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Abstract. This paper studies a B-spline algorithm for calculating the solution of
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1 Introduction

The fractional calculus is one of the most useful and usable generalizations
of the conventional derivatives of integer orders and integrals [1, 4]. It has
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been demonstrated that many phenomena in science and engineering may be
accurately represented by models based on fractional calculus mathematical
tools [10, 17, 3]. A significant tool in various sciences the fractional differential
equationFDE [8, 6, 24, 26, 15, 22] that with a discretization method the FDE
are solved by computer [5]. Finite difference, finite volume, finite element,
discrete element, boundary element, no mesh, or combination of these methods
are the most common methods of discretization [25, 11, 17, 3]. Most methods
offer the same solution to the original PDEs in theory. In [16, 14, 12, 15]
Baleanu et al., the FDE’s existence was studied using Caputo, and some
analytical solutions were obtained for the hybrid differential equation [6, 13,
30].
Numerical methods presented to solve approximate answers to differential
equations of mathematical samples of different problems [17, 13]. The collocation
method solves a finite number of nodes by solving the differential equation.
The easy and high speed is the biggest advantage of this method [16, 21, 4].
The fractional B-spline function(fBSf ) is a smoothness to connect with the
low calculating cost of collocation. Our goal in this manuscript is to seek the
performance of fBSf at the collocation method to solve initial and boundary
value problems. Our goal in this manuscript is to seek the performance of
fBSf at collocation method to solve initial and boundary value problems.
M − TT − FDEs reduced of the problem to a system of the ordinary by
Edwards et. al. [2]. Another method is meshless that was introduced by
Hosseini et. al. for solving M − TT − FDEs in [9, 7]. That left-side caputo
fractional derivative persented by Lin and Lazarov et. al where they got the
O(h2+τ2−α) [19, 20]. On different intervals focus on the fractional predictor-
corrector methodM−TT −FDEs by Liu [20]. The other method, the space-
time spectral scheme presented by Zheng et. al. was an impressive numerical
method [33]. Assuming the norm to be L2 the stability and convergence
proved at finite-difference scheme leads to a lower accuracy order O(τα).
With spectral collocation method expanded an power accurate fractional for
solving time-dependent fractional partial differential equations with help new
fractional Lagrange interpolants by Zayernouri et. al [31]. A composition of
finite difference and matrix transfer method presented by Zhao et. al. [32].

This manuscript is formed as follows: in section 2, some basic definitions
and theorems of fBSf are expressed. Section 3 is dedicated to the solution of
M − TT − FDEs using the collocation technique with fBSf . In section 4,
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five numerical examples are presented.

2 Basic Function

In this section, the efficiency and usefulness of spline functions in computers,
math and Box splines have been demonstrated in [23]. We will provide several
definitions and theorems of [29, 30].

Definition 2.1. Functions are called polynomial spline function of degree n+
1. The conditions of functions is a piece of multinomial function with degree
n on interval [a, b] are as follows:
1) The points interpolation are a = t1 ≤ t2 ≤ t3 ≤ . . . ≤ td = b and in amongst
any [ti, t(i+1)] is one polynomials of degree n too conjunction [t(i+1), t(i+2)]
to another polynomials:

Sn(t) =



s1(t) ; t1 ≤ t ≤ t2,

s2(t) ; t2 ≤ t ≤ t3,

.

.

.

s(d−1)(t) ; t(d−1) ≤ t ≤ td.

(1)

Spline function presented Sn(t) that on each partition si(t), i = 1, 2, . . . , d−1
is a polynomial of n degree.
2)The characteristics of the nth derivative which are limited, displays several
isolated case that it is not continuities in points, and they are continuities at
knots among the polynomial piece where the continuous derivative of the order
of n − 1 is one of the properties of si(t), i = 1, 2, . . . , d − 1 functions at
[ti, t(i+1)].

B-Splines functions(BSf ) polynomials were introduced by I. J. Schoenberg
in [34, 35]. He formed the basic functions for terms BSf as follows:

Sn(t) =
∑
j∈Z

cjβ
n(t− j), (2)

βn(t) =
1

n!

n+1∑
j=0

(−1)j
(
n+ 1

j

)
(t− j)n+. (3)
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Where

(t− j)n+ =

{
(t− j)n t > j,

t > j t ≤ j.
(4)

The BSf with different powers:
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Figure 1: The BSf shapes with 0 degree is really β0(t).
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Figure 2: The BSf shapes with 1 degree is really β1(t).

In Figure 1, the power 0 for β0(t) if constant function, in Figure 2,
β1(t) called Hat function that is a linear function, in Figure 3, β2(t) of
degree two and in Figure 4, β3(t) called bell function that is degree tree.
These functions play essential role in the theory of defense approximation and
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Figure 3: The BSf shapes with 2 degree is really β2(t).
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Figure 4: The BSf shapes with 3 degree is really β3(t).

analysis. The reason for using these functions in a variety of applications and
their widespread use is that they have desirable properties [27, 28].

The extension of constant’s presented by Thierry Blu and Michael Unser
of fBSf [18]. The favorable attributes of fBSf showed to transfer to the
fractional case.

Definition 2.2. The fBSf βα(t) is:

βα(t) =
1

Γ(α+ 1)

∑
k≤0

(−1)k
(
α+ 1

k

)
(t− k)α+ (5)

the Eq.(5) is credible point to point for everyone t ∈ R and a well as into the
L2(R).
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In Figures 5, 6, 7 and Figure 8 several samples of fBSf are introduced,
it seems to be destroyed, only time the α be an integer then the fBSf are
compactly supported. In this sample, we have covered the classicalBS. Generally,
they have an axis of asymmetric. Functions with fractional power are well
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Figure 5: The fBSf shapes with 0.1 degree is really β0.1(t).
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Figure 6: The fBSf shapes with 0.3 degree is really β0.3(t).

approximated by the fBSf because they have fractional power. They have
every continuous parameter α > −1. If the α is an integer, this function
interpolates the normal splines.

First of all, investigated a rather forced adjust univariate analysis with
spaced points; for making multiresolution wavelet bases their monotonousnet
in special is needed. Second, these functions can be used in many numerical
methods, and also the fBSf have the characteristics of a type the BS such as
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Figure 7: The fBSf shapes with 0.3 degree is really β0.7(t).
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Figure 8: The fBSf shapes with 1.3 degree is really β1.3(t).

the support domain of the BS for nonintegral where α is no longer compact.
Particulary, functions were dense in L2 with condition α > −1

2 .
The definition of fBSf spaces on the a scale is as follows:

Sα
a = {sa : ∃c ∈ l2, sa(x) =

∑
k∈Z

ckβ
α(
x

a
− k)} (6)

We assess its least squares approximation in Sα
a for an arbitrary function f ∈

L2(R).

Theorem 2.3. The fBSf has a fractional order of approximation α + 1. In
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particular, the least-squares approximation error is limited by

∀f ∈Wα+1
2 , ∥f − Paf∥L2 ≤ aα+1∥Dα+1f∥L2

√
2ξ(α+ 2)− 1

2

Πα+1
; a→ 0 (7)

Proof. The proofs in [18], (Theorem 4.1).

In this theorem, Paf is an interpolation function of function f . The fBSf
produces credible multiresolution analysis of L2 for α > −1

2 . The fBSf can
be a scheme to have an optional order of smooth. These functions produce a
sequence of space flow as:

0 ⊂ ... ⊂ X−1 ⊂ X0 ⊂ X1 ⊂ ... ⊂ L2(R) (8)

they have properties:
a)

⋂
i∈ZXi = 0 and

⋃
i∈ZXi = L2(R).

b) f(∗) ∈ Xi if and only if f(2−i∗) ∈ X0

c) f(∗) ∈ X0 if and only if f(∗ − k) ∈ X0 for each k ∈ Z and there be a
function φ ∈ X0, called a scale factor, such a way that φ(∗ − k)k∈Z format an
orthonormal foundations of X0. The spaces fBSf produce Xn are of order
α ∈ R with points k × 2n, k ∈ Z where the forms spaces are:

Xn = span{βα(x− 2nk

2n
)L2(R)};α ≥ −1

2
, n ∈ Z, (9)

That βα produces a multiresolution analysis. Let’s take, a = 2i, then several
sample of multiresolution and shift fBSf βα as illustrated below:
Figures 9, 10 , 11 and Figure 12 are some shift β1(t − k), β2(t), β1(2t)

and β2(2t) ,respectively. In our methods numerical analysis basic functions
are those functions.

Several shift fBSf of the α = 0.3 with a = 20 and a = 2−1 and several
different k of conforming toEq.(6) in actuality β0.3(t) and β0.3(2t) are shown
in Figure 13 and Figure 14.

3 M − TT − FDEs

WithM − TT − FDEs of diffusion-wave time equations a lot work extensions
have been conducted. We are using base fBSf in the collocation method on
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Figure 9: The one degree of BSf shape are by i = 0 i.e. a = 1 and several
various k of Eq.(6) really β1(t), β1(t− 1), β1(t+ 1), β1(t+ 2).

-2 -1 1 2 3 4

0.2

0.4

0.6

0.8

1.0

Figure 10: The two degree of BSf shape are by i = 0 i.e. a = 1 and several
various k of Eq.(6) really β2(t), β2(t− 1), β2(t+ 1).

approximation. In this article, we discuss Caputo time derivative in one and
two dimensions:

P(Dt)(X, t)−∆U(X, t) = F(X, t) (X, t) ∈ Ω× (0, T ],

U(X, 0) = ψ1(X), X ∈ Ω

U(X, t) = Φ(X, t), X ∈ ∂Ω,

(10)

where Ω is domain and ∂Ω is a boundary.
The F is the source term in equation above, issued to the suitable initial and
boundary condition, respectively. Condition ψ1 and Φ are presented functions
on Ω.
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Figure 11: The one degree ofBSf shape are by i = −1 i.e. a = 1
2 and several

various k of Eq.(6) really β1(2t), β1(2t− 1), β1(2t+1), β1(2t+2), β2(2t).
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Figure 12: The two degree BSf shape are by i = −1 i.e. a = 1
2 and several

various k of Eq.(6) really β2(2t− 2), β2(2t− 1), β2(2t+ 1).

Then, the P(Dt) is fractional operator to form under:

P(Dt) = Dt +
m∑
i=1

riD
αi
t , (11)

where the m ∈ N and Dαi
t represents the Caputo fractional derivative of order

αi ∈ (0, 1), is defined by

Dαi
t U(t) =


1

Γ(k − αi)

∫ t

0
(t− ξ)k−αi−1Uk(ξ)dξ k − 1 < αi < k, t > 0,

Uk(t) αi = k.

(12)
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Figure 13: The diagram of the α = 0.3 degree are by i = 0 i.e. a = 1 and
several k of Eq.(6) really β0.3(t), β0.3(t − 1). , β0.3(t − 2), β0.3(t − 3) for
fBSf .
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Figure 14: The diagram of the α = 0.3 degree are by a = −1 and several k
of Eq.(6) really β0.3(2t), β0.3(2t− 1), β0.3(2t+ 1), β0.3(2t− 2) for fBSf .

the Γ(.) is a usual Gamma function. The fBSf does not have compact support
but it decays toward infinity as:

βα(t) =
1

|t|−2−α
,

moreover however, βα isα-Hölder continuous, belonging toL2(R) and reproducing
polynomials up to degree [α].
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3.1 Collocation Technique fBSf with One Variable for Unknown
Function

First, we want to explain the method with a variable one dimension for unknown
function, from Eq.(10)

f(X) ∈ XN ⊆ X

concerningEq.(9) sinceX toX . The ŨN (f(X), t) is approximate ofUN (f(X), t)
that we select a limited family of functions. The f(X) is single variable thus
f(X) = x, the XN is a series of dimensional subspace that XN ⊂ X;N ≥
0 that XN have a basis βr(x−2Nk

2N
) and βp( t−2N l

2N
). We search a function

ŨN (x, t) ∈ XN ×XN that it can be written as:

ŨN (x, t) =

d,d∑
k,l=1

cklβ
r(
x− 2Nk

2N
)βp(

t− 2N l

2N
). (13)

We sub ŨN (x, t) to UN (x, t) in the Eq.(10) and dissolve it. then, assume
considerate (x, t) ∈ [a, b]×[c, d], which the numbers k, l inEq.(13) is confined
on [a, b]. We search knots (xi, ti), i = 1, ..., d, so that (x, t) ∈ [a, b] × [c, d]
and c11, ..., cdd are assess by dissolving linear system:

RN (xi, tj) =

m∑
i=1

riD
αi
t

d,d∑
k,l=1

cklβ
r(
xi − 2Nk

2N
)βp(

tj − 2N l

2N
)

−
d,d∑

k,l=1

ckl∆β
r(
xi − 2Nk

2N
)βp(

tj − 2N l

2N
)

−
d,d∑

j,i=1

F (xi, tj) = 0, (14)
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next we utilization of Eq.(5) at up equation, which is obtained:

RN (xi, tj) =

d,d∑
k,l=1

ckl

∑
s≥0

(−1)s
(
r + 1

s

)
(xi−2Nk

2N
− s)rt

Γ(r + 1)


 m∑

i=1

riD
αi
t

∑
h≥0

(−1)s
(
p+ 1

h

)
(
tj−2N l

2N
− s)pt

Γ(p+ 1)


−

d,d∑
k,l=1

ckl∆

∑
s≥0

(−1)s
(
r + 1

s

)
(xi−2Nk

2N
− s)rt

Γ(r + 1)


∑

h≥0

(−1)s
(
p+ 1

h

)
(
tj−2N l

2N
− s)pt

Γ(p+ 1)


=

d,d∑
j,i=1

F (xi, tj), i, j = 0, ..., d− 1. (15)

3.2 Collocation Method fBSf with Two Variable for Unknown
Function

In the second case, we tend to explain the method with a variable two dimension
for unknown function, from Eq.(10) , we assume f(X) ∈ R2 i.e. (f(X), t) =
(x, y, t) then like the mode of a variable we select a series of dimensional
subspace XN ⊂ X;N ≥ 0 that XN have a basis βr(x−2N i

2N
), βq(y−2N j

2N
) and

βp( t−2Nk
2N

). We seek a function ŨN (x, y, t) ∈ XN × XN × XN that can be
written as:

ŨN (x, y, t) =
∑

i,j,k∈N

cijkβ
r(
x− 2N i

2N
)βq(

y − 2Nj

2N
)βp(

t− 2Nk

2N
).(16)

next change ŨN (x, y, t) with U(x, y, t) in the Eq.(10) and dissolving it. Next,
we assume by considering (x, y, t) ∈ [c, d]× [e, f ]× [a, b], with this i, j, k in
Eq.(16) is limited on [a, b].
Now we search knots (xi, yj , tk), i, j, k = 1, ..., d where (x, y, t) ∈ [a, b] ×
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[c, d]×[e, f ] and c111, c211, ..., cddd are assess by dissolve linear system below:

RN (xw, yv, tz) =
m∑
i=1

riD
αi
t

d,d,d∑
i,j,k=1

cijkβ
r(
xw − 2N i

2N
)βp(

yv − 2Nj

2N
)

βq(
tz − 2Nk

2N
)

− ∆

d,d,d∑
i,j,k=1

cijkβ
r(
xw − 2N i

2N
)βp(

yv − 2Nj

2N
)βq(

tz − 2Nk

2N
)

−
d,d,d∑

i,j,k=1

F(xw, yv, tz) = 0, w, v, z = 0, ..., d− 1. (17)

Similar previous case, putting Eq.(5) can obtain the unknown factors. With
Placement points in two modes are mentioned, two matrices are created. we
solve Eq.(10) with collocation technique by usage of fBSf . we assume
Pn that maps X onto Xn, define PnU(f(X), t) to be that atom of Xn that
approximate X at the knots used at Eq.(13) and Eq.(16). We can found
following relation:

PnU(f(X), t) = ŨN (f(X), t)

with the factors cij with one variable and cijk with two variable specified
dissolving the linear system Eq.(15) and Eq.(5) next our problem has a alone
one answer if

det(RN (xi, tj)) ̸= 0

or
det(RN (xw, yv, tz)) ̸= 0.

The convergence of this method is guaranteed by means of Theorem 2.3.

4 Applications and Results

Now, we present the conclusions made for several samples using our method
with fBSf for Eq.(5) explained previously. At samples, the precision of the
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methods, and we compare with the suggested technique two types of error
measures, ε∞ that is a maximum absolute error and RMS εR:

Error =
∥∥∥ŨN (f(xi), t)− U(f(xi), t)

∥∥∥
∞
, 0 ≤ t ≤ T (18)

RMS =

√√√√∑n
i=1

(
ŨN (Xi, t)− U(Xi, t)

)2

n
, (19)

are employed, which theU(Xi, t) is exact answers and ŨN (Xi, t) is approximate
answers, N is dimension of fBSf and n is number knots for plot shape and
compute error between exact and approximate answers in order. At every
example, we are assume regular node be regular partition next by solveEq.(15)
or (18) and obtain ckl or cijk for Eq.(13) and Eq.(16) that it is approximate
answers then we divide to n of the equal part the scope of the answer and by
using Eq.(18) to calculate error and draw it. and two dimensions of fBSf
and α with attention example ,we are considering error Eq.(19).

Example 1. First example, we discuss the Eq.(10) with different α1, α2

andt ∈ [0, 1] and △ti = ti − ti−1 = 0.01 in partition Ω = [0, 0.5]. The
U(x, t) = x3(t1+α1+α2) is exact solution too

F(x, t) = −6t2+α1+α2x

+ x3Γ(1 + α1 + α2)(1 + α1 + α2)[
(t1+α1)Γ(2− α1)

Γ(3 + α1)Γ(1− α2)
+

(t1+α2)Γ(2− α2)

Γ(3 + α2)Γ(1− α1)

]
and tree term fractal αi, i = 1, 2, 3,

U(x, t) = x3(t1+α1+α2+α3)

also

F(x, t) = −6t2+α1+α2+α3x+ x3Γ(1 + α1 + α2 + α3)(1 + α1 + α2 + α3)

+ [
(t1+α1+α2)Γ(2− α3)

Γ(3 + α1 + α2)Γ(1− α3)
+

(t1+α1+α3)Γ(2− α2)

Γ(3 + α2 + α3)Γ(1− α2)

+
(t1+α2+α3)Γ(2− α1)

Γ(3 + α2 + α3)Γ(1− α1)
]
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Table 1: Sample of Eq.(10) and RMS Eq.(19) and the α1, α2 have tree
variable t, x, n .

RMS0
j RMS1

j RMS2
j

α1 = 0.1, α2 = 0.4 1.37691715× 10−4 1.36817007× 10−4 1.36784227× 10−4

α1 = 0.3, α2 = 0.4 1.31697622× 10−4 1.31062956× 10−4 1.31000040× 10−4

α1 = 0.2, α2 = 0.6 1.28816508× 10−4 1.28369975× 10−4 1.27977642× 10−4

α1 = 0.1, α2 = 0.9 2.44772992× 10−4 2.12264571× 10−5 4.87391324× 10−6

α1 = 0.3, α2 = 0.8 3.03165220× 10−5 1.34647287× 10−5 4.79382664× 10−6

Table 2: Sample of Eq.(10) and RMS Eq.(19) and the α1, α2, α3 have tree
variable t, x, n.

RMS0
j RMS1

j RMS2
j

α1 = 0.1, α2 = 0.2, α3 = 0.3 1.35596505× 10−4 1.34395454× 10−4 1.34377414× 10−4

α1 = 0.2, α2 = 0.3, α3 = 0.4 1.27265808× 10−4 1.26561905× 10−4 1.25629737× 10−4

α1 = 0.3, α2 = 0.4, α3 = 0.5 1.20259940× 10−5 1.19793031× 10−4 1.16883116× 10−4

α1 = 0.1, α2 = 0.3, α3 = 0.8 2.99362980× 10−5 1.32748298× 10−5 4.65066226× 10−6

α1 = 0.2, α2 = 0.3, α3 = 0.9 2.88319590× 10−5 1.27763920× 10−5 4.65066226× 10−6

At our tables, we obtainRMS ofEq.(19) for several α’s. TheRMS solutions
is not much more than 10−4. The table 1 with α1, α2 and the table 2 with
α1, α2, α3, shows the RMS produced using with n = 500 and several of α
and ∆t. When the N grow, the RMS is reducing slowly and decreasing the
error by grow the X to little by little in Figure, 15 and Figure 16.

We are displaying the Error of Eq.(18) that estimate answers with α1 = 0.1,
α2 = 0.4 and α1 = 0.1, α2 = 0.2, α3 = 0.3, the N is number of variable of
fBSf at Figure 15 and Figure 16. We view in the Figure 15 and Figure
16, Error in axis X is not decrease until 10−3 by attention to that in N = 2 it
is 10−4, it is manner is not fast, it is not t rapidity increase tangible .

Example 2. We discuss the Eq.(10) with two variable x, y that is mean
f(X) ∈ R2 and several amounts for α and △ti = 0.01 and t ∈ [0, 1] in
partition Ω = [0, 0.5] × [0, 0.5]. The U(x, y, t) = t1+α1+α2x2y2 is solution,
and force term can exprseed as follows

F(x, y, t) = −2t2+α1+α2(x2 + y2)x2y2 + Γ(1 + α1 + α2)(1 + α1 + α2)[
(t2+α1)Γ(2− α1)

Γ(3 + α1)Γ(1− α2)
+

(t2+α2)Γ(2− α2)

Γ(3 + α2)Γ(1− α1)

]
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Figure 15: The shape RMS for α1, α2 that are α1 = 0.1, α2 = 0.4 of
Eq.(10) and error Eq.(18) .

and tree term fractional αi, i = 1, 2, 3

U(x, y, t) = t1+α1+α2+α3x2y2

also

F(x, y, t) = −2t2+α1+α2+α3(x2 + y2) + x2y2Γ(1 + α1 + α2 + α3)(1 + α1 + α2)

[
(t1+α1+α2)Γ(2− α3)

Γ(3 + α1 + α2)Γ(1− α3)
+

(t1+α1+α3)Γ(2− α2)

Γ(3 + α2 + α3)Γ(1− α2)

+
(t1+α2+α3)Γ(2− α1)

Γ(3 + α2 + α3)Γ(1− α1)
]

In this sample plotting the error of obtained answers by amounts of Degree of
fraction, assume one of the variables the variable X or Y to be constant then
we calculate the RMS. We assume amounts fixed away from knots primary.
Anew the N is dimension of fBSf and the N is grow Error isn’t increase.
The Figure 17, Figure 18, Figure 19 and Figure 20 are answers at several
time surfaces for α have been presented.
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Figure 16: The shape RMS for α1, α2, α3 that are α1 = 0.1, α2 = 0.2,
α3 = 0.3 of Eq.(10) and error Eq.(18).

Table 3: Sample of Eq.(10) and RMS Eq.(19) and the α1, α2 have tree
variable t, x, n, that y is fixed.

RMS0
j RMS1

j RMS2
j

α1 = 0.1, α2 = 0.2 3.94497585× 10−4 9.15524676× 10−5 1.59141638× 10−5

α1 = 0.1, α2 = 0.8 2.48475179× 10−4 4.72961107× 10−5 1.25629737× 10−5

α1 = 0.5, α2 = 0.6 2.17263429× 10−4 3.81143002× 10−5 3.81143002× 10−5

α1 = 0.2, α2 = 0.6 3.17518103× 10−5 1.93898497× 10−6 1.41841301× 10−7

α1 = 0.3, α2 = 0.7 2.85753808× 10−5 1.56945742× 10−6 1.13979494× 10−7

Table 4: Sample of Eq.(10) and RMS Eq.(19) and the α1, α2, α3 have tree
variable t, x, n, that y is fixed.

RMS0
j RMS1

j RMS2
j

α1 = 0.1, α2 = 0.2, α3 = 0.3 1.35596505× 10−4 1.34395454× 10−4 1.34377414× 10−4

α1 = 0.2, α2 = 0.4, α3 = 0.6 1.27265808× 10−4 1.26561905× 10−4 1.25629737× 10−4

α1 = 0.3, α2 = 0.6, α3 = 0.7 1.20259940× 10−4 1.19793031× 10−4 1.16883116× 10−4

α1 = 0.1, α2 = 0.5, α3 = 0.8 2.99362980× 10−5 1.32748298× 10−5 4.65066226× 10−6

α1 = 0.4, α2 = 0.5, α3 = 0.6 2.88319590× 10−5 1.27763920× 10−5 4.65066226× 10−6
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Table 5: Sample of Eq.(10) and RMS Eq.(19) and the α1, α2 have tree
variable t, y, n, that x is fixed.

RMS0
j RMS1

j RMS2
j

α1 = 0.1, α2 = 0.2 6.54169632× 10−4 1.382539696× 10−4 3.93536798× 10−5

α1 = 0.1, α2 = 0.8 4.82846136× 10−4 1.999813782× 10−5 7.21156527× 10−5

α1 = 0.5, α2 = 0.6 4.55836128× 10−4 5.821545927× 10−5 1.60713243× 10−5

α1 = 0.2, α2 = 0.6 5.75138282× 10−5 2.944033108× 10−6 1.78113445× 10−7

α1 = 0.3, α2 = 0.7 5.68271757× 10−5 2.393451379× 10−6 1.43214173× 10−7

Table 6: Sample of Eq.(10) and RMS Eq.(19) and the α1, α2, α3 have tree
variable t, y, n, that x is fixed.

RMS0
j RMS1

j RMS2
j

α1 = 0.1, α2 = 0.2, α3 = 0.3 2.33138317× 10−3 1.56846535× 10−4 3.18440163× 10−5

α1 = 0.2, α2 = 0.4, α3 = 0.6 1.92621300× 10−3 8.62977077× 10−5 1.32199024× 10−5

α1 = 0.3, α2 = 0.6, α3 = 0.7 1.28240167× 10−3 5.23971866× 10−5 1.01573409× 10−5

α1 = 0.1, α2 = 0.5, α3 = 0.8 1.46864232× 10−4 2.23977676× 10−6 9.71019231× 10−8

α1 = 0.4, α2 = 0.5, α3 = 0.6 1.79950021× 10−4 2.21143135× 10−6 9.21224652× 10−8

In our tables, we obtainRMS ofEq.(19) for several α’s. TheRMS solutions
isn’t much more than 10−4. With n = 500, several amounts α1, α2 and ∆t
with y = 0.5, Beginning The RMS is of 10−4 until to 10−7 that the outcomes
and the answers are accord and variable time at has nearly effectless when it is
tiny enough at tables 3 and the table 4 we have tree fractional the αi, i = 1, 2, 3
that have been illustrated for two term α1, α2 and tree term α1, α2, α3 with
x = 0.5, the RMS is among 10−4 until 10−6 and 10−3 to 10−8 respectively.
When the N grow, the RMS is reducing slowly and decreasing the error by
grow the X to little by little in Figure 15 and Figure 16. It is in the above
figures ∆t = 0.01 and n = 500. For approximate answers with y = 0.5 that in
Figure 17 in fact displays theError ofEq.(18) and we considered α1 = 0.2,
α2 = 0.6 in Figure 18 we considered α1 = 0.1, α2 = 0.5, α3 = 0.8, the N
is dimensions of fBSf . we look in the shapes RMS in axis X isn’t decrease
than 10−3 by notice withN = 2 it is 10−4, at in Figure 19 and Figure 20 the
powers factional are look to Figure 17 and Figure 18 in order only x = 0.5
instead y = 0.5. It is manner is not fast it is not rapidity increase tangible .



20 M. POURHAHASSAN AND M. RAMEZANI

0.5

0.4

0.3
0

X0

1

0.2
0.5

2

N

1

10
-4

0.1

3

1.5

4

0
2

5

0

1

2

3

4

10
-4

Figure 17: The shape RMS for u(x, 0.5, t) with α1, α2 that are α1 = 0.2,
α2 = 0.6 of Eq.(10) and error Eq.(18).

Example 3. The third example, we discuss the Eq.(10) with two variable
x, y that’s mean f(X) ∈ R2 and several amounts for α and t ∈ [0, 1] and
△ti = 0.01 in partition Ω = [0, 0.5]×[0, 0.5]. TheU(x, y, t) = t1+α1+α2x2ey

is solution

F(x, y, t) = −2t1+α1+α2ey + x2eyΓ(1 + α1 + α2)(1 + α1 + α2)

[
(t2+α1)Γ(2− α1)

Γ(3 + α1)Γ(1− α2)
+

(t2+α2)Γ(2− α2)

Γ(3 + α2)Γ(1− α1)
]

and tree term fractional αi, i = 1, 2, 3

U(x, y, t) = t1+α1+α2+α3x2ey
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Figure 18: The shapeRMS for u(x, 0.5, t) with α1, α2, α3 that are α1 = 0.1,
α2 = 0.5, α3 = 0.8 of Eq.(10) and error Eq.(18).

also

F(x, y, t) = −2t2+α1+α2+α3(x2 + y2) + x2eyΓ(1 + α1 + α2 + α3)(1 + α1 + α2)

[
(t1+α1+α2)Γ(2− α3)

Γ(3 + α1 + α2)Γ(1− α3)
+

(t1+α1+α3)Γ(2− α2)

Γ(3 + α2 + α3)Γ(1− α2)

+ +
(t1+α2+α3)Γ(2− α1)

Γ(3 + α2 + α3)Γ(1− α1)
]

In this sample the exact answers is one exponent function in x variable for
plot the Error of obtained answers by amounts of Degree of fraction, assume
one of the variables the variable X or Y to be constant then we calculate the
RMS.We assume amounts fixed away from knots primary. Anew the N is
dimension of fBSf and the N is grow Error is not increase. The Figure
21, Figure 22, Figure 23 and Figure 24 are answers at several time surfaces
for α have been presented.



22 M. POURHAHASSAN AND M. RAMEZANI

0.5

0.4

0.3
0

X
0

0.2

0.2
0.5

0.4

N

1

10
-3

0.1

0.6

1.5

0.8

0
2

1

0

1

2

3

4

5

6

7

8

10
-4

Figure 19: The shape RMS for u(0.5, y, t) with α1, α2 that are α1 = 0.5,
α2 = 0.6 of Eq.(10) and error Eq.(18).

Table 7: Sample of Eq.(10) and RMS Eq.(19) and the α1, α2 have tree
variable t, x, n, that y is fixed.

RMS0
j RMS1

j RMS2
j

α1 = 0.5, α2 = 0.6 9.04541182× 10−5 1.41615859× 10−6 6.03249119× 10−7

α1 = 0.1, α2 = 0.7 4.16261408× 10−5 1.93217574× 10−6 8.35037092× 10−7

α1 = 0.3, α2 = 0.6 8.58065467× 10−5 1.73144761× 10−6 7.46330818× 10−7

α1 = 0.2, α2 = 0.4 4.56260027× 10−5 3.62032205× 10−6 6.53930371× 10−7

α1 = 0.7, α2 = 0.8 1.80267851× 10−5 1.36214067× 10−6 2.43485256× 10−7

Table 8: Sample of Eq.(10) and RMS Eq.(19) and the α1, α2, α3 have tree
variable t, x, n, that y is fixed.

RMS0
j RMS1

j RMS2
j

α1 = 0.3, α2 = 0.5, α3 = 0.6 5.19353341× 10−4 3.80155456× 10−5 9.73121322× 10−6

α1 = 0.2, α2 = 0.5, α3 = 0.7 4.80850444× 10−4 3.78465263× 10−5 9.69569172× 10−6

α1 = 0.1, α2 = 0.3, α3 = 0.8 4.68682804× 10−4 3.43935168× 10−5 8.59295668× 10−6

α1 = 0.2, α2 = 0.4, α3 = 0.6 4.04031852× 10−4 2.32012072× 10−5 1.42442171× 10−6

α1 = 0.3, α2 = 0.4, α3 = 0.9 3.09153935× 10−4 1.74275616× 10−5 1.04006198× 10−6
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Figure 20: The shape RMS for u(0.5, y, t) with α1, α2, α3 that are α1 = 0.1,
α2 = 0.5, α3 = 0.8 of Eq.(10) and error Eq.(18).

Table 9: Sample ofEq.(10) andRMS Eq19 and the α1, α2 have tree variable
t, y, n, that x is fixed.

RMS0
j RMS1

j RMS2
j

α1 = 0.5, α2 = 0.6 9.04541182× 10−5 1.24974484× 10−6 4.05615235× 10−7

α1 = 0.7, α2 = 0.1 9.90638751× 10−5 1.71281036× 10−6 5.62713624× 10−7

α1 = 0.6, α2 = 0.3 9.26941318× 10−5 1.05348294× 10−6 5.03312048× 10−7

α1 = 0.2, α2 = 0.4 5.54470808× 10−5 6.02212710× 10−6 3.83331255× 10−7

α1 = 0.7, α2 = 0.8 2.16824420× 10−5 2.26147866× 10−6 1.43730085× 10−7

Table 10: Sample of Eq.(10) and RMS Eq.(19) and the α1, α2, α3 have tree
variable t, y, n, that x is fixed.

RMS0
j RMS1

j RMS2
j

α1 = 0.3, α2 = 0.5, α3 = 0.6 7.50950353e× 10−5 9.16838821× 10−6 3.04125495× 10−7

α1 = 0.2, α2 = 0.5, α3 = 0.7 6.99727485× 10−5 9.13493187× 10−6 3.03772247× 10−7

α1 = 0.1, α2 = 0.3, α3 = 0.8 6.64170418× 10−5 8.22103967× 10−6 2.73865500× 10−7

α1 = 0.2, α2 = 0.4, α3 = 0.6 5.59944023× 10−5 4.34802764× 10−6 3.44168282× 10−7

α1 = 0.3, α2 = 0.4, α3 = 0.9 3.74528508× 10−5 2.84022165× 10−6 4.65066226× 10−6
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At Our tables, we obtainRMS ofEq.(19) for severalα’s. TheRMS solutions
is not much more than 10−4. With n = 1000, several amounts α1, α2 and ∆t
with y = 0.5 at tables 7 and 8, Beginning The RMS is of 10−5 until to 10−7

that the outcomes and the answers are accord and variable time at has nearly
effectless when it is tiny enough at tables 9 and 10 we have tree fractional
the α1, α2, α3 that have been illustrated for two term α1, α2 and tree term
α1, α2, α3 with x = 0.5, the RMS is among 10−4 until 10−6.

It is in the above figures ∆t = 0.01 and n = 500. For approximate answers
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Figure 21: Example of Eq.(10) and error Eq.(18) and in diagram of absolute
error of u(x, 0.5, t) at with α1, α2 that are α1 = 0.3, α2 = 0.6.

with y = 0.5 that in Fig.21 in fact displays the Error of Eq.(18) and we
considered α1 = 0.3, α2 = 0.6 in Fig.22 we considered α1 = 0.3, α2 =
0.4, α3 = 0.9, the N is dimensions of fBSf . we look in the shapes RMS in
axisX is not decrease than 10−3 by notice withN = 2 it is 10−4, at in Figure
23 and Figure 24 the powers factional are look to Figure 21 and Figure 22
in order only x = 0.5 instead y = 0.5. It is manner is not fast it is not rapidity
increase tangible.
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Figure 22: The shape RMS for u(x, 0.5, t) with α1, α2, α3 that are α1 =
0.3, α2 = 0.4, α3 = 0.9. of Eq.(10) and error Eq.(18).

0
0.5

1
1.5

2 0

0.1

0.2

0.3

0.4
0

0.005

0.01

0.015

0.02

 

 

0

5

10

15

x 10
−3

N

Y

Figure 23: The shape RMS for u(0.5, y, t) with α1, α2 that are α1 =
0.3, α2 = 0.6 of Eq.(10) and error Eq.(18).
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Figure 24: The shape RMS for u(0.5, y, t) with α1, α2, α3 that are α1 =
0.01, α2 = 0.4, α3 = 0.9. of Eq.(10) and error Eq.(18).

Example 4. We discuss the Eq.(10) with two variable x, y that’s mean
f(X) ∈ R2 and several amounts for α and △ti = ti− ti−1 = 0.01 in partition
Ω = [0, 0.5]× [0, 0.5] and t ∈ [0, 1]. The U(x, y, t) = t1+α1+α2x2 sin (πy) is
solution

F(x, y, t) = (t1+α1+α2 sin (πy))(−2 + π2x2) + x2 sinπyΓ(1 + α1 + α2)

(1 + α1 + α2)

[
(t2+α1)Γ(2− α1)

Γ(3 + α1)Γ(1− α2)
+

(t2+α2)Γ(2− α2)

Γ(3 + α2)Γ(1− α1)
]

and tree term fractional αi, i = 1, 2, 3

U(x, y, t) = t1+α1+α2+α3x2 sin (πy)
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also

F(x, y, t) = (t2+α1+α2+α3)(−2 + (x2 sin (πy)) + x2 sin (πy)Γ(1 + α1 + α2 + α3)

(1 + α1 + α2 + α3)

[
(t1+α1+α2)Γ(2− α3)

Γ(3 + α1 + α2)Γ(1− α3)
+

(t1+α1+α3)Γ(2− α2)

Γ(3 + α2 + α3)Γ(1− α2)

+
(t1+α2+α3)Γ(2− α1)

Γ(3 + α2 + α3)Γ(1− α1)
]

In this sample the exact answers is one sin(x) function in x variable for plot the
Error of obtained answers by amounts of Degree of fraction, assume one of
the variables the variableX or Y to be constant then we calculate theRMS.We
assume amounts fixed away from knots primary. Anew the N is dimension of
fBSf and the N is grow Error is not increase. The Figure 25, Figure
26, Figure 27 and Figure 28 are answers at several time surfaces for α have
been presented.

Table 11: Sample of Eq.(10) and RMS Eq.(19) and the α1, α2 have tree
variable t, x, n, that y is fixed.

RMS0
j RMS1

j RMS2
j

α1 = 0.1, α2 = 0.2 2.48704511× 10−5 2.48680178× 10−5 2.50683895× 10−6

α1 = 0.1, α2 = 0.4 2.11915060× 10−6 2.11905899× 10−6 2.11839033× 10−6

α1 = 0.3, α2 = 0.6 1.47744861× 10−6 1.47738445× 10−6 1.47691804× 10−6

α1 = 0.5, α2 = 0.7 4.45767624× 10−8 1.32072454× 10−8 2.85215545× 10−9

α1 = 0.4, α2 = 0.8 4.45767614× 10−8 1.32072443× 10−8 2.85215514× 10−9

Table 12: Sample of Eq.(10) and RMS Eq.(19) and the α1, α2, α3 have tree
variable t, x, n, that y is fixed.

RMS0
j RMS1

j RMS2
j

α1 = 0.1, α2 = 0.2, α3 = 0.3 1.93352892× 10−9 1.93352789× 10−10 1.93351972× 10−10

α1 = 0.2, α2 = 0.4, α3 = 0.5 1.24062859× 10−9 1.24062783× 10−10 1.24062144× 10−10

α1 = 0.5, α2 = 0.6, α3 = 0.7 6.87005350× 10−9 6.87004855× 10−10 6.87000483× 10−10

α1 = 0.3, α2 = 0.5, α3 = 0.9 2.61481782× 10−9 7.74760432× 10−10 1.67347895× 10−10

α1 = 0.7, α2 = 0.8, α3 = 0.9 2.61481782× 10−9 7.74760433× 10−10 1.67347895× 10−10
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Table 13: Sample of Eq.(10) and RMS Eq.(19) and the α1, α2 have tree
variable t, y, n, that x is fixed.

RMS0
j RMS1

j RMS2
j

α1 = 0.1, α2 = 0.2 8.31787593× 10−13 7.27500489× 10−13 3.77477483× 10−13

α1 = 0.1, α2 = 0.4 6.89621726× 10−13 6.02980391× 10−13 3.12902522× 10−13

α1 = 0.3, α2 = 0.6 4.80796722× 10−13 4.20121940× 10−13 2.18027408× 10−13

α1 = 0.5, α2 = 0.7 2.49135913× 10−14 6.70824908× 10−15 8.76460781× 10−16

α1 = 0.4, α2 = 0.8 2.49126107× 10−14 6.70727405× 10−15 8.76281172× 10−16

Table 14: Sample of Eq.(10) and RMS Eq.(19) and the α1, α2, α3 have tree
variable t, y, n, that x is fixed.

RMS0
j RMS1

j RMS2
j

α1 = 0.1, α2 = 0.2, α3 = 0.3 6.29148619× 10−14 5.33007986× 10−15 6.79864808× 10−16

α1 = 0.2, α2 = 0.4, α3 = 0.5 4.03686627× 10−14 3.32564899× 10−15 1.51765516× 10−16

α1 = 0.5, α2 = 0.6, α3 = 0.7 2.23543833× 10−14 1.77788355× 10−15 1.13809033× 10−16

α1 = 0.3, α2 = 0.5, α3 = 0.9 1.46147562× 10−14 3.93388530× 10−15 5.13326847× 10−16

α1 = 0.7, α2 = 0.8, α3 = 0.9 1.46149330× 10−14 3.93429190× 10−15 5.13422205× 10−16

In our tables, we obtainRMS ofEq.(19) for several α’s. TheRMS solutions
is not much more than 10−4. With n = 1000, several amounts α1, α2 and ∆t
with y = 0.5 at tables 11 and 12, Beginning TheRMS is of 10−5 until to 10−7

that the outcomes and the answers are accord and variable time at has nearly
effectless when it is tiny enough at tables 13 and 14 we have tree fractional
the α1, α2, α3 that have been illustrated for two term α1, α2 and tree term α1,
α2, α3 with x = 0.5, the RMS is among 10−4 until 10−6. From the above
figures ∆t = 0.01 and n = 1000. For approximate answers with y = 0.5
that in Figure 25 in fact displays the Error of Eq.(18) and we considered
α1 = 0.5, α2 = 0.7 in Fig.26 we considered α1 = 0.3, α2 = 0.5, α3 = 0.9,
the N is dimensions of fBSf . we look in the shapes RMS in axis X is
not decrease than 10−3 by notice with N = 2 it is 10−4, at in Figure 27 and
Figure 28 the powers factional are look to Figure 25 and Figure 26 in order
only x = 0.5 instead y = 0.5. It is manner is not fast it is not rapidity increase
tangible.

Example 5. The fifth sample, we discuss the Eq.(10) with two variable x, y
that’s mean f(X) ∈ R2 and several amounts for α and t ∈ [0, 1] and △ti =
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Figure 25: The shape RMS for u(x, 0.5, t) with α1, α2 that are α1 =
0.5, α2 = 0.7 of Eq.(10) and error Eq.(18).

0.01 in partition Ω = [0, 1]×[0, 0.5]. TheU(x, y, t) = t1+α1+α2 cos (πx) sin (πy)
is solution U(x, y, t) = t1+α1+α2 cos (πx) sin (πy) also

F(x, y, t) = (cos (πx) sin (πy))[(2π2)(t1+α1+α2 + Γ(1 + α1 + α2)

(1 + α1 + α2)[
(t2+α1)Γ(2− α1)

Γ(3 + α1)Γ(1− α2)
+

(t2+α2)Γ(2− α2)

Γ(3 + α2)Γ(1− α1)

]
and tree term fractional αi, i = 1, 2, 3 U(x, y, t) = t1+α1+α2+α3x2 sin (πy)
also

F(x, y, t) = (cos (πx) sin (πy))[(t2+α1+α2+α3)(2π2)

+ Γ(1 + α1 + α2 + α3)(1 + α1 + α2 + α3)

[
(t1+α1+α2)Γ(2− α3)

Γ(3 + α1 + α2)Γ(1− α3)
+

(t1+α1+α3)Γ(2− α2)

Γ(3 + α2 + α3)Γ(1− α2)

+
(t1+α2+α3)Γ(2− α1)

Γ(3 + α2 + α3)Γ(1− α1)
]
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Figure 26: The shapeRMS for u(x, 0.5, t) with with α1, α2, α3 that are α1 =
0.3, α2 = 0.5, α3 = 0.9. of Eq.(10) and error Eq.(18).

In this sample the exact answers is one cos(x) multiplied by sin(y) function in
x variable and variable yfor plot the Error of obtained answers by amounts
of Degree of fraction, assume one of the variables the variable X or Y to be
constant then we calculate the RMS.We assume amounts fixed away from
knots primary. Anew the N is dimension of fBSf and the N is grow Error
is not increase. The Figure,s 29, 30 and Figure 28 are answers at several
time surfaces for α have been presented.

Table 15: Sample of Eq.(10) and RMS Eq.(19) and the α1, α2 have tree
variable t, x, n, that y is fixed.

RMS0
j RMS1

j RMS2
j

α1 = 0.2, α2 = 0.4 2.66410382× 10−5 8.11472163× 10−6 1.84662960× 10−6

α1 = 0.1, α2 = 0.7 2.12768140× 10−5 6.48025816× 10−6 1.47455616× 10−6

α1 = 0.3, α2 = 0.6 1.90424748× 10−5 5.79995106× 10−6 1.31984354× 10−6

α1 = 0.5, α2 = 0.9 1.10666715× 10−5 3.36960185× 10−6 7.66820560× 10−7

α1 = 0.6, α2 = 0.8 1.10663554× 10−5 3.36976093× 10−6 7.66936795× 10−7
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Figure 27: The shape RMS for u(0.5, y, t) with α1, α2 that are α1 = 0.5,
α2 = 0.7, α3 = 0.9. of Eq.(10) and error Eq.(18).

Table 16: Sample of Eq.(10) and RMS Eq.(19) and the αi, i = 1, 2, 3. have
tree variable t, x, n, that y is fixed.

RMS0
j RMS1

j RMS2
j

α1 = 0.1, α2 = 0.2, α3 = 0.3 2.64417141× 10−5 7.83458201× 10−6 1.692269728× 10−6

α1 = 0.2, α2 = 0.4, α3 = 0.6 1.36523566× 10−5 4.08011152× 10−6 8.827629491× 10−7

α1 = 0.3, α2 = 0.6, α3 = 0.9 7.20941288× 10−6 2.15433676× 10−6 4.661227410× 10−7

α1 = 0.1, α2 = 0.5, α3 = 0.9 9.89595187× 10−6 2.95725439× 10−6 4.6.3983023× 10−7

α1 = 0.6, α2 = 0.7, α3 = 0.8 5.27428503× 10−6 1.57597159× 10−6 3.409935412× 10−7

Table 17: Sample of Eq.(10) and RMS Eq.(19) and the α1, α2 have tree
variable t, y, n, that x is fixed.

RMS0
j RMS1

j RMS2
j

α1 = 0.2, α2 = 0.4 1.12350796× 10−4 3.70391510× 10−5 8.11254912× 10−6

α1 = 0.1, α2 = 0.7 5.82415382× 10−5 1.98429677× 10−5 4.56905448× 10−6

α1 = 0.3, α2 = 0.6 3.08286709× 10−5 1.04770384× 10−5 2.41259187× 10−6

α1 = 0.5, α2 = 0.9 4.22480211× 10−5 1.43728151× 10−5 3.30905635× 10−6

α1 = 0.6, α2 = 0.8 2.26190713× 10−5 7.67361570× 10−6 1.76739514× 10−6
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Figure 28: The shape RMS for u(0.5, y, t) with α1, α2, α3 that are α1 = 0.3,
α2 = 0.5, α3 = 0.9 of Eq.(10) and error Eq.(18).

Table 18: Sample of Eq.(10) and RMS Eq.(19) and the αi, i = 1, 2, 3 have
tree variable t, y, n, that x is fixed.

RMS0
j RMS1

j RMS2
j

α1 = 0.1, α2 = 0.2, α3 = 0.3 1.35596506× 10−4 1.34395454× 10−4 1.34377414× 10−4

α1 = 0.2, α2 = 0.4, α3 = 0.6 1.27265809× 10−4 1.26561905× 10−4 1.25629738× 10−4

α1 = 0.3, α2 = 0.6, α3 = 0.9 1.20259941× 10−4 1.19793031× 10−4 1.16883116× 10−4

α1 = 0.1, α2 = 0.5, α3 = 0.9 2.99362980× 10−5 1.32748298× 10−5 4.65066226× 10−6

α1 = 0.6, α2 = 0.7, α3 = 0.8 2.88319590× 10−5 1.27763920× 10−5 4.65066226× 10−6

In our tables, we obtainRMS ofEq.(19) for several α’s. TheRMS solutions
is not much more than 10−4. With n = 1000, several amounts α1, α2 and ∆t
with y = 0.5 at tables 15 and 16, Beginning TheRMS is of 10−6 until to 10−7

that the outcomes and the answers are accord and variable time at has nearly
effectless when it is tiny enough at tables 17 and 18 we have tree fractional the
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αi, i = 1, 2, 3 that have been illustrated for two term α1, α2 and tree term α1,
α2, α3 with x = 0.5, the RMS is among 10−4 until 10−6.
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Figure 29: The shape RMS for u(x, 0.5, t) with α1, α2 that are α1 =
0.3, α2 = 0.6 of Eq.(10) and error Eq.(18).

From the above figures ∆t = 0.01 and n = 1000. For approximate
answers with y = 0.5 that in Figure 29 in fact displays the Error of Eq.(18)
and we considered α1 = 0.3, α2 = 0.6 in Fig.30 we considered α1 =
0.1, α2 = 0.5, α3 = 0.9, the N is dimensions of fBSf . we look in the
shapes RMS in axis X is not decrease than 10−4 by notice with N = 2 it is
10−5, at in Figure 31 and Figure 32 the powers factional are look to Figure
29 and Figure 30 in order only x = 0.5 instead y = 0.5. It is manner is not
fast to it is not rapidity increase tangible.

5 Conclusions

In our manuscript, we have solved multi-term time fractional diffusion-wave
equation by Collocation Method where the Dt in this is Caputo concept for
(0 < α < 1). We have considered an arbitrary one- and two-dimentional. Of
fBSf used at collocation method. We have examined two issues here, the
first Simplicity and ease of applying this method to multi-term time fractional
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Figure 30: The shape RMS for u(x, 0.5, t) with αi, i = 1, 2, 3 that are α1 =
0.1, α2 = 0.5, α3 = 0.9 of Eq.(10) and error Eq.(18).
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Figure 31: The shape RMS for u(0.5, y, t) with α1, α2 that are α1 =
0.3, α2 = 0.6 of Eq.(10) and error Eq.(18).

diffusion-wave equation. Our second goal was to apply these basic functions to
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Figure 32: The shape RMS for u(0.5, y, t) with αi, i = 1, 2, 3 that are α1 =
0.1, α2 = 0.5, α3 = 0.9 of Eq.(10) and error Eq.(18).

these types of equations. The effectiveness and high accuracy of the proposed
numerical approximate scheme provided numerical results and figures demonstrate.
To test the correctness of the method, we provided several examples with
different exact answers in the powers. Numerical simulations were performed
using Mathlab.
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