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Abstract. This paper was aimed at studying some novel methods of
constructing new c-K-g-frames in a Hilbert space H. Some necessary
and sufficient conditions were given for some bounded operators on H
under which new c-K-g-frames were obtained from the existing ones.
Also, the sum of ¢-K-g-frames were discussed, some of their characteri-
zations were identified, and some bounded operators offered to construct
new c-K-g-frames from the old ones.
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1 Introduction

A frame for a Hilbert space H is a sequence of elements in H which
provides a linear combination for each element in H, but the elements
are not necessarily linear independent. Indeed, a frame can be thought
of as a basis to which one has added more elements.
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K-frames in Hilbert spaces were introduced by Gavruta to investigate
atomic decomposition systems, stating some properties of them [5, 11,

|. After that, K-g-frames have been introduced in [13] and some new
results and characterizations of K-g-frames have been studied in [10, 11,

]. Furthermore, the notion of continuous K-g-frames is presented in
[3] and some properties of them have been studied in [1, 15].
Throughout this paper, (€2, 1) is a measure space with positive measure
w, H, Hi, Hy and H, are separable Hilbert spaces and B(H, H,) is
the set of all bounded linear operators from H into H,, w € . Also,
B(H) is the set of all bounded linear operators on H. We will use the
symbols R(U) and N(U) for the range and null space of an operator
U € B(Hi, H3), respectively.

Definition 1.1. ([3]) The operator U € B(H) is called a bounded below
operator if there exists a positive number « such that

all f[l < [T, feH.

A bounded operator U : H — H is called self-adjoint if U = U*.
For a self-adjoint operator U, the inner product (Uf, f) is real for each
f € H ([6]). Also, the partial order U < V for the self-adjoint operators
U and V is defined by

U<sVe{USL <V, feH
Lemma 1.2. ([6]) Let U € B(Hy, Hs). Then the following holds:
1. R(U) is closed in Hy if and only if R(U*) is closed in Hj.
2. (UM = (UM~
3. The orthogonal projection of Hy onto R(U) is given by UUT.
4. The orthogonal projection of Hy onto R(UY) is given by UTU.
5. N(UT) = RY(U) and R(UT) = N+(U).

6. U is surjective if and only if there exists a constant § > 0
such that |[U*f|| > || fll, Vf € Hi.
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Lemma 1.3. ([7]) Let L1 € B(Hy,H) and Ly € B(Hy,H). Then the
following assertions are equivalent:

(1) R(L1) € R(L2).
(ii) L1L7 < ALaL% for some A > 0.
(iii) There exists an operator U € B(Hy, Ha) such that Ly = LaU.

Moreover, if (i), (i1) and (ii1) are valid, then there exists a unique op-
erator U such that

1 ||U|? =inf{p: LL; < pLoL3},
2. N(Ly) = N(U),

3. R(U) C R(La)*.

Definition 1.4. ([1]) Let ¢ € Il,eqH,. We call that ¢ is strongly
measurable if ¢ as a mapping of  to ®,eqH,, is measurable, where

MyeHy = {f 1 — UyeaHy ; f(w) € Hw}-
Definition 1.5. Choose the set

(@weg Hw,u)L2 = {F € l,eqHy| F is strongly measurable,
| IF@Pau) < o<,

with inner product given by
(F.G) = [ (P(). Glw)dn(w).

It can be proved that <@weg H,, u) L is a Hilbert space ([1]). We will

show the norm of F' € <@weg Hw,,u>L2 by ||F||2-

Now, the definition of continuous g-frames is reviewed.

Definition 1.6. The family of operators A = {A,, € B(H, H,,) : w € Q}
is called a continuous generalized frame, or simply a cg-frame, for H
with respect to {H, }ueq if:
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(i) for each f € H, {A, f}weq is strongly measurable,

(ii) there are two positive constants A and B such that
AllfII* < /Q 1A fI*du(w) < BIIfII?,  f € H. (1)

A and B are called the lower and upper cg-frame bounds, respectively.
If A, B can be chosen such that A = B, then A = {A,},eq is called a
tight cg-frame and if A = B = 1, it is called a Parseval cg-frame. A
family A = {A,}weq is called cg-Bessel family if the second inequality
in (1) holds.

Theorem 1.7. ([I]) Let A = {A,}weq be a cg-Bessel family for H with
respect to {H,},cq with bound B. Then the mapping T of (@WGQ
H,, ,u) L to H weakly defined by

TaF.g) = [((ALF(@)g)duw), F e (OueaHo) o g € H,
Q L

is linear and bounded with | Tp|| < vV B. Furthermore for each g € H
and w € (Q,

Ti(9)(w) = Awg-

The operator T} is called the synthesis operator of {A, }weq and its
adjoint 7§ is called the analysis operator of A = {Ay}ueq.

The continuous K-g-frames have been introduced in [3] as following:

Definition 1.8. Let K € B(H). A family A = {A, € B(H,H,): w €
Q} is called a continuous K-g-frame, or ¢-K-g-frame, for H with respect
to {HM}UJEQ if:

(i) {Awf}weq is strongly measurable for each f € H,

(ii) there exist constants 0 < A < B < oo such that

AlIE*fI? < /Q IAw fI? du(w) < BIIFIF, feH. — (2)
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The constants A, B are called lower and upper ¢-K-g-frame bounds,
respectively. If A = B, then A = {Ay },eq is called a tight ¢-K-g-frame
and if A = B = 1, it is called a Parseval c-K-g-frame. The family
A = {Au}weq is called a c-g-Bessel family if the right hand inequality in
(2) holds. In this case, B is called the Bessel constant.

Now, assume that A = {A, },eq is a c-K-g-frame for H with respect
to {Hy }wen with frame bounds A, B. The ¢-K-g-frame operator Sy :
H — H is weakly defined by

<SAfa g> = /Q(fa AZAwg> d,LL((.L))7 f,g € H.

Therefore
AKK* < Sy < BI.

Lemma 1.9. ([3]) Let A = {Ay}weq be a cg-Bessel family for H with
respect to {H,}weq. Then A = {A,}ueq is a c-K-g-frame for H with
respect to { Hy, }weq if and only if there exists a constant A > 0 such that
Sy > AKK*, where Sy is the frame operator of A = {A, }weq-

Duals of ¢-K-g-frames have been indicated in [1] as following:

Definition 1.10. Let A = {A, },eq be a ¢-K-g-frame for H with respect
to {Hy}weq. A cg-Bessel family I' = {I',, },ecq for H is called a dual
c-K-g-Bessel family of A if for each f,h € H,

(K f.h) = /Q (AT f, ) dp(w).

2 Constructing new c-K-g-frames

In this section, we construct new c- K-g-frames by using of linear bounded
operators.

The following theorem, for a given c-K-g-frame A = {Ay}weq of
H, provides a new c¢-K-g-frame for H by applying a linear bounded
operator.

Theorem 2.1. Let K € B(H), A = {Ay,}weq is a c-K-g-frame for H
with respect to {Hy,}weq, with bounds A and B and U € B(H) be a

5
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closed range operator such that UK = KU. If R(K*) N N(U*) = {0},
Then {A,U*}yeq is a c-K-g-frame for H with respect to {H,}weq with
the lower bound A||UT||=2 and the upper bound B|U||?.

Proof. It is easy to check that {A,U*}ueq is a cg-Bessel family with
upper bound B||U||?. Since UK = KU, we have K*U* = U*K*. U has
closed range and R(K*)NN(U*) = {0}, by Lemma 1.2, for each f € H,

we have

1K fI? = |UUT K £ = |(UT) U K™ £|* = (U)K U* £||?
< [lUhPPIEU* £

Then for each f € H, we have
/Q IALU* fI12d p(w) > A|K*U*f||* > AU 2| K £

This proves the theorem. O

Corollary 2.2. Suppose that K € B(H) is with dense range, U € B(H)
has closed range and UK = KU. If {A,U}weq and {A,U*},ecq are both
c-K-g-frames for H with respect to {Hy}weq, then A = {Ay}weq is a
c-K-g-frame for H with respect to {Hy, },eq-

Proof. Since R(K) = H, so N(K*)* = H and N(K*) = {0}. For each
f € H, we have

ALK FIP < [ 1A fIPdute),
so N(U*) C N(K*), which implies
H = N(K*)* C N({U"* = R(U).
So U is surjective. Also, For each f € H, we have
AU AP < [ 10U fIPdute),

so N(U) € N(K*) = {0}. That is, U is one to one. Therefore U is
invertible. Since UK = KU, U 'K = KU™', R(K*)NN((U~1)*) = {0},
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and {A, }wea = {(ALU*)(U1)*}ueq, so by Theorem 2.1, {A, }oeq is a
c-K-g-frame for H with respect to {Hy }weq. O

For a given tight c-K-g-frame A = {A,},ecq of H, we can obtain
another c- K-g-frame for H. The following theorem presents us necessary
and sufficient conditions on {A,U*},ecq to be a c-K-g-frame for H.

Theorem 2.3. Let K,U € B(H) and A = {Ay}weq be a D-tight c-K -
g-frame for H with respect to {Hy,}weq. If K* is bounded below and
UK = KU, then {A,U*}uecq is a c-K-g-frame for H with respect to
{Hy}weq if and only if U is surjective.

Proof. If U is surjective, then Theorem 2.1 implies the first part of
proof. For the other implication, we prove that U is surjective. Assume
that {A,U*}weq is a c-K-g-frame for H with respect to {H,, },ecq with
bounds A and B. Then, for all f € H, we have:

AIK*fI? < /Q 10U fIPd p(w) < BIIFII. (3)

Also for each g € H, we have

DIE“al = [ I8l ).

By U*K* = K*U*, we obtain

D||U*K*f||* = DIIE*U* f||? Z/Q\lAwU*fIQdM(W)a fed (4
So by (3) and (4), we have

UK A1 = D7 [ 1A AP ) = DA S, f e He (9
Sine K* is bounded below, so there exist o > 0 such that [[K*f| >
al|f||, for each f € H. Thus, from (2.3), we conclude that for each

feH,
IUTK"f]| = e[ f]].

Therefore U* K* is bounded below, thus by Lemma 1.2, KU is surjective
and KU = UK implies that U is surjective. O

7
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Suppose that operators T, U € B(H) and T™ preserves a c-K-g-frame
for R(T'). In the following theorem, we state some conditions on K, U
and T such that U* can also preserve the same c¢-K-g-frame for R(U).

Theorem 2.4. Let A = {A,}weq be a c-K-g-frame for H with respect
to {Hy}weq. Suppose that T,U € B(H) are closed ranged, and N(T') =
N(U) with KUT' = UT'K and R(K*) N N(U*) = {0}. If {A,T*}uecq
is a c-K-g-frame for R(T) with respect to {H, }wecq, then {A,U*},eq
is a c-K-g-frame for R(U) with respect to {H, }u,cq-

Proof. We only need to show that {A,U*},cq has the lower frame
condition. We define
L:R(T) — R(U),

by Lf = UT', € R(T). By the assumptions, KL = LK.
Since N(T') = N(U), we have R(T") = R(UT). Hence by Lemma (1.2),
N(L) = N(UT") = N(TT") = (R(T))*, which implies

N(L) = NUT") N R(T) = (R(T))* N R(T) = {0}.

So, L is invertible on R(T). By Lemma 1.2, TTT = Prerty = Pruty =
UTU. Therefore

LT =UT'T=U0U'U=U (6)

Now, let C, D be the frame bounds of {A,T™*},cq, then for each f €
R(U), from (6), we have

/ IALU* FId () / AT L* F2d plw) > C||K*L* |
= C|L K fI? = CIL 2K
Furthermore for each f € R(U),
/ AU £Id () / AT L* fIPd p(w) < BI|L*f| = BILI?| £

So {ALU*},eq is a ¢-K-g-frame for R(U). O
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Theorem 2.5. Let K € B(H) and A = {A, }weq be a c-g-Bessel family
for H with respect to { Hy, },eq- Suppose that Ty is the synthesis operator
of A. Then, the following conditions are equivalent:

(i) R(K) = R(Th).

(i) There exist two constants C, D > 0, such that for each f € H,
CIIE* fII* < /Q [Aw f11?d p(w) < DIIK*f[. (7)

(1ii) A = {Au}weq is a c-K-g-frame for H with respect to {H,}wen
and there exists a c-g-Bessel family {T',, },ecq for H with respect to
{H,}weq such that A, = T, K* for each w € (.

Proof. (i) = (ii) By Lemma 1.3, there exist C, D > 0, such that
CKK* <T\T{ < DKK*. Thus, for each f € H,

CIK*fII? < ITXfII* = /Q 1A £IIPd p(w) < DK™ £

(13) = (i4t) It suffices to show the second part of the result. The right-
hand inequity in (7) is equivalent to TATy < DKK*. By Lemma 1.3,

there exists an operator () € B((@MGQHM, ,u)Lz,H) such that Th = KQ
and T = Q*K*. We define for each g € H and for almost all w € €2,

Fug = (Q79)(w).

Therefore we have

{Au(9)}wea = {(Q"(K"g)(w) }wea = {Tw(K"g) buen,
which implies that A, = ', K* for almost all w € €. So for each g € H,

/QHnglleM(M = /Q 1(Q* )W) [*d u(w) = (Q*9)I3 < Q13N>
Hence, {T', }uecq is a c-g-Bessel family for H.
(131) = (i) For each f € H, we have

CAIE*fI” < /Q 1A f12d pew = /Q ITW K" F12d ju(w) < Dell K" 7.

9
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Thus, CAKK* < T\Tx < DrKK*, by Lemma (1.3), R(K) = R(Th).
O

The following theorem is applied to construct c-K-g-frames by given
some linear bounded operators and some ¢-K-g-frames.

Theorem 2.6. Suppose that K1, Ko € B(H) and A = {Ay}weq is a
c-K1-g-frame for H with respect to {Hy}ueq-

(i) If A = {Ay,}weq is also a c-Ko-g-frame for H with respect to
{Hu,}weq, then it is a c-(K1 + Ks)-g-frame for H with respect
to {Hw}weﬂ-

(i) If, in addition, A = {Ay}ueq is A-tight c-Ki-g-frame, then it
is a c-Ko-g-frame for H with respect to {H,}weq if and only if
R(K3) C R(Ky).

Proof. (i) Since A = {A, }weq is a ¢-K1-g-frame and also ¢-K»-g-frame
for H with respect to {Hy, },eq, so for each f € H, we have

ARSI < [ I8 1Pdnte) )
and

AP < [ I8 IPdn(e) ©
By (8) and (9), we have

QR+ SR < [ IAufPant) (0
Now, by taking A = mz’n{%, %} in (10) , we obtain
(B + Ko) fI* < (A KT FIIP + A2 K5 f(1?) < 2/Q 1A fIPd p(w),

that is A = {Au}weq is a (K1 + Ka)-g-frame for H with respect to
{Hu}weq. (ii) By the assumptions, A = {Ay}ueq is A-tight ¢-K;-g-

frame and ¢- Ko-g-frame, there exists a D > 0, such that for each f € H,
we have

AT fII? = /Q 1A £IIPd p(w) > DI K3 £
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A
Hence, Ky Kj < BKlKi‘ and by Lemma 1.3, R(K3) C R(K}).
For the opposite implication, by Lemma 1.3, there exists v > 0, such
that Ko K5 < vK;1K7. Hence for each f € H, we have

* * ’y
K32 KGR = [ 18af Pdn(e),
therefore
A * *
SUGTIE < [ IAufPd i) = ALK < ALK,

So A = {A,}weq is a c-Ka-g-frame for H with respect to {Hy, }weq. O

3 Sum of c-K-g-frames

In this section, we suppose that A and I' are arbitrary ¢-K-g-frames and
we study the sum of these frames.

Theorem 3.1. Suppose that K1, Ko € B(H) are closed range operators,
A ={Au}weq and T = {T', }ueq are c-K1-g-frame and c-g-Bessel family
for H with respect to {H, },eq, respectively.

(i) If K1 >0 and I’ = {T }ueq is a c-Ki-g-dual for A = {Ay}weq,
then the family {A,+T, Yweq is a c-Ky-g-frame for H with respect
to {Hw}weQ-

(ii) If I' = {Ty}weq is c-Ko-g-frame for H with respect to {H, }uen
and TATE = 0, then {Ay, + Tytweq is a c- (K1 + Ka)-g-frame for
H with respect to {Hy,}uecq-

Proof. (i) Since I' = {T'y, }weq is a ¢-Kj-g-dual of {A,},eq, for each
f € H, we have

(K7 f.h) = (f, Koy = (o, ) = /Q (ALTuh, ) du(w)
= [ (C2ALLR) dute),
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We denote by Spir, the c-g-frame operator of {A, + 'y, }weq. So for
each f,h € H,

(Sa4rf, h) / [, (Aw +T0) (Aw +Tw)h) du(w)

(

((Aw 4+ Tw) (A +Tw) f, h) du(w)

(A A, ) duw) + / (T5T f. b dps(w)
Q

(AT ) ) + [ (CEAGLH) die)
= <SAf7 h) + <S[‘f, h> =+ <K1f> h> =+ <Kffa h>a

therefore

(Snarf, f) = /Q |(Aw + To) FI2 dia(w) = (Saf. f)
- /Q IAuf I duw) = Ca K12

This shows that {A,, + I'y }ueq has the lower frame condition.
Now, we show {A, 4+ 'y, }weq is a c-g-Bessel family. For each f € H, we
have

/ (A + T) £ dpa(w) < 2 / IAuf |2 dyu(w) + 2 / 1T £11? dplew)
Q Q Q
< 9By || |12 + 2Bal fI? = 2By + Ba)| >

(ii) We only need to show that {A, +1I',, }weq has the lower frame condi-
tion. Since TA\T} = 0, for each f € H, we have [, <A2wa, f)du(w) =0
and

/ |(Aw + T) £112 dpa(e) / 1A fI1? duw) / 1D £ dpu(w)
> ALK + As| K3 AP 2 M (KL + Ka) 112,

where A = min{A;, As}. This is the desired conclusion. O
The following theorem is the continuous version of Theorem 2.1 in

[10].
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Theorem 3.2. Suppose that K1 € B(H;), Ky € B(Hz) and A =
{Au}weq is a c-Ki-g-frame and T' = {T'y}weq is a c-g-Bessel family
for Hy. Assume that Uy, Uy € B(Hy, Ha) and UyTA\THUS + U ITTXUT +
UaSrUs > 0. If Uy has closed range with U1 K1 = KUy and R(K3) N
N(UY) = {0}, then {A,UT +TuUs Yweq is a c-Ka-g-frame for Hy with
respect to {H, }ucq-

Proof. Let A = {Ay,}weq, I' = {Tw}wea be a ¢-Ki-g-frame and c-g-
Bessel family for H; with bounds Ay, B; and Bs, respectively. Similar
analysis to the proof of Theorem 3.1, we show that {A,U; +T',Us bwen
is c-g-Bessel family for Ho with bound 2B;||Uy||? + 2B3||Uz||?. Now, for
each g € Hy, we have

LU0t + TP dute) = [ ATl dife) + (WTRTiU 9.0)
+ (W TATYUs g, ) + (U2TrT1 U3 g, 9)
= [ 1Azl dute) + (AT TU;
+ UIrTRUY + UsStUy)g, g)

By the assumptions, for each g € H we obtain

/HAm+r%wwu L/mmmwm>mw&mm2
= AUIKSgl? = AuUTI2 1K gl

Therefore, for each g € Hy, we have

ANV < [ 1AWV +TuU3)gl due)
< @Bt |12 + 2B Ua]?) )
O

Corollary 3.3. Suppose that K1 € B(Hi), Ko € B(Hz) and A =
{Au}weq is a c-Ky-g-frame for Hy with respect to {Hy}weq. If U €
B(Hi, H2) has closed range, UK, = KU and R(K3) N N(U*) = {0},
then {A,U*}pweq is a c-Ko-g-frame for Hy with respect to {Hy}oecq-



14

E. ALIZADEH AND M. RAHMANI

Corollary 3.4. Let K,U € B(H). Suppose that A = {Ay}weq is a
c-K-g-frame for H with respect to {H,}weq. If U is positive operator
such that , USy = SAU, then {Ay + AuU tweq is a c-K-g-frame for H
with respect to {Hy }weq.

Proof. Since TATXU* + UTA\TY + UT\TYU* = S\U + USp + US\U",
by Theorem 3.2, we need only to show that S\U + USy + US\U* > 0.
By Theorem 4.33 in [3], there exists a unique positive operator V' such
that U = V2. In addition, since USxy = SpU, implies that V.Sy = SaV.
For each f € H, we have
(SAU + USA + USAU™) f, f) = (SAUf, f) + (USAf, f) + (USAU" . f)

=2(USAS, [) + (UT\TRU™f, f)

= AV2Saf, f) + | TXU* fII?

= 2VSAV S, ) + ITRU* f|”

= 2| TRV fII? + ITRU* f||* > 0.

O

Theorem 3.5. Let K1 € B(Hy) be closed range, A = {Ay}weq and T =
{Tw}weq be c-K1-g-frames for Hy with respect to {Hy, }weq- Suppose that
Ky € B(HQ), Ui,U; € B(Hl,H2> and UlTATlfUék + UQTFTXUl* >0. If
one the following conditions holds, then for each aq, s > 0, {a1 A, Uy +
aol' U5 b weq s a c-Ka-g-frame for Hy with respect to {Hy }weq.

(i) P = oqU; + aslUs, R(P*) C R(K1), R(Ks) C R(P).
(ii) Q = 041U1 — OéQUQ, R(Q*) Q R(Kl), R(Kg) g R(Q)

Proof. Let Ay, B; and As, Bs be frame bounds of A and I', respectively.
Similar to proof of Theorem 3.2, oy, s > 0, {a1ALUT + a2l wUs b ueq
is a c-g-Bessel family for Hy with respect to {H,},eq, with bound
201 B1||U1 |2 + 2a2Bs||Us|? and for each g € H, we have

/Q l(@1 AU + asTWUg)gll? duw) = o3 /Q AU g dpu(w)
+ 2a1a2<(U2Tij{Uf + UlTATfo;)g
) +al /Q T U3 gl du(w)

> of Ar|| K7UTg|)? + o3 A2 K1 U3 g|*.
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Without loss of generality, suppose that condition (ii) holds. Set
A =min{A, As},
by the parallelogram law, for each g € Hs, we have
A KU g|* + a3 A2 | K1 Us g||* > A(|an K{UY g + [lae K{U3 %)
= 2 (It (@U: + asta) gl
+ | Ki (U = asl) ")
> 2IKiQ P = SIKI Q"

Since R(K2) C R(Q), so by the Lemma 1.3, there exists o > 0 such that
KyKj; < aQQ*. Tt follows that for each g € Ha, o 1| K3g|* < [|Q*gl*.
Therefore, for each g € Hy, we have

A L ) )
So UG 0l < [ AUt + a5 gl dife)

< (207 B1||U1|1? + 205 B || U2 ||*) [lg]1*.
|
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