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1. Introduction

Interpolation theory constitutes a fundamental part of numerical analy-

sis and almost all such books treat this topic in full detail (see [1, 4, 7]).

Even though the finite dimensional case is more popular the extension

to the infinite dimension has gained some interest. Here we first state

the finite dimensional results and then deal with its extensions. Let X

be a linear space with dim X = n. Suppose L1, L2, · · · , Ln are n linear

functionals on X and y1, y2, · · · , yn are n scalars. We would like to find
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x ∈ X such that

Lix = yi ; i = 1, 2, · · · , n. (1)

Problems of this type are called generalized interpolation problems. At

this stage we should give a criteria for the linear independence of n linear

functionals. This is stated in the next theorem.

Theorem 1.1. Let X be a linear space with dim X = n. Choose a

basis {x1, x2, · · · , xn} of X. Then the linear functionals L1, L2, · · · , Ln

are linearly independent if and only if the matrix [Li, xj ]ni,j=1 has nonzero

determinant.

Theorem 1.2. Let X be a linear space with dim X = n. Then the

interpolation problem (1) has a unique solution if and only if the Li are

linearly independent in X∗.

Sometimes we are interested in finding a polynomial whose value

and derivatives up to certain order take on prescribed values at distinct

points. Problems of this type are called general Hermite interpolation.

It deals with finding a polynomial p(x) that satisfies

p(i)(x1) = y
(i)
1 ; i = 0, 1, · · · ,m1 − 1

...
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p(i)(xn) = y(i)
n ; i = 0, 1, · · · ,m1 − 1.

The numbers y
(i)
1 , · · · , y(i)

n will already be given and we have mj , j =

1, · · · , n conditions on p(x) at the point xj . If we define N = m1 +m2 +

· · ·+mn, then there is a polynomial p(x), unique among those of degree

6 N − 1 which is a solution to the above equations.

Trigonometric interpolation

A function f is said to be periodic with period 2π if

f(t + 2π) = f(t), −∞ < t < ∞.

It is customary to approximate such functions f(t) using trigonometric

polynomials

pn(t) =
n∑

k=−n

cke
ikt.

We study interpolation problems with pn(t) as a solution, since pn(t)

contains 2n + 1 coefficients ck we must impose 2n + 1 interpolating

conditions. We also assume the existence of the interpolation nodes

0 6 t0 < t1 < · · · < t2n < 2π

and the polynomial pn should satisfy

pn(ti) = f(ti) i = 0, 1, · · · , 2n.

It is known that this problem has a unique solution.
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Interpolation by rational functions

The rational function

r(x) =
p(x)
q(x)

=
a0 + a1x + · · ·+ amxm

b0 + b1x + · · ·+ bnxn
.

is determined by its m + n + 2 coefficients

a0, a1, · · · , am, b0, b1, · · · , bn.

On the other hand r(x) determines these coefficients only up to a com-

mon factor λ 6= 0. Therefore r(x) is fully determined by m + n + 1

conditions

r(xi) = ri, i = 0, 1, · · · ,m + n.

It is therefore necessary that the coefficients aj , bj of r(x) solve the

homogeneous system of linear equations

p(x)− riq(xi) = 0, i = 0, 1, · · · ,m + n (2)

which can also be written as

a0 + a1x1 + · · ·+ amxm
i − ri(b0 + b1xi + · · ·+ bnxn

i ) = 0.

It is well known that the homogeneous linear system of equations (2)

always has nontrivial solutions. For each such solution

r(x) = p(x)/q(x) , q(x) 6≡ 0.
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2. Extensions to Infinite Dimension

We have already considered finite dimensional linear spaces. It is now

time to extend these ideas to infinte dimensional linear spaces. To avoid

pathological situations we let X be a normed linear space such that X

is complete in this norm, that is X is a Banach space. Examples of

Banach spaces are C[0, 1] the space of continuous functions on [0,1] with

the supermum norm, the Lp[0, 1] spaces and the space `1 of summable

sequences. If c = {ci} ∈ `1 then ||c||1 =
∑n

i=1 |ci| < ∞. Now let X be

a Banach space. A sequence {fn} in X is called the unit vector basis of

`1 (or an `1-basis) if there are constants a, b > 0 so that

a

n∑

i=1

|ci| 6 ||
n∑

i=1

cifi|| 6 b

n∑

i=1

|ci| (3)

for any scalars c1, · · · , cn and any n. If {fn} in X is the unit vector basis

of `1 then one has an isomorphic copy of `1 inside of X.

Proposition 2.1. If {fn} is an `1-basis of the Banach space X then

the closed linear span on {fn : n ∈ N} is isomorphic (linearly homeo-

morphic) to `1.

Proof. Let L be the closed linear span of the sequence fn. We define
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T : `1 → L by

T ({ci}) =
∞∑

i=1

cifi.

Then T is continuous since ||T ({ci})|| = ||
∞∑
i=1

cifi|| 6 b
∞∑
i=1

|ci| < ∞. We

now show that T is one to one. If T ({ci}) = 0 then
∞∑
i=1

cifi = 0. Since

{ci} is in `1, we have

a

∞∑

i=1

|ci| 6 ||
∞∑

i=1

cifi|| = 0.

Hence
∞∑
i=1

|ci| = 0 and ci = 0 therefore T is one to one.

Now let N = {
∞∑
i=1

cifi :
∞∑
i=1

|ci| < ∞}. To show that N is closed

we use the fact that T is bounded below, i.e., ||Tc|| > ||c||1 for all

c = {ci} in `1. From this we have ||Tc − Td|| > a||c − d||. Now let

gk = Tc(k) =
∞∑
i=1

c
(k)
i fi be in N and gk → g, as k → ∞ we must show

that g is in N . Then ||gk − gl|| = ||Tc(k) − Tc(l)|| > a||c(k) − c(l)||.

Since {gk} is a Cauchy sequence we conclude that {c(k)} is Cauchy in

`1. Hence {c(k)} → c in `1. Therefore g =
∞∑
i=1

cifi.

Also T−1 : L → `1 given by
∞∑
i=1

cifi 7−→ {ci}∞i=1 is continuous since

||T−1(
∞∑

i=1

cifi)|| = ||{ci}|| =
∞∑

i=1

|ci| 6 a−1||
∞∑

i=1

ci fi||.

This completes the proof. ¤
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Definition 2.2. Let X be a Banach space. A sequence {fn} in X is

said to be a weak-Cauchy sequence if lim
n→∞x∗(fn) exists for all x∗ ∈ X∗,

the dual of X.

The extension to infinite dimension can be accomplished via the

important result of Rosenthal. This theorem was proved by Rosenthal

[6] when X is a real Banach space and for a complex Banach space the

theorem was proved by Dor [3].

Theorem 2.3. ( Rosenthal-Dor ) In order that each bounded se-

quence in the Banach space X have weakly Cauchy subsequence, it is

both necessary and sufficient that X contains no isomorphic copy of `1.

The Rosenthal-Dor Theorem can also be stated as follows.

Theorem 2.4. Suppose X is a Banach space and {fn} is a bounded

sequence in X. Then there exists a subsequence {fnk
} such that either

i) the map {ck} →
∞∑

k=1

ckfnk
is an isomorphism of `1 into X.

ii) {fnk
} is a weak-Cauchy sequence.

Now if {xn} is a bounded sequence in a Banach space X and S =

ball X∗ = {x∗ ∈ X∗ : ||x∗|| 6 1}, the unit ball of X∗, define fn(x∗) =
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x∗(xn)∀x∗ ∈ S, i.e., fn = x̂n then we can reformulate the Rosenthal-Dor

Theorem as follows.

Theorem 2.5. Let S = ballX∗ and {fn} = {x̂n} be a uniformly bounded

sequence of real-valued functions defined on S. Then {fn} has a subse-

quence {fnk
} satisfying one of the following alternatives.

i) {fnk
} in equivalent in the supremum norm to the usual `1-basis.

ii) {fnk
} converges pointwise on S.

Let X be a separable Banach space and Y = X∗ be a Banach space

of functions defined on a bounded domain G. Before continuing we just

make a few comments on the topology of these spaces. The topology of

the Banach space X is given by its norm and hence it is a metric space.

The topology of the dual Y = X∗ is however the weak star topology. In

fact it is the topology of pointwise convergence. Hence if {x∗α} is a net in

X∗ then {x∗α} → x∗ weak star in X∗ provided x∗α(x) → x∗(x) for every

x ∈ X. Furthermore assume that for every λ ∈ G the linear functional

eλ : Y → C given by eλ(ϕ) = ϕ(λ) is weak star continuous.

Definition 2.6. We say that a sequence {λn} in a plane domain G

is an interpolating sequence for the Banach space Y = X∗ if for each
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bounded sequence {an} ⊂C there exists ϕ ∈ X such that ϕ(λn) = an.

Because eλn is a weak star continuous linear functional on X there

exists xn ∈ X with ||xn|| = 1 such that eλ(ϕ) = ϕ(λn) = ϕ(xn) for all

ϕ ∈ Y .

We will prove the following theorem.

Theorem 2.7. Suppose {λn} is a sequence in G such that

eλn(ϕ) = ϕ(λn) = ϕ(xn),

for all ϕ ∈ Y . Assume that case (1) of the Rosenthal-Dor Theorem

holds, i.e., there is a subsequence of {xn} that is an `1 basis for X.

Then there is a subsequence of {λn} that is interpolating for Y .

Proof. Since (X∗, wk∗) = X, and each weak star continuous linear

functional comes from some element of the predual we have ϕ(λn) =

ϕ(xn) for all ϕ ∈ X∗.

Let {xnk
} be the subsequence of {xn} given by the Rosenthal-Dor

Theorem and suppose that case (1) holds. i.e., the map {ak} →
∞∑

k=1

akxnk

is an isomorphism of `1 into X. We will show that {λnk
} is interpolat-

ing for Y . For this let a = {ak} be an element of `∞. By case (1) of

Rosenthal-Dor theorem there exists an isomorphism T : `1 → X. Since
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T is one to one and has closed range we can define T ∗ : X∗ → `∞. Since

ran T ∗ is closed and ran T ∗ = (kerT )⊥ we conclude that T ∗ is onto.

Therefore there exists ϕ ∈ X∗ = Y such that T ∗ϕ = a, a ∈ `∞. We

know that T ∗ϕ = ϕ ◦ T , therefore ϕ ◦ T = a. Now apply both sides

of this to the vector ek = {0, 0, · · · , 0, 1, 0, 0, · · ·} where 1 is in the k-th

coordinate. Since T ({ak}) =
∞∑

k=1

akxnk
we have Tek

= xnk
. Therefore

ϕ ◦ Tek
= ϕ(xnk

) = ak. Thus ϕ(λnk
) = ϕ(xnk

) = ak for every k. Hence

{λnk
} is interpolating for Y . This completes the proof. ¤
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