m5
λ−1min

(
m−15

∑m5

i=1
Xi−1X

′
i−1

)
χ2
p(1− α)c+ 1}.

Also, the modified two-stage stopping rule with a known positive lower
bound for variance is considered as follows

m6 = max{m0, [χ
2
p(1− α)d−2σ2l ] + 1},

T dm6
= max{m6, bd−2σ̂2m6

λ−1min

(
m−16

∑m6

i=1
Xi−1X

′
i−1

)
χ2
p(1− α)c+ 1}.

It can be shown that the introduced stopping rules are asymptotically
efficient and asymptotically consistent. In the following, we will express
properties as consequence of theorems.

Theorem 2.12. Assume for s > 1, E | ε1 |4s<∞, max
−p+1≤j≤0

E | Xj |4s<

∞ and m0 = o(d−2). Then as d→ 0,

Nd
m5

kd

a.s−−→ 1,

E

[
Nd
m5

kd

]
→ 1, (asymptotic efficiency)

P
(
β ∈ SNd

m5

)
→ 1− α, (asymptotic consistency).
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Proof. The same is proved Theorem 2.3, which is not mentioned. �

Lemma 2.13. Assume that E | ε1 |4s< ∞ and max
−p+1≤j≤0

E | Xj |4s< ∞
for s ≥ 1. So,

P (T dm6
= m6) = O

(
m−s6

)
.

Proof. The proof is similar to Lemma 2.6, which is omitted. �

Theorem 2.14. Assume for s > 1, E | ε1 |4s< ∞ and max
−p+1≤j≤0

E |

Xj |4s<∞ and m0 = o(d−2). Then as d→ 0,

T dm6

kd

a.s−−→ 1,

E

[
T dm6

kd

]
→ 1, (asymptotic efficiency),

P
(
β ∈ ST dm6

)
→ 1− α, (asymptotic consistency).

Proof. Mention of proof is avoided because of its similarity to Theorem
2.7. �

In the following, the Yule-Walker estimators of AR(p) by assuming
p = 2 are given by,

θ̂1 =

∑n
i=2XiXi−1∑n
i=1X

2
i

, θ̂2 =

∑n+1
i=3 XiXi−2∑n
i=1X

2
i

.

In all the research, the performance of sequential procedures based on the
least squares estimator is considered. Based on the theorems presented
in [43] and [24], it can be shown that {Qn, n ≥ 1} is also uniformly
integrable based on the Yule-Walker estimators, under certain regularity
conditions. All the properties presented for the process based on the
Yule-Walker estimator are also valid and we refrain from repeating these
theorems. In the next section, we aim to investigate the performance of
the procedures based on both estimators.
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3 Simulation Study

In this section, we conduct Monte Carlo simulation studies to evalu-
ate the performance of point and confidence region estimation. In this
study, we compare the performance of the class of the modified two-stage
procedure to the best-fixed sample size procedure for the two-order au-
toregressive model when εi ∼ N(0, 1). For this purpose, we assess the
performance of the point estimation for both stopping variables in terms
of the ratio of the average modified stopping variable to the best-fixed
sample size, the root of mean square error (RMSE) of estimators, the
ratio of the modified two-stage risk function to the best-fixed sample size
risk function. Also, we consider two different cases for m and A 10, 100
and 500, 9000, respectively. It should be noted that we considered the
modified two-stage variable with σl = 0.9.

Moreover, the performance of the confidence region is computed in
terms of the average modified two-stage stopping variables, the ratio of
the average modified two-stage stopping variables to best fixed sample
size, and the coverage probability of confidence region with 95% confi-
dence coefficient for m = 15 and different d. In addition, we select the
values of (β1, β2) based on the stationary conditions of AR(2) model
which is given by the following triangular region

β1 + β2 < 1

β2 − β1 < 1

| β2 |< 1,

(for more details refer to [4]). Tables 1, 2, 3 and 4 report the simulation
results of point and region estimation based on the least-squares and
the Yule-Walker estimators (within parentheses), respectivility. All the
computations are obtained using R software by 10,000 replications.

As shown in Tables 1 and 2, the stopping variables increase as A
increases which is expected according to the definition of stopping vari-
ables. Also, the ratio of the stopping variables close to 1 by increasing
A based on both estimators. The bias of estimators and the root of
mean square error (RMSE) of estimators decrease as A increases which
indicates the good performance of the procedure in the point estima-
tion. Moreover, as we expected the ratios of the risk function to the
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best fixed-sample size function are approximately around 1 when A in-
creases.

From Tables 3 and 4, the stopping variables increase as d decreases.
Furthermore, the ratios of the stopping variables to the best fixed-sample
size are close to 1 when d decreases based on both estimators. The cov-
erages probability are close to 0.95 for different (β1, β2) with decreasing
d, as we expected.

As we see, the simulation results confirm Theorems 2.2- 2.14 which
demonstrate the good performance of the procedure. Based on the re-
sults, both variables perform well in point and region estimation. Ac-
cording to the conditions of the problem, any of them can be used. The
results based on both estimators are also not significantly different, as
we expected. According to the conditions of the problem and our goal
in the research, we can get help from any of the estimators to determine
the sample size.

Table 1: Point estimation of traditional modified two-stage procedure according

to Nm3

(m,nA, A, β1, β2) ÊNm3 Ê
[
Nm3
nA

]
β̂1 β̂2

(10, 14.14214, 500, 0.1, 0.1) 28.1693(27.9426) 0.8907(0.8836) 0.0964(0.0985) 0.1384(0.1375)
(10, 14.14214, 500, 0.2, 0.1) 28.5519(28.5762) 0.9028(0.9036) 0.1927(0.1978) 0.1621(0.1648)
(10, 14.14214, 500,−0.1,−0.3) 27.8552(26.9012) 0.8808(0.8506) −0.0720(−0.0757) −0.2304(−0.2470)
(10, 14.14214, 500, 0.1,−0.5) 25.3751(27.4491) 0.8024(0.8680) 0.0618(0.0666) −0.4141(−0.4475)
(10, 14.14214, 500, 0.2,−0.3) 25.7811(27.0258) 0.8152(0.8546) 0.1392(0.1486) −0.2120(−0.2300)
(10, 14.14214, 500,−0.1,−0.7) 27.6457(29.1613) 0.8742(0.9221) −0.0560(−0.0612) −0.6088(−0.6486)
(10, 14.14214, 500, 0.2,−0.5) 27.6574(27.3849) 0.8746(0.8659) 0.1285(0.1334) −0.4075(−0.4272)
(100, 113.1371, 9000, 0.1, 0.1) 131.7921(131.6009) 0.9823(0.9808) 0.1076(0.1084) 0.1153(0.1168)
(100, 113.1371, 9000, 0.2, 0.1) 132.1405(132.3469) 0.9849(0.9864) 0.2172(0.2186) 0.1490(0.1511)
(100, 113.1371, 9000,−0.1,−0.3) 131.5322(131.4231) 0.9803(0.9795) −0.0763(−0.0766) −0.2813(−0.2839)
(100, 113.1371, 9000, 0.1,−0.5) 131.6605(131.7072) 0.9813(0.9816) 0.0659(0.0671) −0.4807(−0.4863)
(100, 113.1371, 9000, 0.2,−0.3) 131.8926(131.7186) 0.9830(0.9817) 0.1502(0.1528) −0.2584(−0.2606)
(100, 113.1371, 9000,−0.1,−0.7) 131.6686(131.8283) 0.9813(0.9825) −0.0580(−0.0590) −0.6811(−0.6853)
(100, 113.1371, 9000, 0.2,−0.5) 132.1382(131.9166) 0.9849(0.9832) 0.1319(0.1329) −0.4610(−0.4655)

(m,nA, A, β1, β2) MSE (β̂1) MSE (β̂2) R̂ENm3
/RnA

(10, 14.14214, 500, 0.1, 0.1) 0.2080(0.227) 0.2066(0.2286) 1.0275(1.0713)
(10, 14.14214, 500, 0.2, 0.1) 0.2056(0.2270) 0.2121(0.2343) 1.0704(1.1353)
(10, 14.14214, 500,−0.1,−0.3) 0.0257(0.1824) 0.0481(0.2406) 0.9159(0.9529)
(10, 14.14214, 500, 0.1,−0.5) 0.1558(0.1596) 0.2366(0.2398) 0.8950(0.9319)
(10, 14.14214, 500, 0.2,−0.3) 0.1794(0.1886) 0.2404(0.2431) 0.9567(0.9818)
(10, 14.14214, 500,−0.1,−0.7) 0.1195(0.1459) 0.2137(0.2370) 0.8885(0.9905)
(10, 14.14214, 500, 0.2,−0.5) 0.1516(0.1717) 0.2222(0.2486) 0.9369(0.9819)
(100, 113.1371, 9000, 0.1, 0.1) 0.0948(0.0971) 0.0901(0.0912) 1.0675(1.0835)
(100, 113.1371, 9000, 0.2, 0.1) 0.0952(0.0957) 0.1029(0.1039) 1.1946(1.2025)
(100, 113.1371, 9000,−0.1,−0.3) 0.0692(0.0688) 0.0883(0.0869) 0.9382(0.9198)
(100, 113.1371, 9000, 0.1,−0.5) 0.0608(0.0607) 0.0841(0.0797) 0.9134(0.9089)
(100, 113.1371, 9000, 0.2,−0.3) 0.0812(0.0807) 0.0964(0.0961) 1.0523(1.0442)
(100, 113.1371, 9000,−0.1,−0.7) 0.0032(0.0564) 0.0048(0.0685) 0.9546(0.9522)
(100, 113.1371, 9000, 0.2,−0.5) 0.0848(0.0847) 0.0734(0.0872) 1.1152(1.1079)
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Table 2: Point estimation of modified two-stage procedure with lower bound for

variance according to Tm4

(m,nA, A, β1, β2) ÊTm4 Ê
[
Tm4
nA

]
β̂1 β̂2

(10, 14.14214, 500, 0.1, 0.1) 29.6541(31.2128) 0.9377(0.9870) 0.0982(0.1026) 0.1369(0.1364)
(10, 14.14214, 500, 0.2, 0.1) 29.8661(31.3382) 0.9444(0.9910) 0.1974(0.2036) 0.1634(0.1636)
(10, 14.14214, 500,−0.1,−0.3) 29.4846(31.0515) 0.9323(0.9819) −0.0718(−0.0768) −0.2414(−0.2542)
(10, 14.14214, 500, 0.1,−0.5) 29.3247(31.0397) 0.9273(0.9815) 0.0614(0.0666) −0.4301(−0.4550)
(10, 14.14214, 500, 0.2,−0.3) 29.5605(31.1353) 0.9347(0.9845) 0.1429(0.1498) −0.2211(−0.2325)
(10, 14.14214, 500,−0.1,−0.7) 29.2369(31.0891) 0.9245(0.9831) −0.0570(−0.0605) −0.6215(−0.6560)
(10, 14.14214, 500, 0.2,−0.5) 29.4371(31.0822) 0.9308(0.9828) 0.1280(0.1351) −0.4113(−0.4352)
(100, 113.1371, 9000, 0.1, 0.1) 131.8521(132.4544) 0.9824(0.9872) 0.1071(0.1081) 0.1176(0.1159)
(100, 113.1371, 9000, 0.2, 0.1) 132.2057(133.0334) 0.9854(0.9915) 0.2162(0.2188) 0.1468(0.1468)
(100, 113.1371, 9000,−0.1,−0.3) 131.7924(132.4379) 0.9823(0.9871) −0.0757(−0.0766) −0.2801(−0.2827)
(100, 113.1371, 9000, 0.1,−0.5) 131.7315(132.7437) 0.9818(0.9894) 0.0662(0.0667) −0.4789(−0.4843)
(100, 113.1371, 9000, 0.2,−0.3) 131.8378(132.7362) 0.9826(0.9893) 0.1503(0.1528) −0.2595(−0.2625)
(100, 113.1371, 9000,−0.1,−0.7) 131.6685(132.5932) 0.9813(0.9882) −0.0586(−0.0590) −0.6792(−0.6855)
(100, 113.1371, 9000, 0.2,−0.5) 131.9912(132.7906) 0.9833(0.9897) 0.1315(0.1337) −0.4590(−0.4646)

(m,nA, A, β1, β2) MSE (β̂1) MSE (β̂2) R̂ETm4
/RnA

(10, 14.14214, 500, 0.1, 0.1) 0.2019(0.1966) 0.1339(0.1901) 1.0269(1.0435)
(10, 14.14214, 500, 0.2, 0.1) 0.1977(0.1946) 0.2073(0.2008) 1.0788(1.0949)
(10, 14.14214, 500,−0.1,−0.3) 0.1483(0.1466) 0.2012(0.1941) 0.8980(0.9219)
(10, 14.14214, 500, 0.1,−0.5) 0.1303(0.1238) 0.1992(0.1850) 0.8831(0.8912)
(10, 14.14214, 500, 0.2,−0.3) 0.1571(0.1530) 0.2092(0.2024) 0.9437(0.9590)
(10, 14.14214, 500,−0.1,−0.7) 0.1104(0.1035) 0.1886(0.1745) 0.8755(0.9079)
(10, 14.14214, 500, 0.2,−0.5) 0.1417(0.1355) 0.2063(0.1943) 0.9344(0.9415)
(100, 113.1371, 9000, 0.1, 0.1) 0.0969(0.0957) 0.0910(0.0900) 1.0797(1.0721)
(100, 113.1371, 9000, 0.2, 0.1) 0.0948(0.0947) 0.1024(0.1020) 1.1843(1.1831)
(100, 113.1371, 9000,−0.1,−0.3) 0.0692(0.0697) 0.0866(0.0878) 0.9242(0.9333)
(100, 113.1371, 9000, 0.1,−0.5) 0.0037(0.0610) 0.0066(0.0795) 0.9190(0.9135)
(100, 113.1371, 9000, 0.2,−0.3) 0.0818(0.0799) 0.0953(0.0950) 1.0481(1.0415)
(100, 113.1371, 9000,−0.1,−0.7) 0.0556(0.0560) 0.0692(0.0681) 0.9491(0.9485)
(100, 113.1371, 9000, 0.2,−0.5) 0.0854(0.0838) 0.0894(0.0864) 1.1258(1.0975)

4 Data Analysis

In this section, the number of sunspots data from 1700 to 1783 years is
considered that [4] is modeled this data set by the linear AR(2) model
by taking the square root of the data. We determine the initial sample
size (m0) by considering the available sample size. Then, a modified
two-stage stopping variables are estimated, and if the initial sample
size is insufficient, the difference between modified two-stage stopping
variable and the initial sample size is generated at the second stage.
The suggested procedure is compared with the two-stage procedure to
investigate the performance of these procedures in execution and imple-
mentation based on the least-squares and the Yule-Walker estimators
(within parentheses), respectively. It is noteworthy that we also evalu-
ate the performance of the procedure as its accuracy is increased. The
two-stage stopping rule variables for point and region estimation are
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Table 3: Region estimation of traditional modified two-stage procedure according
to Nd

m5

(m, d, kd, β1, β2) ÊNd
m5

̂
E
[
Nd

m5
kd

]
CP

(15, 1.5, 5.6357, 0.1, 0.1) 15.0012(15.0132) 4.1589(4.1622) 0.9872(0.9835)
(15, 1.5, 5.0209, 0.2, 0.1) 15.0073(15.0653) 3.7823(3.7970) 0.9813(0.9675)
(15, 1.5, 4.0987,−0.1,−0.3) 15.0007(15.0036) 4.6679(4.6690) 0.9999(0.9948)
(15, 1.5, 5.3796, 0.1,−0.5) 15.0030(15.0006) 5.7182(5.7184) 0.9997(0.9964)
(15, 1.5, 2.7666, 0.2,−0.3) 15.0061(15.0024) 4.3567(4.3574) 0.9996(0.9912)
(15, 1.5, 2.7666,−0.1,−0.7) 15.0011(15.0058) 8.4714(8.4746) 0.9996(0.9979)
(15, 1.5, 2.7666, 0.2,−0.5) 15.0062(15.0014) 5.3818(5.3823) 0.9923(0.9942)
(15, 0.6, 5.6357, 0.1, 0.1) 24.6132(25.7931) 1.0918(1.1441) 0.9388(0.9321)
(15, 0.6, 5.0209, 0.2, 0.1) 26.4796(28.3029) 1.0678(1.1413) 0.9395(0.9412)
(15, 0.6, 4.0987,−0.1,−0.3) 20.1778(20.6463) 1.0046(1.0280) 0.9601(0.9517)
(15, 0.6, 5.3796, 0.1,−0.5) 18.2996(18.8265) 1.1161(1.1483) 0.9612(0.9634)
(15, 0.6, 2.7666, 0.2,−0.3) 21.3654(22.0891) 0.9898(1.0265) 0.9572(0.9484)
(15, 0.6, 2.7666,−0.1,−0.7) 16.2214(16.9442) 1.4657(1.5310) 0.9684(0.9641)
(15, 0.6, 2.7666, 0.2,−0.5) 18.7326(19.2323) 1.0752(1.1040) 0.9653(0.9616)

Table 4: Region estimation of modified two-stage procedure with known positive
lower bound for variance according to T dm6

(m, d, kd, β1, β2) ÊT dm6

̂
E
[
Td
m6
kd

]
CP

(15, 1.5, 5.6357, 0.1, 0.1) 15.0011(15.0224) 4.1589(4.1649) 0.9887(0.9774)
(15, 1.5, 5.0209, 0.2, 0.1) 15.0095(15.0508) 3.7830(3.7934) 0.9831(0.9689)
(15, 1.5, 4.0987,−0.1,−0.3) 15.0009(15.0020) 4.6699(4.6685) 0.9979(0.9946)
(15, 1.5, 5.3796, 0.1,−0.5) 15.0030(15.0032) 5.7298(5.7194) 0.9985(0.9969)
(15, 1.5, 2.7666, 0.2,−0.3) 15.0061(15.0024) 4.3522(4.3574) 0.9936(0.9899)
(15, 1.5, 2.7666,−0.1,−0.7) 15.0031(15.0077) 8.4524(8.4757) 0.9988(0.9986)
(15, 1.5, 2.7666, 0.2,−0.5) 15.0062(15.0009) 5.3818(5.3821) 0.9973(0.9947)
(15, 0.6, 5.6357, 0.1, 0.1) 24.5772(24.9607) 1.0902(1.1072) 0.9415(0.9343)
(15, 0.6, 5.0209, 0.2, 0.1) 26.1496(26.9017) 1.0545(1.0848) 0.9353(0.9211)
(15, 0.6, 4.0987,−0.1,−0.3) 20.3979(21.2373) 1.0156(1.0574) 0.9641(0.9623)
(15, 0.6, 5.3796, 0.1,−0.5) 18.5443(20.1138) 1.1310(1.2268) 0.9652(0.9699)
(15, 0.6, 2.7666, 0.2,−0.3) 21.5294(22.3594) 1.0005(1.0390) 0.9652(0.9539)
(15, 0.6, 2.7666,−0.1,−0.7) 16.8484(19.3975) 1.5224(1.5527) 0.9667(0.9781)
(15, 0.6, 2.7666, 0.2,−0.5) 19.0264(20.4243) 1.0918(1.1724) 0.9663(0.9662)

given by respectively.

N ′m = max{m, b(Ap)1/2σ̂mc+ 1},
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and

N ′dm = max{m, bd−2σ̂2mλ−1min
(
m−1

∑m

i=1
Xi−1X

′
i−1

)
χ2
p(1− α)c+ 1}.

where m > 2 is fixed-initial sample size. The results are reported in
Tables 5 and 6.

As shown in Table 5, the performance of the proposed stopping vari-
ables is not much different from the two-stage stopping variable. The
stopping variables increase with A, the values of which do not differ
much from each other. Also, the estimators based on both stopping
variables are almost close to the two-stage estimators. As A increases,
the Yule-Walker estimators approach the least-squares estimators but
it has a larger sample size for the low value of A. As can be seen, the
performance of the procedure based on the least-squares estimators is
better in point estimation.

The results of region-stopping variables are reported in Table 6.
From Table 6, stopping variables increase as d decreases and these vari-
ables are not much different from the two-stage variable. Also, the
estimators of the procedures are close to each other for different values
d. When d decreases, the procedure based on the Yule-Walker estima-
tors performs better and has a smaller final sample size of course, the
performance of both estimators is reasonable.

The results demonstrate the close performance of the modified two-
stage and two-stage procedures in implementation. Indeed, with increas-
ing process accuracy, performance has not diminished, which is what we
expected. Therefore, by increasing the accuracy of execution and reduc-
ing the cost of sampling, the modified two-stage procedure can be used
that has more performance, simplicity, and accuracy than the two-stage
procedure.
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5 Discussion

In situations where we are faced with limited access to the sample, se-
quential procedures are suggested as a suitable alternative. Also, when
the sample size is not known in advance, these procedures can be used
to overcome the limitations in computing. Among the proposed proce-
dures, it is very important to provide a suitable stopping rule based on
the procedure strategy. In this paper, the stopping rule inspired by the
best-fixed sample size is presented, under the condition of minimum risk
function for point estimation. Considering the wide application of linear
time series models, the aim of choosing a modified two-stage procedure
between sequential procedures is simplicity in implementation and ap-
propriate accuracy in point and interval estimation. The performance of
the modified two-stage procedure is investigated and the results are ex-
pressed as theorems. The asymptotic properties are obtained the same
as the properties of the purely sequential procedure and two-stage pro-
cedure ([43], [24], [40]).

The purely sequential procedure is the widely used procedure that
provides the smallest sample size among the sequential procedures. De-
spite the good properties of this procedure, sampling has a high cost due
to its stopping rule. Also, in terms of execution, it is time-consuming
compared to other sequential procedures. In practice, these items are a
weakness of this procedure, and in situations where cost and time are
important to us, the two-stage procedure and the modified two-stage
procedure are suitable. The two-stage procedure is also suitable, but
if the initial sample size is not suitable, the procedure will suffer from
overestimation. Moreover, the three-stage procedure strategy is pre-
sented inspired by the two-stage procedure. This procedure is also rec-
ommended in terms of implementation after the two-stage procedure and
the modified two-stage procedure. If there are conditions for implement-
ing the modified two-stage procedure, it is preferable to the mentioned
procedures and is a suitable replacement procedure for determining the
sample size.
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Conclusions

In this paper, we investigate a modified two-stage in the autoregressive
model by introducing a class of modified two-stage stopping variables.
We present the important properties of this procedure under the the-
orems, which indicate the close efficiency compared to the best-fixed
sample size procedure when A tends to∞ and d tends to 0. These prop-
erties include asymptotically risk efficient, asymptotically efficient, and
asymptotically consistent. Also, the result of simulation studies demon-
strates the good performance of the procedure and the ability of the pro-
cedure to be substituted for the best-fixed sample size procedure based
on the least-squares and the Yule-Walker estimators. As we expected,
the performance of the procedure based on the Yule-Walker estimators
is also good. Finally, we examined the performance of the procedure
in implementation and execution in real data, which demonstrates the
same performance to the two-stage procedure. In real data analysis, the
least-squares estimators and the Yule-Walker estimators are suitable for
the point and the region estimation, respectively.

This procedure has the ease of implementation of the two-stage pro-
cedure and increases the accuracy in execution. Also, the efficiency of
this procedure is close to the best-fixed sample size procedure despite
reducing the weaknesses of the two-stage procedure and reducing the
sampling cost. Furthermore, according to the situation and available
information, we can use each of the introduced stopping variables to de-
termine the final sample size. Due to the importance of real-time-series
data, these class of variables are a good suggestion for determining the
sample size in point and region estimation.

Future Work

This work represents an alternative method for determining sample size.
In the process of implementing and analyzing the present procedure, a
minimum sample size of key points has been identified as worthy of fur-
ther investigation. With regards to the application of time series data,
the proper stopping rule, with the boundedness condition of the loss
function in point estimation the fundamental questions still need to be
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resolved. Also, two-stage and modified two-stage procedures for non-
linear time series models for example TAR(p) need to be investigated.
However, further work is required to carry out simulation comparisons
with different assumptions for the asymptotic properties of the proce-
dure.
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