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1. Introduction

Suppose that 1 < p < ∞ and {β(n)}∞n=−∞ denotes a sequence of positive

numbers with β(0) = 1. For a sequence f = {f̂(n)}∞n=−∞, we define

||f || = ||f ||p = (
∞∑

n=−∞
|f̂(n)|p|β(n)|p) 1

p .

Furthermore, we shall use the notation f(z) =
∞∑

n=−∞
f̂(n)zn regardless

whether the series converges for any complex value of z. Throughout
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this article, by the space Lp(β) we mean

Lp(β) = {f : f(z) =
∞∑

n=−∞
f̂(n)zn, ||f ||p < ∞}

which is called a weighted Hardy space of formal Laurent series (note

that when n ranges on N ∪ {0}, it is called a weighted Hardy space

of formal power series and is denoted by Hp(β)). These are reflexive

Banach spaces with the norm ‖ · ‖β. Let f̂k(n) = δk(n). So fk(z) = zk

and then {fk}∞k=−∞ is a basis for Lp(β) such that ‖fk‖ = β(k). Now

consider Mz, the operator of multiplication by z on Lp(β):

(Mzf)(z) =
∞∑

n=−∞
f̂(n)zn+1

where

f(z) =
∞∑

n=−∞
f̂(n)zn ∈ Lp(β).

In other words (M̂zf)(n) = f̂(n− 1) for all n ∈Z. Clearly Mz shifts the

basis {fk}k. The operator Mz is bounded if and only if {β(k+1)/β(k)}k

is bounded and in this case

‖Mn
z ‖ = sup

k
[β(k + n)/β(k)]

for all n ∈ N ∪ {0}.
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By the same method used in [3] we can see that Lp(β)∗ = Lq(β
p
q ),

where 1
p + 1

q = 1. Also if

f(z) =
∞∑

n=−∞
f̂(n)zn ∈ Lp(β)

and

g(z) =
∞∑

n=−∞
ĝ(n)zn ∈ Lq(β

p
q ),

then clearly

< f, g >=
∞∑

n=−∞
f̂(n)ĝ(n)β(n)p

and

‖g‖q
q =

∞∑
n=−∞

|ĝ(n)|q(β(n)
p
q )q

=
∞∑

n=−∞
|ĝ(n)|qβ(n)p

(see [3]). Here for simplicity we used ‖g‖q instead of ‖g‖
Lq(β

p
q )

. For

some topics on these spaces see [2–16].

Let X be a Banach space. We denote by B(X), the set of bounded

operators on the Banach space X. Let A ∈ B(X) and x ∈ X. We say

that x is a cyclic vector of A if X is equal to the closed linear span of

the set

{Anx : n = 0, 1, 2, · · ·}.
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An operator A ∈ B(X) is called cyclic if it has a cyclic vector.

If X is a Banach space, it is convenient and helpful to introduce the

notation (x, x∗) to stand for x∗(x), for x ∈ X and x∗ ∈ X∗.

In [3] and [5] we studied the cyclicity of the multiplication opera-

tor Mz on Hp(β) and here we want to investigate the cyclicity of the

multiplication operator Mz on the both spaces Hp(β) and Lp(β).

2. Main Results

First we note that the multiplication operator Mz on Lp(β) (Hp(β)) is

unitarily equivalent to an injective bilateral (unilateral) weighted shift

and conversely, every injective bilateral (unilateral) weighted shift is

unitarily equivalent to Mz acting on Lp(β) (Hp(β)) for a suitable choice

of β (the proof is similar to the case p=2 that was proved in [2]).

We will use the following notations:

r0 = limβ(−n)−1/n,

r1 = limβ(n)1/n,

Ω0 = {z ∈ C : |z| > r0},

Ω1 = {z ∈ C : |z| < r1},

Ω = Ω0 ∩ Ω1.
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From now on we consider that Mz is bounded on Lp(β).

Theorem 1. Let 0 < r0 < r1 = 1 and 1
p + 1

q = 1. If

∑

n<0

r0
nq

β(n)q
< ∞ ;

∑

n>0

1
β(n)q

< ∞,

then Mz has no cyclic vector on Lp(β).

Proof. Note that Ω is an annulus with the unit disc as an outer bound-

ary. Now for any function

f =
∞∑

n=−∞
f̂(n)fn

in Lp(β), by the Holder inequality we have

∞∑
n=−∞

|f̂(n)||z|n 6 (
∞∑

n=−∞
|f̂(n)|pβ(n)p) 1/p(

∞∑
n=−∞

|z|nq

β(n)q
) 1/q

= ||f ||p[(
∑

n<0

|z|nq

β(n)q
) 1/q + (

∑

n>0

|z|nq

β(n)q
) 1/q]

6 ||f ||p[(
∑

n<0

r0
nq

β(n)q
) 1/q + (

∑

n>0

1
β(n)q

) 1/q]

for all z in Ω. Since

∑

n<0

r0
nq

β(n)q
< ∞ ;

∑

n>0

1
β(n)q

< ∞,

by a similar method used in the proof of Theorem 3 in [3] and Theorem

1 in [7], we get Hp(β) ⊂ H(Ω)∩C(T ) where H(Ω) is the set of analytic
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functions on Ω and C(T ) is the set of continuous functions on the unit

circle T .

Now define the operator

L : Lp(β) −→ C(T ) ; L(f) = f |T .

Clearly L maps the set of all Laurent polynomials onto the set of all

polynomials in z and z̄ which is dense in C(T ) by the Stone-Weierstrass

theorem. Thus L has dense range. Now if g is a cyclic vector for Mz as

an operator on Lp(β), then g|T is a cyclic vector for Mz as an operator

on C(T ). Thus g has no zero on T and this implies that the operator

Mg is invertible on C(T ). Let V {.} denotes the uniform closed linear

span of the set {.} in C(T ). Clearly V {Mn
z g|T : n > 0} is equal to the

uniform closure of the set

{pg|T : p is an analytic polynomial}.

Thus, we get

V {Mn
z g|T : n > 0} = MgA

where A is the disc algebra of analytic functions in C(T ). Indeed

A = uniform-closure {p|T : p is an analytic polynomial}
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(see [1]). But A is a proper closed subspace of C(T ), so MgA is also a

proper closed subspace of C(T ), since Mg is invertible on C(T ). This

says that g|T can not be a cyclic vector for Mz as an operator on C(T ),

hence g can not be a cyclic vector for Mz as an operator on Lp(β) that

is a contradiction. Now the proof is complete.¤

Theorem 2. i) If a function f in Hp(β) is cyclic, then the zeros of f

can not belong to Ω1.

ii) If the zeros of a polynomial P are not belong to Ω1, then P is a

cyclic vector for Mz.

Proof. See [3].¤

By the same method we can have a similar result for the spaces Lp(β)

and in this case we should use Ω instead of Ω1.

Theorem 3. Let 1 6 p < ∞. Suppose that β(n) is in the form β(n) =

α(n)γ(n) where {α(n)} and {γ(n)} satisfies:

i) There exists a positive number M , such that

sup{| γ(n + i)
γ(n)γ(i)

| : i, n = 0, 1, 2, · · ·} 6 M

ii) There exists a positive integer m0 such that:

Lm0 = sup{|α(n + i)α(m0)
α(n + m0)α(i)

| : n > 0, i > m0} < ∞
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and

{α(n + m0)
α(n)

}n ∈ `q,

where 1
p + 1

q = 1.

If x =
∑

m xmfm belongs to Hp(β) and x0 6= 0, then x is a cyclic

vector of Mz as an operator on Hp(β) .

Proof. See [5].¤

Corollary 4. Let 1
p+1

q = 1, Mz be power bounded and f =
∞∑

m=0
f̂(m)zm ∈

Hp(β) be such that f̂(0) 6= 0. If we have

{β(n + j0)
β(n)

}n ∈ `q

for some j0 ∈ N and β(n) > 0 for all n, then f is a cyclic vector of Mz

on Hp(β).

By a similar method the above results can be extended from the

formal power sequence spaces Hp(β) to the formal Laurent sequence

spaces Lp(β).
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