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1 Introduction

Recursive linear sequences are widely studied in pure mathematics,
presenting their generalizations and complexifications. Based on that,
in this work we will present algebraic properties around the sequences
of k-Perrin and k-Leonardo.

Leonardo’s sequence is discussed in Catarino and Borges (2020) [2],
where it is presented as a recurrent integer sequence that is related to
the Fibonacci and Lucas sequence.

Leonardo’s sequence corresponds to the following recurrence rela-
tionship:

Le, =Le,_1+ Ley_o+1,n> 2. (1)

For n + 1 we can rewrite this recurrence relationship as Le,11 =
Le,, + Le,—1 + 1. And yet, subtracting Le,, — Le,,+1 we obtain another
equivalent recurrence relation for this sequence. Watch:

Le, —Lenty1 = Lep 1+ Leyo+1—Ley,—Lep1—1

Lepy1 = 2Le, — Le, o (2)

being Leg = Le; = 1 and Ley = 2 it is initial conditions.

As for the Perrin sequence, this sequence was implicitly mentioned
by Edouard Lucas in 1876, known for creating the Lucas sequence and
mathematical games with the Tower of Hanoi, but only in 1899, Francois
Perrin defined this sequence. This sequence is defined by the recurrence
Pe,, = Pe,_o+ Pe,_3,n > 3 and being Pey = 3, Pe; = 0 and Pey = 2
your initial conditions [6].

On the other hand, there are the quaternions, these numbers were
developed in 1843 by Willian Rowan Hamilton (1805-1865). The quater-
nions arise from the attempt to generalize complex numbers in the form
z = a + bi in three dimensions [7], the quaternions are presented as
formal sums of scalars with usual vectors of three-dimensional space,
existing four dimensions. Thus, a quaternion is described by:

qg=a+bi+cj+dk

where a, b, ¢ are real numbers and ¢, j, k the orthogonal part at the
base R3.
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And yet, Horadam (1993) [5] presents the quaternionic product being
i?=j42=k>=-1,ij=k=—ij,jk=1i=—kj and ki = j = —ik.

As for hyperbolic numbers, the set of these numbers H can be de-
scribed as:

H={z=z+hyh¢ R h* =12,y R}.

Work on hyperbolic numbers can be found in [3, 4, &].
Finally, in this article, we will define the hyperbolic quaternions of
k-Leonardo and k-Perrin and provide some properties around them.

2 The hyperbolic quaternions of k-Perrin and
k-Leonardo

The sequence of k-Perrin and k-Leonardo are defined by
Pek,n = Pek,n72 + kpek,nf&n > 3,

Lek,n—H = 2kLek,n - Lek,n—Qa n>2,

being Pey o = 3, Pep1 = 0,Pepo = 2, Lepog = Lep; = 1 and Lego = 3
its initial terms.

In turn, we have the characteristic polynomial of the Perrin sequence
being 23 — x — k = 0 and Leonardo’s being 23 — 2k2% +1 = 0.

Definition 2.1. The hyperbolic quaternions of k-Perrin and k-Leonardo
are given by:

Hpek,n = Pek,n + ipek,n+1 + jpek,n+2 =+ kPek,nJr?n
HLey,, = Legn +iLlegni1 + jLegnio + kLeg nys,
on what i =2 =k>=—1,4j =k = —ji,jk =i = —kj,ki=7j = —ik.

According to these definitions, we will carry out a study around the
addition, subtraction and multiplication operations of the hyperbolic
k-Perrin quaternions.

HPegyn £ HPegm = (Pepn = Pegn) + i(Pekni1 & Peg i) + j(Pernie & Pegmya)
+ k(Pegny3 £ Pegmy3),
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Hpek,anek,m = (Pek:,npek,m + Pek,n—i—lpek:,m—i—l + P€k,n+2P€k,m+2 + P€k7n+3pek,m+3)
+ i(Pek,nPek,m+1 + Pek,n“Pekm + Pek,n+2P€k7m+3 — Pek,n+3pek,m+2)
+ j(PegnPekmi2 + PekntoPerm — Peg i1 Pegmys + PegnysPermi1)
+ k(P€k7nP6k7m+3 + Pek,n+3P€k,m + Pek’n+1P€k7m+2 — Pek,n—}—QPek,m—i-l)
# HPey, ,,HPey,

The addition, subtraction and multiplication operations of the hy-
perbolic k-Leonardo quaternions are performed in similar ways.

The conjugates of the hyperbolic quaternary numbers of k-Perrin
and k-Leonardo are represented by:

HPey, = Pegpn — iPegni1 — jPeknto — kPegnis,

HLey,y, = Legn — iLegni1 — jLeg nyo — kLey i3

The norms of the hyperbolic quaternary numbers of k-Perrin and
k-Leonardo are represented by:

|HPeg,||> = HPey,HPey,
2 2 2 2
- Pek,n + Pek,nJrl + Pek,n+2 + Pek,n+3
|HLegn||> = HLeg,HLey,p,

_ 2 2 2 2
- Lek,n + Lek,nJrl + Lek,nJrZ + Lek,n+3

Theorem 2.2. Let Pey, be the n-th term of the sequence of k-Perrin
and Ley,y, the n-th term of the sequence of k-Leonardo, HPey,,, the n-th
term of the hyperbolic quaternionic sequence of k-Perrin and HLey,,, the
n-th term of the hyperbolic quaternionic sequence of k-Lerrin, we have
that for n > 1 the following relations are given:

(i)HPey 3 = HPey 41 + kHPey, ;

(it)HPey n — iHPey ny1 + jHPey nyo — kHPey 3 = Peg gy + Pegnio + Pegnya + Pegnie;
(i48)HLep 1 = 2kH Leg o — HLej,po;

(tv)HLey p, — tHLeg 41 + jHLeg pyo — kHLeg ni3 = Legn + Leg nyo + Leg nya + Leg 6.
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Proof. (i) Based on Definition 2.1, we have to:

HPeg 1+ kHPey . = Pegpi1 + iPegpi2 + jPegnis + kPek nia
+ k(Pegn +iPegni1 + jPegnio + kPeppny3)
= (Pegn+1 + kPepy) +i(Peg g + kPeg pi1) + j(Pegnis + kPeppni2)
+ k(Pegpnya + kPey ni3)
= Pegnt3 + iPegnra + jPeg s + kPeknie
= HPeg n+s3

For (ii), we have to:

HPey,,, — iHPey, 1 + jHPey pnio — kHPey i3 = Peg, + iPeg ni1 + jPeg o + kPeg py3
—i(Pegny1 +iPegnio + jPegnis + kPegpnia)
— j(Pekpt2 +iPeypys + jPegpnta + kPeg pis)
— k(Pegpnt3 +iPekpia + jPegnis + kPeg nie)
= Peyp + Pepnio — kPep i3 + jPeg pyat
kPey i3
+ Pegpia — itPegnts — jPeknta +iPegnis+
Pegnie
= Pegpn + Pegpnia + Pekpia + Pek e

The statements of items (iii) and (iv) are carried out in a similar
way. ]

Theorem 2.3. The generating functions of the hyperbolic quaternary
numbers of k-Perrin and k-Leonardo, denoted by Gype, ,, (x) and Guge, (x),
are:

HPey + HPey 12 + (HPey o — HPey o)z?

GHPekYn (-T) = 1— 22 _ ka3 > (3)
(HLe o + HLey 1) (1 — 2kz) + HLey 222

G — , : = 4

HLen (7) 1 —2kx + a3 )

Proof. To define the generating function of the hyperbolic quaternary
number k-Perrin (3) let’s assume the function:

oo
Gupey,, (r) = Y HPeyna" = HPeyo + HPej 12 + HPej02” + - - - + +HPey, pa”
n=0
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Multiplying both members of equality by —x? and —ka3:

—xQGHpek’n(x) = —x2HPek’0 — x?’HPek,l — x4HPek72 — = a;"”HPekm
—k2*Gupe, ,(¥) = —ka’HPeyg— ka'HPey,1 — ka"HPeyo — -+ - — ka" " HPey
So, writing (1 — % — ka®)Gupe, , (v):

(1—2?%— k:c?’)GHpek’n () = HPepo+ HPey 2+ (HPey o — ]HIPek,o)ac2
HPey o + HPey 12 + (HPey o — HPey o)z?
1— 22 — ka3
To define the generating function of the quaternary number k-Leonardo

hyperbolic (4), denoted by GuLe,, (), let’s write a sequence where each
term in the sequence corresponds to the coefficients.

Gupe, () =

[ee]
GHLey,, (T) = Z HLej, ,x"
n=0

Making algebraic manipulations due to the recurrence relation we can
write this sequence as:

o0
G]HILekm (r) = HLey o+ HLey 12 + HL6k721‘2 + Z HLek’nx"

n=3

= HLeko+ HLey, 1z + HLegoa® + > (2kHLeg -1 — HLep ps)a"

n=3

oo o
= HLeyo+ HLey 1z + HLek72x2 + 2kx Z HLekyn,lx"_l — 23 Z HLek,n,gac"—?’
n=3 n=3

o
= HLeyo + HLey 1o + HLey, o> + 2kx (Z[HLemx”] —HLeyo — HLek,1x> —

n=0

[o¢]
z° g HLey, pa"
n=0

= HLeyo + HLey,1x + HLeg 32 — 2kaHLey o — 2kz’HLey + 2ke > HLeg pa" —

n=0

o
z° E HLey, pa"
n=0
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= HLeko + HLex 1z + HLey 20 — 2kaHLey o — 2ka”HLeg ) + 2kaGrre,,, —

3
t°GHLey .,
So, we have:

GHLey,, (2) — 2kxGHLey,, + ¥°GHLe,,, = HLero+ HLey 2 + HLey,22* — 2kaHLego —
2ka’HLey
GHLey,,, (2)(1 — 2kx + 2%) = HLego(1 — 2kz) + HLey 12(1 — 2kx) + HLey, o2
(HLego + HLey12)(1 — 2kz) + HLey 22
1—2kx + 23 )

GHLek,n (ﬁl’,’) =
O

Theorem 2.4. For n > 0, we have that Binet’s formula for the hyper-
bolic quaternary numbers of k-Perrin and k-Leonardo are:

Hpekyn = go(h)n + w(lg)” + 9(13)”,

HLeg, = afx1)" + B(w2)" + v(x3)".

where l1,lo and I3 are the roots of the characteristic equation of the
quaternionic sequence of k-Perrin hyperbolic and x1,x2,x3 the roots of
the characteristic equation of the quaternionic sequence of k-Leonardo
hyperbolic and ¢, w, 0, o, B and v the coefficients equal to:

Hpekjo(lglg — l%lg) + Hpek,l(l% — lg) + HPG&Q(Z;; — lg) )

L 1312 + Bly + 012 — Bly — Bly — 1313 ’
Lo HPey (317 — 1301) + HPer (13 — 1) + HPeyo(Iy — I3)
lgl% + l%lg + lllg — l%ll — l%lg — lglg ’
, _ HPero(hl3 —13lo) + HPey (1 = 3) + HPeya(l — )
1312 + Bly + 12 — Bly — Bly — 1512 ’
0 — HLey o + (—x9 — wg)HLekJ + (l‘gxg)HLek,o'
ZL‘% — X1T9 — T1L3 + Tox3 ’
_ HLegs + (=21 — z3)HLey 1 + (v123)HLeg o
f = T3 — Tow3 — T1T2 + T1T3 ’
.= HLeys + (—x1 — z2)HLeg 1 + (v122)HLeg o

2
T3+ X1T2 — X1T3 — T2T3
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Proof. Binet’s formula can be represented as follows:
HPegn = ()" + w(l2)" + 6(13)".

So, one has ton = 0, get ¢ +w + 0 = HPeg, for n = 1, got up
pl1 + wly + 0l3 = HPey 1 and for n = 2, has gol% + wl% + 012 = HPey .
With that, you can build a system of linear equations as follows:

p+w+60=HPeo
wly + wls 4 0l = HPGkJ
o2 4+ wl3 + 013 = HPey,

Solving the linear system, using Cramer’s rule, the coefficients found
HP6k70(lgl§ — l%lg) + HPek,l(l% — l%) + HP€k72(l3 — l2)

lgl% + l%lg + lll% — l%ll — l%lg — l3l% ’
B HPey (1313 — 1311) + HPey 1 (13 — 13) + HPey o(l1 — I3)

were: p =

d
“ 1512 + By + 012 — Bly — 81y — 1513 o
o — Hpek’()(lll% — Z%ZQ) + HPekyl(l% — l%) + HPek72(12 — ll)
- lgl% + l%lg + lll% — l%ll — l%lg — lgl%
The proof for the quaternary number of k-Leonardo hyperbolic is car-
ried out in an analogous way. O

3 Properties of hyperbolic k-Perrin and k-Leonardo
quaternions

Next, some properties inherent to the hyperbolic quaternary numbers
of k-Perrin and k-Leonardo are studied.

Propriety 3.1. The sum of the n first quaternary numbers of hyperbolic
k-Leonardo is given by:

n n—3
> HLegn = 2kHLepy—o+ 2kHLepn 1 — (HLeyo + HLeg,1) + (2k — 1) > HLey .
m=3 5=2

Proof. Using the recurrence relation of the hyperbolic k-Leonardo quater-
nions, with n € N, we have that:

HLek’,n-‘rl = QkHLekﬂ - HLB]CJL_Q (5)



THE SEQUENCE OF THE HYPERBOLIC k-PERRIN AND
k-LEONARDO QUATERNIONS 9

Thus, evaluating the relationship given in Equation (5), in values of
n > 2, we get:

HLers = 2kHLeo —HLegyg
HLers = 2kHLey3— HLeg,
HLeys = 2kHLeyy —HLey
HLeps = 2kHLeys— HLey3
HLeyr = 2kHLeyg— HLey 4

HLekﬂ_g = 2kHLek,n_3 - HLek,n—E)
HLen,l = QkHLekm_g - HLek,n—4
HLey, = 2kHLey,_ 1 —HLe,_3

Through successive cancellations, the following results are obtained:

n
Z HLeym = (2k—1)HLegs —HLego+ (2k — 1)HLeg 3 — HLeg + (2k — 1)HLeg 4 + - - -
m=3
(2k — 1)HLey 3 + 2kHLey, o + 2kHLey, ;1
n—3
= 2kHLeyyn—» + 2kHLeyn—1 — (HLego + HLeg,1) + (2k — 1) > HLey .
s=2

O

Propriety 3.2. The sum of the even indices numbers of the hyperbolic
k-Leonardo quaternions is given by:

n 2n—3
> HLepom = 2kHLepon—1 —HLepy + (2k—1) > HLegs.
m=3 s=3

Proof. Using the recurrence relation of the hyperbolic k-Leonardo quater-
nions, with n € N, we have that:

HLey, y+1 = 2kHLey, ,, — HLey, o

+
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Thus, evaluating the recurrence relation, in values of n > 2, we obtain:
HLeys = 2kHLey3— HLey
HLeres = 2kHLes—HLeys
HLergs = 2kHLey7— HLeys

HLegon—2 = 2kHLeg2, 3 — HLekon 5
HLeg2, = 2kHLegon1 — HLeg2, 3

Through successive cancellations, the following results are obtained:

> HLepsm = (2k—1)HLeps —HLepy + (2k — 1)HLegs + -+ + (2k — 1)HLeg 203 +
m=2

QkHLekvgn,l
2n—3
= 2kHLepon—1 — HLepy + (2k — 1) Y HLey,.
s=3

g

Propriety 3.3. The sum of the odd index numbers of the hyperbolic
k-Leonardo quaternions is given by:
2n—4

> HLegpm-1 = 2kHLegon—o —HLego+ (2k—1) > HLey.
m=2 5=2

Proof. Using the recurrence relation of the hyperbolic k-Leonardo quater-
nions, with n € N, we have that:

HLey p+1 = 2kHLey, ,, — HLey, o
Thus, evaluating the recurrence relationship, in values of n > 2, we get:
HLey3 = 2kHLeyo —HLeyq
HLeys = 2kHLeyy —HLey o
HLeyr = 2kHLepg— HLey 4

HLegon-3 = 2kHLeg 2,4 —HLeg2n—6
HLegon—1 = 2kHLeg 2,2 —HLeg2,—4
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Through successive cancellations, the following results are obtained:

n
> HLeggm-1 = (2k—1)HLegy — HLegg + (2k — D)HLegy + -+ + (2k — 1)HLegon—a +
m=2
QkHLean_g
2n—4
= 2kHLey 9, 2 — HLepo + (2k — 1) Z HLey, ;.
s=2
O

For the properties of the hyperbolic k-Perrin quaterns, we will use
the recurrence relation of the hyperbolic k-Perrin quaterns, with n € N,
we have that:

HPey, , = HPey,,—2 + kHPey 3

We can reorganize it and present it as:
HPey p—o = HPey ni1 — kHPey p—1 (6)

Thus, evaluating the relationship given in Equation (6), in values of
n > 3, we obtain:

HPey 1 = HPey4— kHPey o
HPepo = HPeys— kHPey3
HPe3 = HPeye— kHPey 4
HPep4 = HPey7— kHPey s

HPegon—1 = HPegon2 — kHPey 2y
HPeko, = HPeg2n43 — kHPeg2n11
HPey on+1 = HPeyopta — kHPey 2p42

Propriety 3.4. The sum of even-index hyperbolic k-Perrin quaternary
numbers can be described as:

n
> HPerom = (1—k)HPeys—kHPegs+ -+ (1 — k)HPeg on11 + HPeg an 3.
m=1
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Proof. Through successive cancellations, the following results are ob-
tained:

n
> HPerom = HPeyy+HPery+ -+ HPepon
m=1

(HPe;ﬁg, — /CHPek’g) -+ (]HIPekg — kHPekg)) + -+ (Hpek’2n+3 — kHP@k,2n+1)
= (1 - k)HPek,g) — kHP€k73 + -+ (1 — k)HP€k72n+1 + HPek72n+3.

O

Propriety 3.5. The sum of odd-index hyperbolic k-Perrin quaternary
numbers can be described as:

n
> HPerom—1 = (1—k)HPeys— kHPeps+ - + (1 — k)HPey o + HPej o 42

m=1

Proof. Through successive cancellations, the following results are ob-
tained:

> HPeom = HPeypy+HPeys+ -+ HPej
m=1

= (HPGkA - kHPGkQ) + (]HIPek,G - kHPekA) + -+ (HPek’Qn_i_Q — kHPek’Qn)
(1 — k)HPekA — kHPekQ + -4 (1 — k)HPek’Qn + HP@k’Qn_i_Q.

g

Propriety 3.6. The sum of the first n terms of the hyperbolic k-Perrin
quaternions is given by:

n
Z HPey,, = (1 — k)(HP@kA + HPek75) — k(HPekQ + HPehg) 4+t
m=1
(1 — k)HPey2n11 + HPeg 2n43.

Proof. Through successive cancellations, the following results are ob-
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> HPey = HPey+HPeyy+HPeps+ -+ HPeyp

m=1

= (HPey,4 — kHPeg2) + (HPey5 — kHPey3) + (HPey g — kHPey 4) +
(HPe 2043 — kHPey, 2n,41)

= (1 —k)HPey 4 — kHPe o+ (1 — k)HPey, 5 — kHPeg 3+ - - +
(1 — k)HPey, 2,41 + HPep, 29,43

= (1 —k)(HPey4 +HPey5) — k(HPey 2 + HPep3) +--- +
(1 — k)HPey, 2111 + HPe 2043

O

4 Conclusion

The study discussed allowed the introduction of the hyperbolic qua-
ternary sequences of k-Perrin and k-Leonardo, thus carrying out an evo-
lution in light of the mathematical complexification process of these
generalized sequences. As soon as possible, it was possible to discuss
some mathematical properties and theorems, showing the mathematical
rigor of the primitive sequences, Perrin and Leonardo.

In fact, it can be noted that for the values of £k = 1, we get the
Perrin and Leonardo sequences in their primitive form. Furthermore, to
emphasize the generalization of these hyperbolic quaternionic sequences,
their shape for the recurrence k and their respective properties were
studied.
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