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A method of weighted residuals for solving
fractional boundary value problems
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Abstract. In this paper, we proposed an approximation scheme for
solving boundary value problems of fractional order with a finite ele-
ment called the method of Weighted residuals. The fractional differ-
ential operators are taken in the Riemann-Liouvill and Coputo sense.
Numerical examples are provided to show that the numerical method is
easy to apply and computationally efcient.
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1 Introduction

In the last few decades, fractional-order models are found to be more
adequate than integer-order models for some real world problems. Frac-
tional derivatives provide an excellent tool for the description of mem-
ory and hereditary properties of various materials and processes. This
is the main advantage of fractional differential equations in comparison
with classical integer-order models[!]. Fractional differential equations
arise in many engineering and scientific disciplines as the mathematical
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modelling of systems and processes in the fields of physics, chemistry,
aerodynamics, electrodynamics of complex medium, polymer rheology,
and so forth, involves derivatives of fractional order. In consequence, the
subject of fractional differential equations is gaining much importance
and attention. For examples and details, see([1]-[7], [I1]-[I4]) and the
references therein.

In this paper we use Weighted residuals method with simple base,
to solve linear and nonlinear boundary value problems of fractional or-
der. Different kind of Examples of linear and nonlinear boundary value
problems of fractional order are given to demonstrate the ability of the
proposed method.

This paper has been organized as follows: section 2 gives notations
and basic definitions. Section 3 consists of main results of this paper,
in which Weighted residuals method has been applied on the boundary
value problems of fractional order. Finally two illustrative examples are
given in section 4.

2 Preliminaries and notations

In order to proceed, we need the following definitions of fractional deriva-
tives and integrals. We first introduce the Riemann-Liouville definition
of fractional derivative operator J3'.

Definition 2.1. Let a € R*. The operator J$, defined on the usual
Lebesgue space Ly [a,b] by

Jof(t) = P(la) / (t — )27 f(s)ds, (1)

Jaf(t) = f(t),
fora <t <b, is called the Riemann-Liouville fractional integral operator
of order «.

Properties of the operator J¢ can be found in [11]. For f € Ly [a,b],c, B >
0 and v > —1, we mention only the following:

J&f(t) exists for almost every t € [a,b],
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JeJa f(t) = I f (),
JeTL (1) = T2 I f (),
o _ T+
J&(t—a) = 11(@_’_7_‘_1)@ a)*t.

Definition 2.2. The fractional derivative of f(t) in the Riemann-Liouville
sense is defined as

dm 1 t
Def(t)=DmJr O f(t) = = [ (t—5)"" f(s)ds, (2
20 = DM 0) = G [ (=" s, (2
where m € N and satisfies the relation m—1 < o < m, and f € L [a,b].
Properties of the operator DY can be found in [15, 10]. For m —1 <
a<m,t>a andy > —1 we mention only the following:
k(t —a)=@
D%k = ———
“ rl-a)’
Iy+1) _
DYt —ag)Y = ——~" "7 e

DgJi f(t) = f(1).

In passing, we remark that the definition of Riemann-Liouville frac-
tional derivative, which dose certainly play an important role in the de-
velopment of theory of fractional derivatives and integrals, could hardly
produce the physical interpretation of the initial conditions required for
the initial value problems involving fractional differential equations. The
same applies to the boundary value problems of fractional differential
equations. It was Caputo definition of fractional derivative D f(t) which
solved this problem. In fact, the Caputo derivative becomes the con-
ventional nth derivative of the function f(t) as « — n and the initial
conditions for fractional differential equations retain the same form as
that of ordinary differential equations with integer derivatives. Another
difference is that the Caputo derivative for a constant is zero while the
Riemann-Liouville fractional derivative of a constant is nonzero. For
more details, see [0, 11, 12].
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Definition 2.3. The fractional derivative of f(t) in the Caputo sense
1s defined as

DEF() = "D f0) = s [ (=" s )

I'(m—a«

DEJf(t) = f(t),

form—1l<a<mmeN,t>0. Also, ifm—1<a<m,t>a then

Dk = 0,
D(Jg f(t) = (1),
mel o (t—a)k
JEDLf®) = f(t) = > f*(a) I
k=0

3 Weighted residuals method

Suppose we have the boundary value problem of fractional order
Dy()] + Ly + Ny@)] = f(t), m-1<a<m, (4

where a and 3 are constants. The term D®[y(t)] denotes a linear
fractional differential operator, L [y(t)] is a linear differential operator,
N [y(t)] is a nonlinear operator and f(¢) is a given function.

We will approximate the solution y(t) as

n

g(t) =>_cdit), (5)

=0

where n is the number of unknown parameters, and each ¢; is an in-
dependent basis function. Hence, we denote y(t) as the trial functions.
The goal in method of Weighted residuals is the determination of the
(n+ 1) scalars {c;}i-

Hence an error or residual will exist

E(t) = R(t) = D*[y(®)] + L[y®)] + N[y(®)] = f(1) #0.  (6)
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The notion in the method of Weighted residuals is to force the residual
to zero in some average sense over the domain T' = [a,b]. That is

/R(t)Wi(t)dt ~0, =01, ., (7)
T

where {W;}, are the test functions or weights. A good choice of ba-
sis functions for boundary value problems of fractional order are the
fractional power polynomials

where ¢,d,e and f are constants. The result is a set of (n + 1) alge-
braic equations for the unknown constants ¢;. There are (at least) three
method of Weighted residuals sub-methods, according to the choices for
the W;’s. These three methods are:

1. Least Squares method
2. Sub — domain method,

3. Galerkin method.

Each of these will be explained below [, 10].

3.1 Least Squares method

If the continuous summation of all the squared residuals is minimized,
the rationale behind the name can be seen. In other words, a minimum
of

_ _ 2
S = /T R()R()dt = /T R2(t)dt. (8)

In order to achieve a minimum of this scalar function, the derivatives of
S with respect to all the unknown parameters must be zero. That is,

oS

0= 9

—9 /T R(t)gzdt. ()
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Comparing with 3.1, the weight functions are seen to be

OR
Wi = 277
8Ci

however, the 2 can be dropped, since it cancels out in the equation.
Therefore the weight functions for the Least Squares method are just
the derivatives of the residual with respect to the unknown constants:

_OR

W= ——.
Oci

3.2 Sub-domain method

This method doesn’t use weighting factors explicity, so it is not, strictly
speaking, a member of the Weighted residuals family. However, it can be
considered a modification of the collocation method. The idea is to force
the weighted residual to zero not just at fixed points in the domain, but
over various subsections of the domain. To accomplish this, the weight
functions are set to unity, and the integral over the entire domain is
broken into a number of subdomains sufficient to evaluate all unknown
parameters.

That is,

/TR(t)Wi(t)dt:Z </T R(t)dt> =0, i=0,1,---,n.  (10)

i

3.3 Galerkin method

In this method, the weight functions are chosen from the fractional power
polynomials. That is,

cy e, .
W;=tdt7', i=0,1,---,n.

In the event that the basis functions for the approximation (the ¢)s)
were chosen as fractional power polynomials.
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4 Numerical examples

In this section, two examples are presented in order to show the abil-
ity and efficiency of the proposed method. The algorithms are per-
formed by Maple 12 with 10 digits precision. For two examples, we take
to = 0,t; = to+0.05 ¢ for ¢ = 1,---,20 and results for n = 1,2 and 3
are reported.

RMS errors

A reasonable scalar index for the closeness of two functions is the Lo
norm, or Euclidian norm. This measure is often called the root-mean
squared (RMS) error in engineering. The RMS error can be defined as

I () = G0yt
Erms = Tdt )

which in discrete terms can be evaluated as

Erpms =

Example 4.1. Consider the linear boundary value problem of Riemann-
Liouvill fractional order

y'(t) +sintD%Py(t) +ty(t) = f(t), 0<t<1, (11)

with the boundary condition:

where
32768 e 2048
6435/ 429./7

and the exact solution is y(t) = t8 — t7[7].
Let’s solve the above example by the method of Weighted residuals using

F(t) = t* — 15 + 565 — 4265 + sin ( t%9),  (12)
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Table 1: Numerical results for Example 1 using ¢;(t) = {t6+%i}?:0

n FEgrys — Galerkin  Egpys — LeastSquares  Eprpys — Subdomain

1 0.06337614509 0.06201871147 0.05913693352
2 0.01942054388 0.02013470606 0.01609329029
3 0.02147222606 0.02395010463 0.01667516339

Table 2: Numerical results for Example 1 using ¢;(t) = {tg_%i}?zo

n FEgrys — Galerkin  Egpys — LeastSquares  Eprpys — Subdomain

1 0.02403628953 0.02342287470 0.01948231563
2 0.01895034797 0.01994715241 0.01654689139
3 0.02192845645 0.02441210961 0.01653205299

a fractional power polynomial functions as a basis. That is, let the
approximating function y(t) be

n
y(t) = Z citatyl,
i=0

By applying the boundary condition and calculating the second deriva-
tive and 0.5 Riemann-Liouvill derivative of y(¢) the residual R(t) could
be found:

R(t) = " (t) +sint D" y(t) + ty(t) — f(t), (13)
The computational results are summarized in Tables 1 and 2.

Example 4.2. Consider the nonlinear boundary value problem of Cop-
uto fractional order

DBy (t) +t%(t) = f(t), 0<t<l, (14)

with the boundary condition

where
32

_ 94 4175 5
) = 21r(0.75)t T
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Table 3: Numerical results for Example 2 using ¢;(t) = {t%’L%i}LO

n FEgrys — Galerkin  Egpys — LeastSquares  Eprpys — Subdomain

1 0.0 0.0 0.000003244042158
2 0.0 0.0 0.000006365831408
3 0.0 0.0 0.000007910210400

and the exact solution is y(t) = 2[].

We solve the mentioned example by the method of Weighted residuals
using a fractional power polynomial function as a basis. That is, let the
approximating function y(¢) be

n
y(t) = Z citat T
i=0

By applying the boundary condition and calculating 0.25 Coputo deriva-
tive of y(t) the residual R(t) could be found:

32
t) = DY255() + 52 (1) — ——— 5T 45, 1
R(t) < Yt) +tyt(t) AT (0.75) (15)

The computational results are summarized in Tables 3 and 4.

In the Weighted residuals solutions, the basis of {tQ_PT%i}?ZO form
for n = 3,--- are not used because the Coputo derivative of order 0.25
of the approximated function y(t)

n

@\(t) = Zcitz_%i> n = 3747"'
1=0

does not exist.

5 Conclusion

In this paper, the method of Weighted residuals for approximate solu-
tion of linear and nonlinear boundary value problems of fractional order
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Table 4: Numerical results for Example 2 using ¢;(t) = {tg_%i}?zo

n FEgrys — Galerkin  Egpys — LeastSquares  Eprpys — Subdomain

1 0.0 0.00001625833120 0.000001214985793
2 0.00001292837411  0.00001901002242 0.000005589105048
3 - - -

is introduced and proposed. Moreover, a comparison between the exact
solution and three sub-method of Weighted residuals method using the
fractional power polynomials basis, shows that the error of the approxi-
mation is small and usually only a few iterations leading to very accurate
solutions. Two examples of boundary value problems of fractional order
were solved by Weighted residuals to illustrate the efficiency and accu-
racy of the method. By this method in Example 2, we found the exact
solution.

References

[1] B. Ahmad and J. J. Nieto, Existence Results for Nonlinear Bound-
ary Value Problems of Fractional Integrodifferential Equations with
Integral Boundary Conditions, Hindawi Publishing Corporation,
Volume 2009, Article ID 708576, 11 pages.

[2] B. Ahmad and S. Sivasundaram, Existence and uniqueness results
for nonlinear boundary value problems of fractional differential
equations with separated boundary conditions, to appear in Dy-
namic Systems and Applications.

[3] D. Araya and C. Lizama, Almost automorphic mild solutions to
fractional differential equations, Nonlinear Analysis, Theory, Meth-
ods and Applications, 69 (11), 3692-3705 (2008).

[4] H. Azizi, Chebyshev finite difference method for fractional bound-
ary value problems, Journal of mathematical extention, 9 (3), 57-71
(2015).

[5] H. Azizi, G.B. Loghmani, M.R. Hooshmand asl, A. Dehghan
nezhad, Bspline solution of boundary value problems of fractional



A method of weighted residuals for solving fractional boundary value

[12]

[15]

problems

order based on optimal control strategy, Journal of Sciences, Islamic
Republic of Iran 23(1): 59-65 (2012).

Z. Bai and H. Lu, Positive solutions for boundary value problem of
nonlinear fractional differential equation, Journal of Mathematical
Analysis and Applications, 311 (2), 495-505 (2005).

V. Daftardar-Gejji and S. Bhalekar, Boundary value problems for
multi-term fractional differential equations, Journal of Mathemati-
cal Analysis and Applications, 345 (2), 754-765 (2008).

A. B. Finlayson, The Method of Weighted Residuals and Variational
Principles, Academic Press, New York (1972).

A. Ghorbani, Toward a new analytical method for solving nonlin-
ear fractional differential equations, Comput. Methods Appl. Mech.
Engrg., 197, 4173-4180 (2008).

H. Grandin, Fundamentals of the Finite Element Method, Wave-
land Press (1991).

K.I. Isife, Investigation of some stability properties of solutions for
a class of nonlinear boundary value fractional differential equations,
Journal of Fractional Calculus and Applications, 12 (1), 90-100
(2021).

AY. Luchko, R. Groreflo, The initial value problem for some frac-
tional differential equations with the Caputo derivative, Preprint
series A08-98, Fachbreich Mathematik und Informatik, Freic Uni-
versitat Berlin (1998).

F. Mainardi, Fractional calculus: Some basic problems in contin-
uum and statistical mechanics, Fractals and Fractional Calculus in
Continuum Mechanics, Springer-Verlag, NewYork (1997).

K. S. Miller and B. Ross, An introduction to the fractional calculus

and fractional differential equations, John Wiley and Sons, New
York (1993).

K. B. Oldham, J. Spanier, The Fractional Calculus, Academic
Press, New York, London (1974).

11



12

H. Azizi

[16] I. Podlubny, Fractional Differential Equations, Academic Press, San
Diego (1999).

Hadi Azizi

Department of Mathematics

Assistant Professor of Mathematics

Department of Mathematics, Taft Branch, Islamic Azad University, Taft, Iran

Taft, Iran
E-mail: Azizi@Taftiau.ac.ir, Hadiazizi1360@gmail.com



	1 Introduction
	2  Preliminaries and notations
	3 Weighted residuals method
	3.1 Least Squares method
	3.2 Sub-domain method
	3.3 Galerkin method

	4 Numerical examples
	5 Conclusion
	References

