Limit Points of Trigonometric Sequences

M. Faghih Ahmadi ${ }^{1}$
Islamic Azad University - Sepidan Branch

K. Hedayatian

Shiraz University

Abstract

In this article, we find the set of all limit points of sequences of polynomials with real coefficients, in $\cos n, n=$ $1,2,3, \cdots$ with degree less than or equal to three. Also, when the degree is four, the mentioned set is found in some special cases.

AMS Subject Classification: 40-XX.
Key words and Phrases: Limit points, trigonometric, sequences.

1. Introduction

Finding the limit points of a sequences or, at least, finding some topological properties of the limit points of a sequence is one of the remarkable problems in analysis. For instance, in [2], the authors have found some necessary and sufficient conditions for the connectedness of the set of all limit points of a sequence in a metric space. Some other results on the limit points of certain sequences is obtained, for example, in [3] and [4].

[^0]Our claim in this article is to find the set of all limit points of sequence of polynomials with real coefficients, in $\cos n, n=1,2,3, \cdots$ with degree less than or equal to three. Also, when the degree is four, the mentioned set is found in some cases.

2. Main Results

Theorem 1. Suppose f is a real valued continuous, periodic function on the real numbers \mathbb{R} and its period is an irrational number α. Then the set of all limit points of the sequence $\{f(n)\}_{-\infty}^{+\infty}$ is the closed interval $[m, M]$ where $m=\operatorname{Min}\{f(x): x \in \mathbb{R}\}$ and $M=\operatorname{Max}\{f(x): x \in \mathbb{R}\}$.

Proof. Since f is continous and periodic, it is uniformly continuous. So for $\varepsilon>0$, there exists a $\delta>0$ such that for every x, y in \mathbb{R}, if $|x-y|<\delta$ then $|f(x)-f(y)|<\varepsilon$. But the set $\mathbb{Z}+\alpha \mathbb{Z}=\{m+\alpha n: m \in \mathbb{Z}, n \in \mathbb{Z}\}$ is a countable dense subset of \mathbb{R} where \mathbb{Z} denotes the set of all integers. Therefore, for each $x \in \mathbb{R}$, integers m and n can be found so that

$$
|m-(n \alpha+x)|<\delta
$$

and consequently, $|f(m)-f(x)|<\varepsilon$. Now, considering the fact that $f(\mathbb{R})$ is a connected subset of \mathbb{R}, the result follows.

We remark that for an irrational number $\alpha, \mathbb{N}+\alpha \mathbb{Z}$ is not dense
in \mathbb{R} where \mathbb{N} denotes the natural numbers and so this proof can not be used when replacing $\{f(n)\}_{-\infty}^{+\infty}$ by $\{f(n)\}_{n=1}^{\infty}$. Nevertheless, a direct conclusion of the above theorem runs as follows:

Theorem 2. Let the function f satisfy the hypotheses of the preceding theorem. Suppose, furthermore, that f is an even function. Then the set of limit points of the sequence $\{f(n)\}_{n=1}^{\infty}$ is the range of f.

In all that follows, for a sequence $\{p(n)\}_{n=1}^{\infty}$ let L_{p} be the set of all limit points of this sequence.

Theorem 3. Let $q(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$, where $a_{3} \neq 0$, and take $p(n)=q(\cos n)$. If $a_{2}^{2}-3 a_{1} a_{3}<0$ then $L_{p}=[m, M]$ where m and M are, respectively, the minimum and maximum of the set $\{q(1), q(-1)\}$. If $a_{2}^{2}-3 a_{1} a_{3} \geqslant 0$ then $L_{p}=[m, M]$ where m and M are, respectively, the minimum and maximum of the set

$$
\left\{q(1), q(-1), q\left(\frac{-a_{2}+\sqrt{a_{2}^{2}-3 a_{1} a_{3}}}{3 a_{3}}\right), q\left(\frac{-a_{2}-\sqrt{a_{2}^{2}-3 a_{1} a_{3}}}{3 a_{3}}\right)\right\}
$$

Proof. Consider the function p defined on $[0,2 \pi]$ by $p(x)=q(\cos x)$. Then $p(x)$ is clearly even and periodic, allowing us to use Theorem 2; it remains to find the range of p. If $a_{2}^{2}-3 a_{1} a_{3}<0$ then $p^{\prime}(x)=0$ implies
that $x=0, \pi, 2 \pi$, and so the only values that $\cos x$ can take are 1 and -1. On the other hand, when $a_{2}^{2}-3 a_{1} a_{3} \geqslant 0$, an easy argument shows that if $p^{\prime}(x)=0$ then $\cos x$ can be

$$
1,-1, \frac{-a_{2}+\sqrt{a_{2}^{2}-3 a_{1} a_{3}}}{3 a_{3}}, \quad \text { or } \frac{-a_{2}-\sqrt{a_{2}^{2}-3 a_{1} a_{3}}}{3 a_{3}}
$$

Theorem 4. Let $q(x)=a_{0}+a_{1} x+a_{2} x^{2}$ for $a_{2} \neq 0$, and let $p(n)=$ $q(\cos n)$. Then $L_{p}=[m, M]$ where m and M are, respectively, the minimum and maximum of the set

$$
\left\{a_{0}+a_{1}+a_{2}, a_{0}-a_{1}+a_{2}, a_{0}-\frac{a_{1}^{2}}{4 a_{2}}\right\}
$$

Proof. Considering $p(x)=a_{0}+a_{1} \cos x+a_{2} \cos ^{2} x, x \in[0,2 \pi]$; it is sufficient to find x in the interval $[0,2 \pi]$ such that $p^{\prime}(x)=0$. Then apply Theorem 2.

Theorem 5. Let

$$
q(x)=a_{0}+a_{1} a_{3} x+\frac{a_{2} a_{3}}{2} x^{2}+\frac{a_{1} a_{4}}{3} x^{3}+\frac{a_{2} a_{4}}{4} x^{4}
$$

where $a_{2} a_{4} \neq 0$; and for $n \in \mathbb{N}$, take $p(n)=q(\cos n)$. If $a_{3} a_{4} \leqslant 0$ then $L_{p}=[m, M]$ where m and M are, respectively, the minimum and
maximum of the set

$$
\left\{q(1), q(-1), q\left(\pm \sqrt{-\frac{a_{3}}{a_{4}}}\right), q\left(-\frac{a_{1}}{a_{2}}\right)\right\}
$$

and if $a_{3} a_{4}>0$ then we use the set $\left\{q(1), q(-1), q\left(-\frac{a_{1}}{a_{2}}\right)\right\}$.

Proof. If $\frac{d}{d x}(q(\cos x))=0$ then $\sin x=0$ or

$$
\begin{aligned}
\left(a_{4} \cos ^{2} x+a_{3}\right)\left(a_{2} \cos x+a_{1}\right)= & a_{1} a_{3}+a_{2} a_{3} \cos x \\
& +a_{1} a_{4} \cos ^{2} x+a_{2} a_{4} \cos ^{3} x=0
\end{aligned}
$$

Consequently, if the inequality $a_{3} a_{4} \leqslant 0$ holds, we get $\sin x=0$ or $\cos x= \pm \sqrt{-a_{3} / a_{4}}$ or $\cos x=-a_{1} / a_{2}$. Also, whenever $a_{3} a_{4}>0$ we get $\sin x=0$ or $\cos x=-a_{1} / a_{2}$. In each case, the result holds from Theorem 2.

Remark 1. An immediate consequence of Theorem 2, is that the set of limit points of the sequence $\{\cos n\}_{n=1}^{\infty}$ is $[-1,1]$. This fact has been proved before, using more complicated techniques. For instance, one can see [1, Problem 3.15, p.14].

Remark 2. In Theorems 3, 4 and 5, substituting $\cos n$ by $\sin n$, one can show that the same results hold for the sequence $\{\sin n\}_{-\infty}^{+\infty}$.

References

[1] D. Aliprantis and O. Burkinshaw, Problems in Real Analysis, Academic Press, Inc. 1990.
[2] M. D. $A \backslash V s i \backslash^{\prime} c$, and D.D. Admaovi $\backslash^{\prime} C$, Limit points of sequences in metric spaces, Amer. Math. Monthly 77 (1970), 613-616.
[3] H. G. Barone, Limit points of sequences and their transforms by methods of summability, Duke Math. J. 5, (1939), 740-752.
[4] P. Hellekalek and G. Larcher, On Weyl sums and skew product over irrational rotations, Theoretical Computer science, Vol. 65, Issue 2, (1989), 189-196.

Masoumeh Faghih Ahmadi

Islamic Azad University - Sepidan Branch
Sepidan, Iran
E-mail: faghiha@shirazu.ac.ir
E-mail: m_faghih_a@yahoo.com

Karim Hedayatian

Department of Mathematics
College of Sciences
Shiraz University
Shiraz 71454, Iran
E-mail: hedayatian@susc.ac.ir

[^0]: ${ }^{1}$ Research of the first author is supported by a grant from Islamic Azad University

