M. Faghih Ahmadi¹

Islamic Azad University - Sepidan Branch

K. Hedayatian

Shiraz University

Abstract: In this article, we find the set of all limit points of sequences of polynomials with real coefficients, in $\cos n$, $n = 1, 2, 3, \cdots$ with degree less than or equal to three. Also, when the degree is four, the mentioned set is found in some special cases.

AMS Subject Classification: 40-XX.

Key words and Phrases: Limit points, trigonometric, sequences.

1. Introduction

Finding the limit points of a sequences or, at least, finding some topological properties of the limit points of a sequence is one of the remarkable problems in analysis. For instance, in [2], the authors have found some necessary and sufficient conditions for the connectedness of the set of all limit points of a sequence in a metric space. Some other results on the limit points of certain sequences is obtained, for example, in [3] and [4].

¹Research of the first author is supported by a grant from Islamic Azad University

Our claim in this article is to find the set of all limit points of sequence of polynomials with real coefficients, in $\cos n$, $n = 1, 2, 3, \cdots$ with degree less than or equal to three. Also, when the degree is four, the mentioned set is found in some cases.

2. Main Results

Theorem 1. Suppose f is a real valued continuous, periodic function on the real numbers \mathbb{R} and its period is an irrational number α . Then the set of all limit points of the sequence $\{f(n)\}_{-\infty}^{+\infty}$ is the closed interval [m,M] where $m=Min\{f(x):x\in\mathbb{R}\}$ and $M=Max\{f(x):x\in\mathbb{R}\}$.

Proof. Since f is continous and periodic, it is uniformly continuous. So for $\varepsilon > 0$, there exists a $\delta > 0$ such that for every x, y in \mathbb{R} , if $|x - y| < \delta$ then $|f(x) - f(y)| < \varepsilon$. But the set $\mathbb{Z} + \alpha \mathbb{Z} = \{m + \alpha n : m \in \mathbb{Z}, n \in \mathbb{Z}\}$ is a countable dense subset of \mathbb{R} where \mathbb{Z} denotes the set of all integers. Therefore, for each $x \in \mathbb{R}$, integers m and n can be found so that

$$|m - (n\alpha + x)| < \delta$$
,

and consequently, $|f(m) - f(x)| < \varepsilon$. Now, considering the fact that $f(\mathbb{R})$ is a connected subset of \mathbb{R} , the result follows. \square

We remark that for an irrational number α , $\mathbb{N} + \alpha \mathbb{Z}$ is not dense

in \mathbb{R} where \mathbb{N} denotes the natural numbers and so this proof can not be used when replacing $\{f(n)\}_{-\infty}^{+\infty}$ by $\{f(n)\}_{n=1}^{\infty}$. Nevertheless, a direct conclusion of the above theorem runs as follows:

Theorem 2. Let the function f satisfy the hypotheses of the preceding theorem. Suppose, furthermore, that f is an even function. Then the set of limit points of the sequence $\{f(n)\}_{n=1}^{\infty}$ is the range of f.

In all that follows, for a sequence $\{p(n)\}_{n=1}^{\infty}$ let L_p be the set of all limit points of this sequence.

Theorem 3. Let $q(x) = a_0 + a_1x + a_2x^2 + a_3x^3$, where $a_3 \neq 0$, and take $p(n) = q(\cos n)$. If $a_2^2 - 3a_1a_3 < 0$ then $L_p = [m, M]$ where m and M are, respectively, the minimum and maximum of the set $\{q(1), q(-1)\}$. If $a_2^2 - 3a_1a_3 \geqslant 0$ then $L_p = [m, M]$ where m and M are, respectively, the minimum and maximum of the set

$$\{q(1), q(-1), q(\frac{-a_2 + \sqrt{a_2^2 - 3a_1a_3}}{3a_3}), q(\frac{-a_2 - \sqrt{a_2^2 - 3a_1a_3}}{3a_3})\}$$

Proof. Consider the function p defined on $[0, 2\pi]$ by $p(x) = q(\cos x)$. Then p(x) is clearly even and periodic, allowing us to use Theorem 2; it remains to find the range of p. If $a_2^2 - 3a_1a_3 < 0$ then p'(x) = 0 implies that $x = 0, \pi, 2\pi$, and so the only values that $\cos x$ can take are 1 and -1. On the other hand, when $a_2^2 - 3a_1a_3 \ge 0$, an easy argument shows that if p'(x) = 0 then $\cos x$ can be

$$1, -1, \frac{-a_2 + \sqrt{a_2^2 - 3a_1a_3}}{3a_3}, \text{ or } \frac{-a_2 - \sqrt{a_2^2 - 3a_1a_3}}{3a_3}. \quad \Box$$

Theorem 4. Let $q(x) = a_0 + a_1x + a_2x^2$ for $a_2 \neq 0$, and let $p(n) = q(\cos n)$. Then $L_p = [m, M]$ where m and M are, respectively, the minimum and maximum of the set

$${a_0 + a_1 + a_2, a_0 - a_1 + a_2, a_0 - \frac{a_1^2}{4a_2}}.$$

Proof. Considering $p(x) = a_0 + a_1 \cos x + a_2 \cos^2 x$, $x \in [0, 2\pi]$; it is sufficient to find x in the interval $[0, 2\pi]$ such that p'(x) = 0. Then apply Theorem $2.\square$

Theorem 5. Let

$$q(x) = a_0 + a_1 a_3 x + \frac{a_2 a_3}{2} x^2 + \frac{a_1 a_4}{3} x^3 + \frac{a_2 a_4}{4} x^4,$$

where $a_2a_4 \neq 0$; and for $n \in \mathbb{N}$, take $p(n) = q(\cos n)$. If $a_3a_4 \leqslant 0$ then $L_p = [m, M]$ where m and M are, respectively, the minimum and

maximum of the set

$$\{q(1),q(-1),q(\pm\sqrt{-\frac{a_3}{a_4}}),q(-\frac{a_1}{a_2})\}$$

and if $a_3a_4 > 0$ then we use the set $\{q(1), q(-1), q(-\frac{a_1}{a_2})\}.$

Proof. If $\frac{d}{dx}(q(\cos x)) = 0$ then $\sin x = 0$ or

$$(a_4 \cos^2 x + a_3)(a_2 \cos x + a_1) = a_1 a_3 + a_2 a_3 \cos x$$
$$+a_1 a_4 \cos^2 x + a_2 a_4 \cos^3 x = 0.$$

Consequently, if the inequality $a_3a_4 \leqslant 0$ holds, we get $\sin x = 0$ or $\cos x = \pm \sqrt{-a_3/a_4}$ or $\cos x = -a_1/a_2$. Also, whenever $a_3a_4 > 0$ we get $\sin x = 0$ or $\cos x = -a_1/a_2$. In each case, the result holds from Theorem 2. \square

Remark 1. An immediate consequence of Theorem 2, is that the set of limit points of the sequence $\{\cos n\}_{n=1}^{\infty}$ is [-1,1]. This fact has been proved before, using more complicated techniques. For instance, one can see [1, Problem 3.15, p.14].

Remark 2. In Theorems 3, 4 and 5, substituting $\cos n$ by $\sin n$, one can show that the same results hold for the sequence $\{\sin n\}_{-\infty}^{+\infty}$.

References

- [1] D. Aliprantis and O. Burkinshaw, *Problems in Real Analysis*, Academic Press, Inc. 1990.
- [2] M. D. $A \setminus V$ si $\setminus c$, and D.D. Admaovi $\setminus C$, Limit points of sequences in metric spaces, Amer. Math. Monthly 77 (1970), 613-616.
- [3] H. G. Barone, Limit points of sequences and their transforms by methods of summability, *Duke Math. J.* 5, (1939), 740-752.
- [4] P. Hellekalek and G. Larcher, On Weyl sums and skew product over irrational rotations, *Theoretical Computer science*, Vol. 65, Issue 2, (1989), 189-196.

Masoumeh Faghih Ahmadi

Islamic Azad University - Sepidan Branch

Sepidan, Iran

E-mail: faghiha@shirazu.ac.ir E-mail: m_faghih_a@yahoo.com

Karim Hedayatian

Department of Mathematics College of Sciences Shiraz University

Shiraz 71454, Iran

E-mail: hedayatian@susc.ac.ir