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Abstract. In this paper, we use an algebraic method to obtain ana-
lytical solutions for conformable time fractional differential equations.
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1 Introduction

In recent decades, fractional differential equations(FDEs) have been
used widely to model physical phenomena, especially uncommon phe-
nomena and complex natural processes that can not be efficiently de-
scribed by classical calculus[14, 17]. These equations have applica-
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tions in various fields, such as mathematical biology, fluid mechan-
ics, nonlinear optics, image processing, plasma physics and so on. We
need to find solutions for these equations in order research and de-
scribe these phenomena. Many researchers have developed and imple-
mented numerical and analytical techniques to solve these equations in
recent years. Some of these techniques are such as, finite difference
method[3], first integral method[4], Adomian decomposition method[5],
exp-expansion method[6], variational iteration method[7, 8], Lie group
method[9], G′

G2−expansion method[10], Fan-sub equation method[11],
simplest equation method[12, 20], differential transform method[16] and
so on. In this paper, we study the fractional diffusive predator-prey
model(PPM) in the following form[2]:{

Dα
t r − rxx + βr − (1 + β)r2 + r3 + rs = 0,

Dα
t s− sxx + βs+ δs3 + krs = 0.

Where r = r(x, t) and s = s(x, t) are the predator–prey functions. The
parameters β, δ, k are positive constants and 0 < α < 1. Also, Dα

t is the
time-fractional derivative, as described in section 2. Many researchers
have been utilized some techniques to study the diffusive predator–prey
model for α = 1 in some works, such as the first-integral method [18],
exp(−ϕ(ξ))-expansion method [1], modified simple equation method[21]
and G′

G -expansion method[15] and so on. Our aim in this paper is to find
analytical solutions for the fractional PPM using an algebraic method,
as described in section 3.
The rest of our work is organized as follows. In section 2, we present def-
inition of the conformable derivative with its properties. Description of
method and its applications to the time fractional differential equations
are described in section 3. Then the mentioned method is applied to the
fractional PPM in section 4. Discussion and conclusions are presented
in section 5.

2 Definition of the Conformable Derivative with
its Properties

Now, let us describe the definition and some its important properties of
the conformable fractional derivative(CFD) of order γ as follows[13].
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Definition 2.1. For a function h : [0,∞] → R, the CFD of h of order
γ is defined by

Dγ{h(ζ)} = lim
η→0

h(ζ + ηζ1−γ)− h(ζ)

η
.

Some well-known properties to this newly defined fractional deriva-
tive are as follows.
If g and h 6= 0 be two functions γ-differentiable, γ ∈ (0, 1] and a, b ∈ R.
Then, we have

(1) Dγ{ag(ζ) + b h(ζ)} = aDγg(ζ) + bDγh(ζ),

(2) Dγ{g(ζ)h(ζ)} = g(ζ)Dγh(ζ) + h(ζ)Dγg(ζ),

(3) Dγ{g(ζ)

h(ζ)
} =

h(ζ)Dγg(ζ)− g(ζ) Dγh(ζ)

h2(ζ)
,

(4) DγC = 0, for all constant functions f(z) = C,

(5) Dγ(g)(ζ) = ζ1−γ
dg

dζ
.

For some special functions, we have[13]

(a) Dγ(ζr) = rζr−γ for all r ∈ R,
(b) Dγ(1) = 0,

(c) Dγ(ecζ) = cζ1−γecζ , c ∈ R,
(d) Dγ(sin bζ) = bζ1−γ cos bζ, b ∈ R,
(e) Dγ(cos bζ) = −bζ1−γ sin bζ, b ∈ R,

(f) Dγ(
1

γ
ζγ) = 1.

Definition 2.2. Let γ ∈ (n, n+1], and h be an γ-differentiable at t > 0.
Then the CFD of h of order γ is defined as

Dγ(h(t)) = lim
η→0

h(dγe−1)(t+ ηt(dγe−γ))− h(dγe−1)(t)
η

.

Where dγe is the smallest integer greater than or equal to γ.
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3 Description of Method and its Applications
to the Time FDEs

In this section, we outline the main steps of this method for solving
FDEs. For a given FDE in two variables x and t we have

Q (u, ux, ut, D
α
t u, . . .) = 0, 0 < α < 1, (1)

where Dα
t u is the CFD of u, u = u(x, t) is an unknown function and

Q is a polynomial in u and its various partial derivatives, in which the
highest order derivatives and nonlinear terms are involved.
We take the travelling wave transformation

η = x− λt
α

α
, (2)

where λ is a nonzero constant to be determined later. Substituting (2)
into (1), we reduce (1) to the following ODE

Ñ(U,U ′, U ′′, U ′′′, ...) = 0. (3)

Here U (n) = dnU
dηn . Exact solutions for this equation can be constructed

as a finite series

U(η) =
n∑

m=0

Amψ
m, (4)

where Am (An 6= 0) are constants to be determined later, and the pos-
itive integer n can be determined by considering the homogeneous bal-
ance between the highest nonlinear terms and the highest order deriva-
tives of u(η) in equation (3). Here ψ = ψ(η) satisfies the following ODE

ψ′(η) = ln(σ)(a+ bψ(η) + cψ2(η)), σ 6= 0, 1, (5)

where a, b and c are constants and which has the following special solu-
tions with ∆ = b2 − 4ac [19].
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Case(1). For ∆ < 0 and c 6= 0,

ψ1(η) = − b

2c
+

√
−∆

2c
tanσ(

√
−∆

2
η),

ψ2(η) = − b

2c
−
√
−∆

2c
cotσ(

√
−∆

2
η),

ψ3(η) = − b

2c
+

√
−∆

2c
[tanσ(

√
−∆ η)±

√
mn secσ(

√
−∆ η)]; mn ≥ 0,

ψ4(η) = − b

2c
+

√
−∆

2c
[cotσ(

√
−∆ η)±

√
mn cscσ(

√
−∆ η)]; mn ≥ 0,

ψ5(η) = − b

2c
+

√
−∆

4c
[tanσ(

√
−∆

4
η)− cotσ(

√
−∆

4
η)].

Case(2). For ∆ > 0 and c 6= 0,

ψ6(η) = − b

2c
−
√

∆

2c
tanhσ(

√
∆

2
η),

ψ7(η) = − b

2c
−
√

∆

2c
cothσ(

√
∆

2
η),

ψ8(η) = − b

2c
+

√
∆

2c
[− tanhσ(

√
∆ η)±

√
−mn sechσ(

√
∆ η)]; mn ≤ 0,

ψ9(η) = − b

2c
+

√
∆

2c
[− cothσ(

√
∆ η)±

√
mn cschσ(

√
∆ η)]; mn ≥ 0,

ψ10(η) = − b

2c
−
√

∆

4c
[tanhσ(

√
∆

4
η) + cothσ(

√
∆

4
η)].
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Case(3). For ac > 0 and b = 0,

ψ11(η) =

√
a

c
tanσ(

√
ac η),

ψ12(η) = −
√
a

c
cotσ(

√
ac η),

ψ13(η) =

√
a

c
[tanσ(2

√
ac η)±

√
mn secσ(2

√
ac η)]; mn ≥ 0,

ψ14(η) =

√
a

c
[− cotσ(2

√
ac η)±

√
mn cscσ(2

√
ac η)]; mn ≥ 0,

ψ15(η) =
1

2

√
a

c
[tanσ(

√
ac

2
η)− cotσ(

√
ac

2
η)].

Case(4). For ac < 0 and b = 0,

ψ16(η) = −
√
−a
c

tanhσ(
√
−ac η),

ψ17(η) = −
√
−a
c

cothσ(
√
−ac η),

ψ18(η) =

√
−a
c

[− tanhσ(2
√
−ac η)±

√
mnsechσ(2

√
−ac η)]; mn ≤ 0,

ψ19(η) =

√
−a
c

[− cothσ(2
√
−ac η)±

√
mncschσ(2

√
−ac η)]; mn ≥ 0,

ψ20(η) = −1

2

√
−a
c

[tanhσ(

√
−ac
2

η) + cothσ(

√
−ac
2

η)].

Case(5). For a = c and b = 0,

ψ21(η) = tanσ(aη),

ψ22(η) = − cotσ(aη),

ψ23(η) = tanσ(2aη)±
√
mn secσ(2aη); mn ≥ 0,

ψ24(η) = − cotσ(2aη)±
√
mn cscσ(2aη); mn ≥ 0,

ψ25(η) =
1

2
[tanσ(

a

2
η)− cotσ(

a

2
η)].
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Case(6). For a = −c and b = 0,

ψ26(η) = − tanhσ(aη),

ψ27(η) = − cothσ(aη),

ψ28(η) = − tanhσ(2aη)±
√
−mnsechσ(2aη); mn ≤ 0,

ψ29(η) = − cothσ(2aη)±
√
mncschσ(2aη); mn ≥ 0,

ψ30(η) = −1

2
[tanhσ(

a

2
η) + cothσ(

a

2
η)].

Case(7). For b2 = 4ac,

ψ31(η) =
−2a(b ln(σ)η + 2)

b2η lnσ
.

Case(8). For b = p, a = pq, (q 6= 0) and c = 0.

ψ32(η) = σpη − q.

Case(9). For b = c = 0.

ψ33(η) = a ln(σ)η.

Case(10). For a = b = 0.

ψ34(η) = − 1

c ln(σ)η
.

Case(11). For a = 0 and b 6= 0.

ψ35(η) = − mb

c(coshσ(bη)− sinhσ(bη) +m)
,

ψ36(η) = − b(coshσ(bη) + sinhσ(bη)

c(coshσ(bη) + sinhσ(bη) + n)
.

Case(12). For b = p, c = pq, (q 6= 0) and a = 0.

ψ37(η) = − mσpη

m− qnσpη
.

We know that
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sinhσ(η) =
mση − nσ−η

2
, coshσ(η) =

mση + nσ−η

2
,

tanhσ(η) =
mση − nσ−η

mση + nσ−η
, cothσ(η) =

mση + nσ−η

mση − nσ−η
,

sechσ(η) =
2

mση + nσ−η
, cschσ(η) =

2

mση − nσ−η
,

sinσ(η) =
mσiη − nσ−iη

2i
, cosσ(η) =

mσiη + nσ−iη

2
,

tanσ(η) = −imσ
iη − nσ−iη

mσiη + nσ−iη
, cotσ(η) = i

mσiη + nσ−iη

mσiη − nσ−iη
,

secσ(η) =
2

mσiη + nσ−iη
, cscσ(η) =

2i

mσiη − nσ−iη
.

Here m and n are arbitrary constants and known as deformation param-
eters.
Now, this method for obtaining exact solutions of FDEs consists from
the following two main steps:

� Step (1). By substituting (4) with Eq.(5) into (3) and collecting
all terms with the same powers of ψ together, the left hand side of
Eq.(3) is converted into a polynomial. After setting each coefficient
of this polynomial to zero, we obtain a set of algebraic equations
in terms of Am (m = 0, 1, 2, ..., n), a, b, c.

� Step (2). Solving the system of algebraic equations and then sub-
stituting the case(1)-case(12) into (4), it gives travelling wave so-
lutions of (3).

4 Application

In this section, we consider the time fractional predator-prey model as
follows[2]

Dα
t r − rxx + βr − (1 + β)r2 + r3 + rs = 0, (6)

Dα
t s− sxx + βs+ δs3 + krs = 0. (7)
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Where r and s are functions of space variable x and time variable t and
0 < α < 1.
For obtaining exact solutions of (6) and (7), We take the traveling wave
transformation

r(x, t) = r(η), s(x, t) = s(η),

η = x− λ

α
tα,

where λ is a constant which should to be determined later. Then equa-
tions (6) and (7) are reduced into two nonlinear ODEs

λr′ + r′′ − βr + (1 + β)r2 − r3 − rs = 0, (8)

λs′ + s′′ − βs− δs3 + krs = 0. (9)

For solving this system, we consider the following transformation

r =
√
δs, (10)

substituting (10) into equations (8) and (9), we obtain

r′′ + λr′ − βr + kr2 − r3 = 0, (11)

Balancing r′′ with r3 in (11) gives n=1, therefore, according to (4),
solution of (11) can be expressed by a polynomial in ψ as follows:

U(η) = A0 +A1 ψ, A1 6= 0, (12)

where ψ is the solution of equation (5). Substituting (12) into (11)
and making use of equation (5) and equating each coefficient of this
polynomial to zero, we obtain a set of nonlinear algebraic equations for
A0, A1, a, b, c. Solving obtained system using Mathematica, we obtain

•Set 1 : A0 =
k

3
, A1 =

4k(b2 − ac) ln2(σ)− kβ
18ab ln2(σ)

, λ = −3b ln(σ),

k =

√
3(β + 2(b2 − ac) ln2(σ)), ab 6= 0. (13)

By using of the (12), (13) and case(1) respectively, we get
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r1(x, t) =
k

3
+

4k(b2 − ac) ln2(σ)− kβ
18ab ln2(σ)

(− b

2c
+

√
−∆

2c
tanσ(

√
−∆

2
(x− λtα

α
))),

r2(x, t) =
k

3
+

4k(b2 − ac) ln2(σ)− kβ
18ab ln2(σ)

(− b

2c
−
√
−∆

2c
cotσ(

√
−∆

2
(x− λtα

α
))),

r3(x, t) =
k

3
+

4k(b2 − ac) ln2(σ)− kβ
18ab ln2(σ)

[(− b

2c
+

√
−∆

2c
(tanσ(

√
−∆(x− λtα

α
)

±
√
mn secσ(

√
−∆(x− λtα

α
)))]; mn ≥ 0,

r4(x, t) =
k

3
+

4k(b2 − ac) ln2(σ)− kβ
18ab ln2(σ)

[(− b

2c
+

√
−∆

2c
(cotσ(

√
−∆(x− λtα

α
)

±
√
mn cscσ(

√
−∆(x− λtα

α
)))]; mn ≥ 0,

r5(x, t) =
k

3
+

4k(b2 − ac) ln2(σ)− kβ
18ab ln2(σ)

[− b

2c
+

√
−∆

4c
(tanσ(

√
−∆

4
(x− λtα

α
))

− cotσ(

√
−∆

4
(x− λtα

α
)))],

By using of the (12), (13) and case(2) respectively, we get

r6(x, t) =
k

3
+

4k(b2 − ac) ln2(σ)− kβ
18ab ln2(σ)

(− b

2c
−
√

∆

2c
tanhσ(

√
∆

2
(x− λtα

α
))),

r7(x, t) =
k

3
+

4k(b2 − ac) ln2(σ)− kβ
18ab ln2(σ)

(− b

2c
−
√

∆

2c
cothσ(

√
∆

2
(x− λtα

α
))),

r8(x, t) =
k

3
+

4k(b2 − ac) ln2(σ)− kβ
18ab ln2(σ)

[(− b

2c
+

√
∆

2c
(− tanhσ(

√
∆(x− λtα

α
)

±
√
−mnsechσ(

√
∆(x− λtα

α
)))]; mn ≤ 0,
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r9(x, t) =
k

3
+

4k(b2 − ac) ln2(σ)− kβ
18ab ln2(σ)

[(− b

2c
+

√
∆

2c
(− cothσ(

√
∆(x− λtα

α
)

±
√
mncschσ(

√
∆(x− λtα

α
)))]; mn ≥ 0,

r10(x, t) =
k

3
+

4k(b2 − ac) ln2(σ)− kβ
18ab ln2(σ)

[− b

2c
−
√

∆

4c
(tanhσ(

√
∆

4
(x− λtα

α
))

+ cothσ(

√
∆

4
(x− λtα

α
)))],

By using of the (12), (13) and case(8), we have

r11(x, t) =
k

3
+

4k(b2 − ac) ln2(σ)− kβ
18ab ln2(σ)

(σp(x−
λtα

α
) − q),

•Set 2 : A0 =
k

3
, A1 = ±

√
2 c ln(σ), λ = −3b ln(σ),

k = 3
√

2 b ln(σ), a = 0, bc 6= 0. (14)

By using of the (12), (14) and case(2) respectively, we get

r12(x, t) =
k

3
±
√

2 ln(σ)(− b
2
−
√

∆

2
tanhσ(

√
∆

2
(x− λtα

α
))),

r13(x, t) =
k

3
±
√

2 ln(σ)(− b
2
−
√

∆

2
cothσ(

√
∆

2
(x− λtα

α
))),

r14(x, t) =
k

3
±
√

2 ln(σ)[(− b
2

+

√
∆

2
(− tanhσ(

√
∆(x− λtα

α
)

±
√
−mnsechσ(

√
∆(x− λtα

α
)))]; mn ≤ 0,

r15(x, t) =
k

3
±
√

2 ln(σ)[(− b
2

+

√
∆

2
(− cothσ(

√
∆(x− λtα

α
)

±
√
mncschσ(

√
∆(x− λtα

α
)))]; mn ≥ 0,
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r16(x, t) =
k

3
±
√

2 ln(σ)[− b
2
−
√

∆

4
(tanhσ(

√
∆

4
(x− λtα

α
))

+ cothσ(

√
∆

4
(x− λtα

α
)))],

By using of the (12), (14) and case(11) respectively, we have

r17(x, t) =
k

3
± [

√
2mb ln(σ)

coshσ(b(x− λtα

α ))− sinhσ(b(x− λtα

α )) +m
],

r18(x, t) =
k

3
∓
√

2 ln(σ)[
b(sinhσ(b(x− λtα

α )) + coshσ(b(x− λtα

α )))

sinhσ(b(x− λtα

α )) + coshσ(b(x− λtα

α )) + n
],

By using of the (12), (14) and case(12), we have

r19(x, t) =
k

3
∓
√

2mc ln(σ)σp(x−
λtα

α
)

m− qnσp(x−
λtα

α
)

,

•Set 3 : A0 =
1

3
(k ±

√
k2 + 54ac ln2(σ)), A1 =

2
√
k2 + 54ac ln2(σ)

λ
,

λ = ±6

√
−ac ln2(σ), k = 6

√
2

√
−ac ln2(σ), b = 0, ac < 0.

(15)

By using of the (12), (15) and case(2) respectively, we have

r20(x, t) =
1

3
(k ±

√
k2 + 54ac ln2(σ)) +

√
k2 + 54ac ln2(σ)

λ

(−b
c
−
√

∆

c
tanhσ(

√
∆

2
(x− λtα

α
))),
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r21(x, t) =
1

3
(k ±

√
k2 + 54ac ln2(σ)) +

√
k2 + 54ac ln2(σ)

λ

(−b
c
−
√

∆

c
cothσ(

√
∆

2
(x− λtα

α
))),

r22(x, t) =
1

3
(k ±

√
k2 + 54ac ln2(σ)) +

√
k2 + 54ac ln2(σ)

λ
(−b
c

+

√
∆

c

(− tanhσ(
√

∆(x− λtα

α
))±
√
−mnsechσ(

√
∆(x− λtα

α
)))); mn ≤ 0,

r23(x, t) =
1

3
(k ±

√
k2 + 54ac ln2(σ)) +

√
k2 + 54ac ln2(σ)

λ
(−b
c

+

√
∆

c

(− cothσ(
√

∆(x− λtα

α
))±

√
mncschσ(

√
∆(x− λtα

α
)))); mn ≥ 0,

r24(x, t) =
1

3
(k ±

√
k2 + 54ac ln2(σ)) +

√
k2 + 54ac ln2(σ)

λ
[−b
c
−
√

∆

2c

(tanhσ(

√
∆

4
(x− λtα

α
)) + cothσ(

√
∆

4
(x− λtα

α
)))],

By using of the (12), (15) and case(4) respectively, we have

r25(x, t) =
1

3
(k ±

√
k2 + 54ac ln2(σ))−

2
√
k2 + 54ac ln2(σ)

λ

(

√
−a
c

tanhσ(
√
−ac (x− λtα

α
))),

r26(x, t) =
1

3
(k ±

√
k2 + 54ac ln2(σ))−

2
√
k2 + 54ac ln2(σ)

λ

(

√
−a
c

cothσ(
√
−ac (x− λtα

α
))),
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r27(x, t) =
1

3
(k ±

√
k2 + 54ac ln2(σ)) +

2
√
k2 + 54ac ln2(σ)

λ
(

√
−a
c

(− tanhσ(2
√
−ac (x− λtα

α
))±

√
mnsechσ(2

√
−ac (x− λtα

α
)))); mn ≤ 0,

r28(x, t) =
1

3
(k ±

√
k2 + 54ac ln2(σ)) +

2
√
k2 + 54ac ln2(σ)

λ
(

√
−a
c

(− cothσ(2
√
−ac (x− λtα

α
))±
√
mncschσ(2

√
−ac (x− λtα

α
)))); mn ≥ 0,

r29(x, t) =
1

3
(k ±

√
k2 + 54ac ln2(σ))−

√
k2 + 54ac ln2(σ)

λ
(

√
−a
c

(tanhσ(

√
−ac
2

(x− λtα

α
)) + cothσ(

√
−ac
2

(x− λtα

α
)))).

Using the relation which is depicted in (10), we have the following
solution of the predator-prey model

s =
1√
δ
r.

5 Concluding Remarks

In this paper, an extended algebraic method has successfully been ap-
plied to study a system of fractional differential equations, namely, the
predator-prey model. It has been shown that the applied method is
effective, and many other nonlinear evolution equations can be solved
by this method. Mathematica has been used for computations and pro-
gramming in this paper.
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