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Abstract. Let F be a sublattice of a vector lattice F'. A net {za}aca C
E is said to be F-order convergent to a vector x € E (in symbols

To =% z in E), whenever there exists a net {ys}gen in F satisfying
yg 4 0 in F and for each 3, there exists ap such that |zo — 2| < ys
whenever a > «p. In this manuscript, first we study some properties
of F-order convergence nets and we extend some results to the gen-
eral cases. Let E and G be sublattices of vector lattices F' and H,
respectively. We introduce F H-order continuous operators, that is, an
operator T between two vector lattices E' and G is said to be F'H-order
continuous, if x4 i 0 in F implies Tz, ﬂ 0 in G. We will study
some properties of this new classification of operators and its relation-
ships with order continuous operators.

AMS Subject Classification: 47B65, 46B40, 46B42
Keywords and Phrases: Order convergence, F-order convergent,
F H-order continuous operator

Received: January 2022; Accepted: March 2023
*Corresponding Author



M. BAKHSHI AND K. HAGHNEJAD AZAR

1 Introduction

To state our result, we need to fix some notations and recall some defi-
nitions. A vector lattice E is an ordered vector space in which sup(z,y)
exists for every x,y € E. A subspace F of a vector lattice F' is said to
be a sublattice if for every pair of elements a, b of E the supremum of a
and b taken in F belongs to E. A vector lattice is said to be Dedekind
complete (resp. o-complete) if every nonempty subset (resp. countable
subset) that is bounded from above has a supremum.

A sublattice E of a vector lattice F is said to be:

1. order dense if for every 0 < x € F' there exists 0 < y € E such
that y < x.

2. majorizing if for every x € F there exists y € F such that x < y.

3. regular if for every subset A of E, inf A is the same in F' and in F
whenever inf A exists in F.

A Dedekind complete space F' is said to be a Dedekind completion of the
vector lattice £ whenever F is lattice isomorphic to a majorizing order
dense sublattice of F'. Recall that a non-zero element a € E™T is an atom
iff the ideal I, consists only of the scalar multiples of a. Let E be a vector
lattice. A net {zq}aeca C F is said to be order convergent (in short o-
convergent) to a vector € E (in symbols z, — x ), whenever there
exists a net {yg}gep in E satisfying yg | 0 and for each J there exists
ag such that |z, — x| < yg whenever o > . Let {x,} be a sequence
in a vector lattice E. Consider the sequence {a,} of Cesdro means of
{z,}, defined by a, = %Zzzl k. Let F, G be vector lattices. An
operator T : E — @ is said to be order bounded if it maps each order
bounded subset of E into order bounded subset of G. The collection
of all order bounded operators from a vector lattice E into a vector
lattice G will be denoted by Ly(E, G). The vector space E~ of all order
bounded linear functionals on vector lattice E is called the order dual
of E,i.e., E~ = Ly(E,R). Let A be a subset of vector lattice £ and Qg
be the natural mapping from F into E~~. If Qg(A) is order bounded
in £~ then A is said to b-order bounded in E. The concept of b-order
bounded was first time itroduced by Alpay, Altin and Tonyali, see [5].
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It is clear that every order bounded subset of E is b-order bounded.
However, the converse is not true in general. For example, the standard
basis of ¢y, A = {e, | n € N} is b-order bounded in ¢y but A is not
order bounded in ¢g. A linear operator between two vector lattices is
order continuous (resp. o-order continuous) if it maps order null nets
(resp. sequences) to order null nets (resp. sequences). The collection
of all order continuous (resp. o-order continuous) linear operators from
vector lattice F into vector lattice G will be denoted by L, (E,G) (resp.
L.(E,Q)). For unexplained terminology and facts on Banach lattices
and positive operators, we refer the reader to [2, 3].

2  F-order Convergent and Its Properties

In this section, E is a sublattice of a vector lattice F'. A net {zy}qeca C E
is said to be F-order convergent (in short Fo-convergent) to a vector

x € F (in symbols z,, Rl ), whenever there exists a net {yg}gep in F
satisfying ys | 0 and for each § there exists o such that |z, — x| < yg
whenever o > «g. If A C FE is order bounded in F', we say that A is
F-order bounded, in case F' = E~"™, we say that A is b-order bounded.
It is clear that if E is regular in F', then every order convergence net (or
order bounded set) in vector lattice E is F-order convergent (or F-order
bounded), but as following example the converse in general not holds.
On the other hand, there is a sequence in E that is order convergent in
FE and F', but is not F-order convergent in FE.

Example 2.1. 1. Suppose that £ = ¢y and F = ¢*°. The standard
basis of ¢y, {e,}22 is not order convergence to zero, but {e,}>,
is £>°-order convergent to zero. On the other hand {e,}°; is not
order bounded in ¢, but is £*°-order bounded in cy.

2. Assume that F' is a set of real valued functions on [0, 1] of form
f = g+ h where g is continuous and h vanishes except at finitely
many point. Let £ = C([0,1]) and f,(t) = t" where ¢t € [0,1]. It
is obvious that f,, | 0 in E and f, | xq1y in F, but {f,} is not
F-order convergent.

It can easily be seen that a net in vector lattice ' have at most one
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F-order limit. The basic properties of Fo-convergent are summarized in
the next theorem.

Theorem 2.2. Assume that the nets {xo} and {z,} of a vector lattice

FE satisfy x, o, o and 2y o, . Then we have
1. |zq| Lo, |z|; ot o, 2t and x, o, »m.
2. Ao + pizy =% \a+ pz for all A, pu € R.

3. ko V 2y gx\/z and To N 2y gx/\z.

4. For eachy € F, if o <y for all a > o, then z < y.
5. If 0 < xy < 24 forall a, then 0 < x < z.

6. If P is order projection, then Px,, o, pa.

Proof. These follow immediately by definition. g

Theorem 2.3. Let G be a sublattice of E and E be an ideal of F'. Then
the following statements hold:

1. If {zaYaea C G and o4 220 in G, then za -2 0 in G.

2. If {xa}aeca C G is order bounded net in E and x, o 0 in G,
FEo .
then xo, — 0 in G.

3 If {xataca C G, 2o 20 in G and x4 o0 in G, then x, o
in G.

Proof. (1) Suppose {zq}aca C G and z4 2% 0 in G, there exists
{ys}pen C E with yg | 0 in E such that

VB, dag st Ya> g |zal < ys.

We show that yg | 0 in F'. Let v € F and 0 < u < yg for all 8. Since
{ys} C E and E is an ideal in F', it follows that « € E and hence u = 0.

Thus yg | 0 in F'. This means that z, o 0in G.
(2) By the assumption, there exists {yg} C F satisfying, yz | 0 and for
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each S there exists ag such that |z,| < ys whenever a > ap. Let u € ET

such that |24 < u. Then {uAyg} C E and u A yg < yg. Thus for each

[ there exists o that |z, < u A yg whenever o > . It follows that
FEo .

To — 0in G.

(3) Suppose {Za}aeca C G and 2, 2 0 in G, there exists {yg}pen C G

with y3 | 0 in G such that

VB,3ag st Va> x| < ygs.

By assumption, since z, o, 0 in G, there exists {zy},ec C F with
2y 4 0in F' such that

Vv, 3ay st Va > ag:|zel < 2.

For fixed By € B, there exists ap € A such that |z, < yg, whenever
a > ap. Let wy = 2y A yg, for every v € C. since E is an ideal of F,
{wy} C E and wy | 0in E. On the other hand, for every v € C, there
exists af, € A such that |z,| < zy whenever o > «f. For agp, o € A
there exists o € A such that |z4| < 2y A yg, for all a > «of. It follows

that x, Lo, 0 in G. U

Corollary 2.4. Suppose that E is an ideal of wvector lattice F. If
{Za}aca is order bounded in E, then

To —>x in FE iff To >z in E

As Example 2.1, the condition of boundedness for nets in above corol-
lary is necessary. Now the following example and part (2) of Example
2.1 show that the ideal condition is also necessary.

Example 2.5. Assume that F is a set of real valued continuous func-
tions on [0, 1] except at finitely many point and F' is Lebesgue integrable
real valued functions on [0,1]. Obviously, E is a sublattice in F', but
is not ideal in F. Let Iy = (3,2), I, = (§,2) U (3,9 U (L, 8), ..., the
segments that we remove them for constructing of the Contor set P. It
is obvious that x;, € F and xj, T xpe in F, but {xy,} is not F-order

convergent in FE.
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Definition 2.6. 1. E is said to be F-Dedekind complete (or F-order
complete), if every nonempty A C E that is bounded from above
in F' has supermum in E. In case ' = E~™, we say that F is
b-Dedekind complete.

2. If each F-order bounded subset of E is order bounded in F, then
E is said to have the property (F'). In case F' = E~" we say that
E has property (b).

Obviosly, if E is F-Dedekind complete, then E has property (F).

Remark 2.7. Let F' be a Dedekind complete AM-space with order
unit e. If F is a Dedekind complete closed in F' contain e, then E
has property (F'), see [[I1], p.110]. We obvious that every majorizing
sublattice E' of F' has the property (F'). Since E~ has property (b),
E~ is b-Dedekind complete. If E is F-Dedekind complete, then E is
Dedekind complete. The converse of last assertion in general not holds,
of course ¢g is Dedekind complete, but is not £°°-Dedekind complete. It
is easy to show that a vector lattice £ has property (F') if and only if
for each net {z,} in E with z,, 1T y for some y € F, follows that {x,} is
bounded above in E.

Theorem 2.8. Let E and F' both be Banach lattices. For each sequence
{Zn}nen in E the following statements hold:

1. If F' has an order continuous norm and x, o0 in E, then there
exists a subsequence {x,, } such that x,, > 0 holds in E.

2. If F is a Banach lattice and {x,} is norm convergent to x € E,

then there exists a subsequence {xzy, } such that x,, L9 & holds in
E.

3. If E has property (F) and x, o0 in E, then {xy}nen is order
bounded in E.

4. If E is an ideal of F and x, o0 in E, then {zp}nen is order
bounded in E.

Proof.
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1. There exists {ym }men in F satisfying, y,, | 0 and for every m there
exists ng such that |z,| < y,,, whenever n > ng. By the assumption
llym|| — 0, it follows that ||z, || — 0. Pick subsequence {zy, }
of {xy} such that ||z, || < 2% for all k. Set 2z = Y2, |n,|. Since
E is a Banach lattice, z;, € E. For some kg, we have |z, | < 2z, | 0
whenever ny > ko . This implies that x,, 2,0 holds in E.

2. By our hypothesis, there exists a subsequence {z,,} such that
l|zn, — || < kﬁ for all k. Since Y -, k|xpn, — x| is norm conver-
gence to some u € F, then k|z,, — z| < u for all k. Clearly, {;u}
is a sequence in F such that tu | 0 and |z,, — z| < tu and the

proof is complete.

3. There exists a sequence {ym}men in F satisfying, v, J 0 and
for every m there exists ng such that |z,| < y,, whenever n >
nog. Fix m € N such that |z,| < y, for all n > ng. Put z =
sup{|x1|, |z2l, ..., |Tno—1];Ym}. Thus |z,| < z for all n € N, and
so z is an upper bound of {z,} in F. Since E has property (F'),
it follows that {z,} is bounded in E.

4. Obviously.

O

Example 2.1 shows that F-Dedekind condintion for E' in part (iii) of
Theorem 2.8 is necessary. Also ¢°° (with sup norm) does not have order
continuous norm and {e,} is £*°-order convegent to zero but there is no
subsequence of {e,} that is convegent to zero, therefore, having order
continuous norms in part (1) is necessary.

Remark 2.9. It is easy to see that for an order bounded net {z,} in a
Dedekind complete vector lattice F,

To >z in E iff x=infsupxg =supinf zg in E
o ﬁZa [e% 5204

iff 0=infsup|zg—z|in E.
« ZOl

The following fact is straightforward.
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Lemma 2.10. Let E be a sublattice of a Dedekind complete vector lattice
F. Then

xagx in E iff x=infsupxg=supinf xg in F,
« B>a a p>a

for every order bounded net {xy} in E.

A net {z,} in E is a F-order Cauchy, if the double net {(z, —
25)}(a,3) 18 @ F-order convergent to zero in E. The following proposi-
tion follows from the double equality of Lemma 2.10 and the proof is
straightforward.

Proposition 2.11. Every F-order Cauchy net in an Dedekind complete
vector sublattice E is order convergent.

For a vector lattice E, we write E° for its order ( or Dedekind)
completion. Recall from Theorem 1.41 of [2] that E° is the unique ( up
to a lattice isomorphism) order complete vector lattice that contains E
as a majorizing and order dense sublattice. In particular, E is regular
sublattice of E°.

Theorem 2.12. [10] Let E be a regular sublattice of a vector lattice F'.
Then

1. E% is a reqular sublattice of F?.

2. 26 20 in E iff vo = 0 in F for every order bounded net {x,} in
E.

Corollary 2.13. Let E be a regular sublattice of a wvector lattice F.

Then x,, 0 E for every order bounded net {x,} in E, when one
of the following conditions hold:

1. 34 %0 in E.
2. 20 20 inF.
The proof of the following Theorem is similar to Theorem 2.8 of [10].

Theorem 2.14. Suppose that E is an order dense and majorizing sub-
lattice of F'. Then the order convergence and F-order convergence are
equivalent.
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S
Corollary 2.15. For every net {x,} in E, 24 2 0 in E iff 24 RSN
mn E.

5
Corollary 2.16. If E is regular sublattice of F', then x4 o 0inE iff

5
To =% 0in E for every order bounded net {x,} in E.

Proof. From Corollary 2.15 and Theorem 2.12, it should be obvious.
O

Theorem 2.17. Suppose that E is a regular sublattice of a vector lattice
F. Then xo = 0 iff x4 o for every order bounded net {xy} in E.

Proof. Since, for a bounded net, F-order convergence is equivalent to
order convergence in F', thus by Theorem 2.12 the result holds. O

Theorem 2.18. Let F' be Dedekind o-complete. If {xy }nen is a disjoint

. F
sequence in E, then z, — 0.

Proof. Suppose {x,} is a disjoint sequence in E. We claim that y,, =
SUPy>y, |7x| | 0 in F. Indeed, assume that y € I and y, > y > 0 for all
n > 1. Then

0 <yAlzn| < (Jza| A sup |zg|) = sup (Jzx| Alza]) =0,
k>n+1 k>n+1

holds in F. Thus y A |z,| = 0 holds in F for all n > 1. It follows that

y=yA(sup|zy,|) =sup(y A |z,]) =0 forall n>1.
n>1 n>1

It follows that |z,| <y, and y,, J 0 holds in F'. [

Theorem 2.19. Suppose that E is a sublattice of a vector lattice F.
Assume also F is atomic and has order continuous norm, and {x,} is

an order bounded sequence in F. If x, - 0 then z, o, .

Proof. It can be proven in the same manner of Lemma 5.1 of [9]. O

9
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3 FH-order Continuous Operators

In this section, the basic properties of F'H-order continuous operators
will be studied. In the following, F and G are vector sublattices of
vector lattices F' and H, respectively. Let {z,} C F and x € E. The
notation x, |r x means that x, | and inf{x,} = x holds in F. Assume
that F' is a set of real valued functions on [0,1] of form f = g + h
where g is continuous and h vanishes except at finitely many points. Let
E = C([0,1]), {fn} be a decreasing sequence in E such that f,(3) =1
for all n € N and f,,(t) — 0 for every ¢ # % It is clear that f, | 0 in E,
but f, {r 0 not holds.

Definition 3.1. An operator T : E —> G between two vector lattices
is said to be: h .
(a) FH-order continuous, if 2, —» 0 in E implies Tz, — 0 in G.

(b) FH-o-order continuous, if o 0inE implies Tz, 2o 0in G.

The collection of all F'H-order continuous operators will be denoted
by Lrin(FE, G), that is,

Lrun(E,G) ={T € L(E,G) : T is F H-order continuous}.

Similarly, the collection of all F'H-o-order continuous operators from F
to G will denoted by Lpp.(E,G), that is,

Lruc.(E,G)={T € L(E,Q) : T is FH-o-order continuous}.

Lemma 3.2. Let F and G are F'-Dedekind complete and H -Dedekind
complete, respectively. Then we have the following assertions.

1. 0<T € Lpgn(E,G) if and only if for each net {xy} in E, x4 Lp 0
implies Txq L 0.

2. If E and G are ideals in F' and H, respectively, then Lrp.(E,G) =
L.(E,G). Moreover, the FH-order continuous operator 0 < T is
an order bounded.

Proof.
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1. Assume that 0 < T and {x,} is a net in E such that x, oo 1t
follows that there exists a net {yg}gep in F satisfying, yg | 0 and
for each /3 there exists ag such that |zo| < yg whenever o > «vg. Set
Za = V>q |Z2|. Then we have |z,| < 2z, for all @ and z, Lr 0, and
so by our assumption we have |Tx,| < T|ro| < T2, | whenever

o > ag. Since Tz, Ly 0, it follows that Tz, o, ) and therefore
T e LFHn(E, G)

Conversely, suppose that 0 < T € Lrpg,(E,G) and z, | 0. It
follows that x, ﬁ) 0 and so Tx, E% 0. Then there exists a net
{23} in H satisfying, z3 | 0 and for each 8 there exists ag such
that |T'zo| < 23 whenever a@ > ag, which shows that Tz, |z 0
and the proof is follows.

2. Suppose that T € Lpy.(E,G) and z, = 0. By using Corollary

2.4, we have x,, % 0 and by our assumption, we have Tz, Moy,
Using Corollary 2.4 again, we have Tz,, 2 0 and so T € L.(E, G).
The converse is proved in the same manner. For the last part,
let 0 <T € Lpgn(E,G) and 9 € ET. If we consider the order
interval [0, zo] as a net {x,} where z, = «a for each a € [0, x|,

then z, T x¢9 holds in F'. It follows that x, &> xo and therefore
Txq T Txg holds in H. Thus T is order bounded.

O

Theorem 3.3. Suppose that E and G are sublattices of F and H, re-
spectively. Assume also H is Dedekind complete and T € L(E,G). If
TeL,(F,H), then T € Lrg,(E,G).

Proof. Since T is order bounded, follows that 7' = T — T, thus with-
out loss of generality, we assume that 7' is a positive operator. Suppose
that {Za}aca is a net in E which is F-order convergent to zero, then
there exists a net {yg}gep in F satisfying, yg | 0 and for each 3 there
exists ap such that |z,| < yg holds whenever a@ > ag. Since T is a
positive operator, we have |T'z| < T'|zo| < T(yg) | 0 whenever o > a.
Now by using Lemma 3.2, the proof follows. O

An other application of the preceding lemma yields the following
theorem, in which the techniques of this theorem are similar argument
like as Theorem 1.56 [3], so we omit its proof.
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Theorem 3.4. Let E and G are F-Dedekind complete and H-Dedekind
complete, respectively. Then the following assertions are equivalent.

1. T e LFHn(E, G)
2. o dF 0 implies Tx, g 0.
3. o 4p 0 implies infy |T'zq| = 0.

4. TT, T~ and |T| belong to Ly, (E,G).

The next result presents a useful sufficient condition for a set to be
order bounded in two vector lattices.

Theorem 3.5. Let I be a sublattice of E and E be F-Dedekind com-
plete. Then subset A of I is E-order bounded if and only if it is F-order
bounded.

An operator T : E — G is said to be F'H-order bounded if it maps
each F-order bounded subset of E into H-order bounded a subset of G.
The collection of all F'H-order bounded operators from a vector lattice
E into a vector lattice G will be denoted by Lpgp(E, G).

The following example shows that, there are operators T': K — G
between Riesz spaces that are F'H-order bounded, but are not an order
bounded operators.

Example 3.6. Let T : L'[0,1] — ¢y be defined by

1 1
T(f) = (/0 f(z) sin(:c)dx,/o f(z)sin(2z)dz, .. .).

Then T is a L*°|0, 1]¢*°-order bounded but is not an order bounded
operator.

Theorem 3.7. For two vector lattices E and F', we have the following:
1. Lru.(E,G) C Lru(E,G).
2. If E has property (F), then Ly(E,G) C Lpgp(E,G).

3. If G has property (H), then Lrpgy(E,G) C Ly(E,G).
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4. If E and G have property (F') and (H), respectively, then

Lb(Ea G) = LFHb(Ev G)

Proof.
1. The proof is clear.

2. Suppose that T' € Ly(FE,G) and A C E is an F-order bounded
subset of £. From our hypothesis, A is an order bounded subset
of E and T'(A) is an order bounded subset of G. Therefore T'(A)
is an H-order bounded subset of G and hence T' € Lppy(E, G).

3. Assume that T € Lpgy(F,G) and A C E is an order bounded
subset of . Then A is an F-order bounded subset of £ and from
our hypothesis, T'(A) is an H-order bounded subset of G. Since
G has property (H), T'(A) is an order bounded subset of G and
therefore T' € Ly(FE, G).

4. It is obvious by (1) and (2).
O

Corollary 3.8. Let E and G be F-Dedekind complete and H-Dedekind
complete, respectively, then Ly(E,G) = Lpmy(E, G).

Corollary 3.9. Let E be an F-Dedekind complete ideal of F'. Assume
also G is an H-Dedekind complete ideal of H. Then Lpm,(E,G) and
Lrp.(E,G) are both bands of Lpyy(E,G).

Proof. Corollary 3.8 and part 2 of Lemma 3.2, show that Lrg,(E,G)
and Lppg.(F,G) are both subspaces of Lpyy(E,G) and the rest of the
proof has a similar argument like as Theorem 1.57 [3]. O

Proposition 3.10. Let T and S be FF-order bounded operators on
Riesz space E. Then ToS is also F'F-order bounded.

Proposition 3.11. Let E be a Riesz space with property (F) and T
is an operator on E that it has order bounded left inverse. Then T™
for each 2 < n, be a FF-order bounded operator if and only if T be
FF-order bounded.
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Proof. Suppose that T is a F F-order bounded operator on E, clearly
T™, for each n € N, is F F-order bounded.

For the converse, suppose that A is a F-order bounded subset of E. By
hypothesis T"(A), for each n € N, is order bounded subset of E and so,
there exists * € E' such that T"(A) C [—z,z]. Since the left inverse
of T is an order bounded, there exists a,b € E such that T""1(A) =
T~ toT™(A) C T~'[—x, 2] C [a,b]. By continuing this process, it is easy
to see that T'(A) is order bounded set in E. Therefore, T is F'F-order
bounded operator. O
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