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Abstract8

This paper studies a B-spline algorithm for calculating the solution of the multi-term time-fractional diffusion
equations(M-TT-FDEs). This model describes the diffusion prossing in the fluid mechanics and provides valuable
predictions. The solution of the M-TT-FDEs is discretized by means of B-spline function based on the B-spline
shape technique. It is verified that the proposed strategy is more efficient in terms of computational time and
accuracy in domain.
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1. Introduction11

A significant tool in various sciences the fractional differential equation(FDE) [1, 2, 3, 4] that with a dis-12

cretization method the FDE are solved by computer [5]. Finite difference, finite volume, finite element, discrete13

element, boundary element, no mesh, or combination of these methods are the most common methods of discretiza-14

tion [6, 7, 8, 9, 10, 11]. Most methods offer the same solution to the original PDEs in theory. In [14] Baleanu15

et al., the FDE’s existence was studied using Caputo, and some analytical solutions were obtained for the hybrid16

differential equation [15].17

18

Numerical methods presented to solve approximate answers to differential equations of mathematical samples19

of different problems [16, 17, 18, 19]. The collocation method solves a finite number of nodes by solving the20

differential equation. The easy and high speed is the biggest advantage of this method. The fractional B-spline21

function(fBSf ) is a smoothness to connect with the low calculating cost of collocation.Our goal in this manuscript22

is to seek the performance of fBSf at the collocation method to solve initial and boundary value problems. Our23

goal in this manuscript is to seek the performance of fBSf at collocation method to solve initial and boundary24

value problems.25

M − TFDE reduced of the problem to a system of the ordinary by Edwards et. al. [20]. Another method26

is meshless that was introduced by Hosseini et. al.for solving M − TFDE in [2, 12, 13]. That left-side caputo27

fractional derivative persented by Lin and Lazarov et. al where they got the O(h2 + τ2−�) [21]. On different28

intervals focus on the fractional predictor-corrector method M−TFDE by Liu [22]. The other method, the space-29

time spectral scheme presented by Zheng et. al. was an impressive numerical method [24]. Assuming the norm to30

be L2 the stability and convergence proved at finite-difference scheme leads to a lower accuracy orderO(τ�). With31

spectral collocation method expanded an power accurate fractional for solving time-dependent fractional partial32

∗Corresponding author:mr_63_90@yahoo.com
Manuscript submitted to Elsevier June 20, 2021



differential equations with help new fractional Lagrange interpolants by Zayernouri et. al [25]. A composition of1

finite difference and matrix transfer method presented by Zhao et. al. [26].2

This manuscript is formed as follows: in section 2, some basic definitions and theorems of fBSf are expressed.3

Section 3 is dedicated to the solution of M −TDFE using the collocation technique with fBSf . Insection 4, five4

numerical examples are presented.5

2. Basic function6

In this section, the efficiency and usefulness of spline functions in computers, math and Box splines have been7

demonstrated in [27, 28, 29, 30]. We will provide several definitions and theorems of [31].8

Definition 2.1. Functions are called polynomial spline function of degree n + 1. The conditions of functions is a9

piece of multinomial function with degree n on interval [a, b] are as follows:10

1) The points interpolation are a = t1 ≤ t2 ≤ t3 ≤ . . . ≤ td = b and in amongst any [ti, t(i+1)] is one polynomials11

of degree n too conjunction [t(i+1), t(i+2)] to another polynomials:12

Sn(t) =





s1(t) ; t1 ≤ t ≤ t2,

s2(t) ; t2 ≤ t ≤ t3,

.

.

.

s(d−1)(t) ; t(d−1) ≤ t ≤ td.

(1)

Spline function presented Sn(t) that on each partition si(t), i = 1, 2, . . . , d− 1 is a polynomial of n degree.13

2)The characteristics of the nth derivative which are limited, displays several isolated case that it is not continuities14

in points, and they are continuities at knots among the polynomial piece where the continuous derivative of the order15

of n− 1 is one of the properties of si(t), i = 1, 2, . . . , d− 1 functions at [ti, t(i+1)].16

B-Splines functions(BSf ) polynomials were introduced by I. J. Schoenberg in [32, 33] in 1946. He formed the17

basic functions for terms BSf as follows:18

Sn(t) =
∑

j∈Z
cjβ

n(t− j), (2)

19

βn(t) =
1
n!

n+1∑

j=0

(−1)j

(
n + 1

j

)
(t− j)n

+. (3)

Where20

(t− j)n
+ =

{
(t− j)n t > j,

t > j t ≤ j.
(4)

The BSf with different powers:21

22

In Fig.1, the power 0 for β0(t) if constant function, in Fig.2, β1(t) called Hat function that is a linear function,23

in Fig.3, β2(t) of degree two and in Fig.4, β3(t) called bell function that is degree tree. These functions play24

essential role in the theory of defense approximation and analysis. The reason for using these functions in a variety25

of applications and their widespread use is that they have desirable properties [34, 35, 36, 37].26

The extension of constant’s presented by Thierry Blu and Michael Unser of fBSf [38]. The favorable attributes27

of fBSf showed to transfer to the fractional case.28
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Figure 1: The BSf shapes with 0 degree is really β0(t).
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Figure 2: The BSf shapes with 1 degree is really β1(t).
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Figure 3: The BSf shapes with 2 degree is really β2(t).

Definition 2.2. The fBSf β�(t) is:1

β�(t) =
1

Γ(� + 1)

∑

k≤0

(−1)k

(
� + 1

k

)
(t− k)�+ (5)

the Eq.5 is credible point to point for everyone t ∈ R and a well as into the L2(R).2

In Figs.5, 6, 7, and Fig.8 several samples of fBSf are introduced, it seems to be destroyed, only time the � be an3

integer then the fBSf are compactly supported. in this sample, we have covered the classical BS. Generally, they4
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Figure 4: The BSf shapes with 3 degree is really β3(t).

have an axis of asymmetric.1

Functions with fractional power are well approximated by the fBSf because they have fractional power. They
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Figure 5: The fBSf shapes with 0.1 degree is really β0.1(t).
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Figure 6: The fBSf shapes with 0.3 degree is really β0.3(t).

2

have every continuous parameter � > −1. If the � is an integer, this function interpolates the normal splines.3

First of all, investigated a rather forced adjust univariate analysis with spaced points; for making multiresolution4

wavelet bases their monotonous net in special is needed. Second, these functions can be used in many numerical5

methods, and also the fBSf have the characteristics of a type the BS such as the support domain of the BS for6
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Figure 7: The fBSf shapes with 0.3 degree is really β0.7(t).
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Figure 8: The fBSf shapes with 1.3 degree is really β1.3(t).

nonintegral where � is no longer compact. Particulary, functions were dense in L2 with condition � > −1
2 .1

The definition of fBSf spaces on the a scale is as follows:2

3

S�
a = {sa : ∃c ∈ l2, sa(x) =

∑

k∈Z
ckβ�(

x

a
− k)} (6)

We assess its least squares approximation in S�
a for an arbitrary function f ∈ L2(R).4

5

Theorem 2.3. The fBSf has a fractional order of approximation � + 1. In particular, the least-squares approxi-6

mation error is limited by7

∀f ∈ W �+1
2 , ‖f − Paf‖L2 ≤ a�+1‖D�+1f‖L2

√
2ξ(� + 2)− 1

2

Π�+1
; a → 0 (7)

Proof. The proofs in [38], (Theorem 4.1).8

In this theorem, Paf is an interpolation function of function f . The fBSf produces credible multiresolution9

analysis of L2 for � > − 1
2 . The fBSf can be a scheme to have an optional order of smooth. These functions10

produce a sequence of space flow as:11

0 ⊂ ... ⊂ X−1 ⊂ X0 ⊂ X1 ⊂ ... ⊂ L2(R) (8)
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they have properties:1

a)
⋂

i∈Z Xi = 0 and
⋃

i∈Z Xi = L2(R).2

b) f(∗) ∈ Xi if and only if f(2−i∗) ∈ X03

c) f(∗) ∈ X0 if and only if f(∗ − k) ∈ X0 for each k ∈ Z and there be a function ϕ ∈ X0, called a scale factor,4

such a way that ϕ(∗− k)k∈Z format an orthonormal foundations of X0. The spaces fBSf produce Xn are of order5

� ∈ R with points k × 2n, k ∈ Z where the forms spaces are:6

7

Xn = span{β�(
x− 2nk

2n
)L2(R)};� ≥ −1

2
, n ∈ Z, (9)

That β� produces a multiresolution analysis. Let’s take, a = 2i, then several sample of multiresolution and shift8

fBSf β� as illustrated below:9

Figs.9, 10, 11, and Fig.12 are some shift β1(t − k),β2(t), β1(2t) and β2(2t) ,respectively. In our methods
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Figure 9: The one degree of BSf shape are by i = 0 i.e. a = 1 and several various k of Eq.6 really β1(t), β1(t− 1), β1(t + 1), β1(t + 2).
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Figure 10: The two degree of BSf shape are by i = 0 i.e. a = 1 and several various k of Eq.6 really β2(t), β2(t− 1), β2(t + 1).

10

numerical analysis basic functions are those functions.11

Several shift fBSf of the � = 0.3 with a = 20 and a = 2−1 and several different k of conforming to Eq.6 in12

actuality β0.3(t) and β0.3(2t) are shown in Fig.13 and Fig.14.13
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Figure 11: The one degree of BSf shape are by i = −1 i.e. a = 1
2

and several various k of Eq.6 really β1(2t), β1(2t − 1), β1(2t + 1),
β1(2t + 2), β2(2t).
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Figure 12: The two degree BSf shape are by i = −1 i.e. a = 1
2

and several various k ofEq.6 really β2(2t− 2), β2(2t− 1), β2(2t + 1).
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Figure 13: The diagram of the � = 0.3 degree are by i = 0 i.e. a = 1 and several k of Eq.6 really β0.3(t), β0.3(t − 1). , β0.3(t − 2),
β0.3(t− 3) for fBSf .

3. M − TFDE1

With M − TFDE of diffusion-wave time equations a lot work extensions have been conducted. We are using2

base fBSf in the collocation method on approximation. In this article, we discuss Caputo time derivative in one3
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Figure 14: The diagram of the � = 0.3 degree are by a = −1 and several k of Eq.6 really β0.3(2t), β0.3(2t−1), β0.3(2t+1), β0.3(2t−2)
for fBSf .

and two dimensions:1





P(Dt)(X, t)−∆U(X, t) = F(X, t) (X, t) ∈ Ω× (0, T ],

U(X, 0) = ψ1(X), X ∈ Ω

U(X, t) = Φ(X, t), X ∈ ∂Ω,

(10)

where Ω is domain and ∂Ω is a boundary.2

The F is the source term in equation above, issued to the suitable initial and boundary condition, respectively.3

Condition ψ1 and Φ are presented functions on Ω.4

Then, the P(Dt) is fractional operator to form under:5

P(Dt) = Dt +
m∑

i=1

riD�i
t , (11)

where the m ∈ N and D�i
t represents the Caputo fractional derivative of order �i ∈ (0, 1), is defined by6

D�i
t U(t) =





1
Γ(k − �i)

∫ t

0

(t− ξ)k−�i−1Uk(ξ)dξ k − 1 < �i < k, t > 0,

Uk(t) �i = k.

(12)

the Γ(.) is a usual Gamma function. The fBSf does not have compact support but it decays toward infinity as:

β�(t) =
1

|t|−2−� ,

moreover however, β� is �-Hölder continuous, belonging to L2(R) and reproducing polynomials up to degree [�].7

3.1. Collocation technique fBSf with one variable for unknown function8

First, we want to explain the method with a variable one dimension for unknown function, from Eq.109

X ∈ XN ⊆ X
concerning Eq.9 since X to X . The ŨN (X, t) is approximate of UN (X, t) that we select a limited family of10

functions. The X is single variable thus X = x, the XN is a series of dimensional subspace that XN ⊂ X ;N ≥ 011

8



that XN have a basis βr(x−2N k
2N ) and βp( t−2N l

2N ). We search a function ŨN (x, t) ∈ XN ×XN that it can be written1

as:2

ŨN (x, t) =
d,d∑

k,l=1

cklβ
r(

x− 2Nk

2N
)βp(

t− 2N l

2N
). (13)

We sub ŨN (x, t) to UN (x, t) in the Eq.10 and dissolve it. then, assume considerate (x, t) ∈ [a, b] × [c, d], which3

the numbers k, l in Eq.13 is confined on [a, b]. We search knots (xi, ti), i = 1, ..., d, so that (x, t) ∈ [a, b] × [c, d]4

and c11, ..., cdd are assess by dissolving linear system:5

RN (xi, tj) =
m∑

i=1

riD�i
t

d,d∑

k,l=1

cklβ
r(

xi − 2Nk

2N
)βp(

tj − 2N l

2N
)

−
d,d∑

k,l=1

ckl∆βr(
xi − 2Nk

2N
)βp(

tj − 2N l

2N
)−

d,d∑

j,i=1

F(xi, tj) = 0, (14)

next we utilization of Eq.5 at up equation, which is obtained:6

RN (xi, tj) =
d,d∑

k,l=1

ckl


∑

s≥0

(−1)s

(
r + 1

s

)
(xi−2N k

2N − s)r
t

Γ(r + 1)







m∑

i=1

riD�i
t

∑

h≥0

(−1)s

(
p + 1

h

)
( tj−2N l

2N − s)p
t

Γ(p + 1)




−
d,d∑

k,l=1

ckl∆


∑

s≥0

(−1)s

(
r + 1

s

)
(xi−2N k

2N − s)r
t

Γ(r + 1)





∑

h≥0

(−1)s

(
p + 1

h

)
( tj−2N l

2N − s)p
t

Γ(p + 1)




=
d,d∑

j,i=1

F(xi, tj), i, j = 0, ..., d− 1. (15)

3.2. Collocation method fBSf with two variable for unknown function7

In the second case, we tend to explain the method with a variable two dimension for unknown function, from8

Eq.10 , we assume X ∈ R2 i.e. (X, t) = (x, y, t) then like the mode of a variable we select a series of dimensional9

subspace XN ⊂ X ;N ≥ 0 that XN have a basis βr(x−2N i
2N ), βq(y−2N j

2N ) and βp( t−2N k
2N ). We seek a function10

ŨN (x, y, t) ∈ XN ×XN ×XN that can be written as:11

ŨN (x, y, t) =
∑

i,j,k∈N
cijkβr(

x− 2N i

2N
)βq(

y − 2N j

2N
)βp(

t− 2Nk

2N
). (16)

next change ŨN (x, y, t) with U(x, y, t) in the Eq.10 and dissolving it. Next, we assume by considering (x, y, t) ∈12

[c, d]× [e, f ]× [a, b], with this i, j, k in Eq.16 is limited on [a, b].13

Now we search knots (xi, yj , tk), i, j, k = 1, ..., d where (x, y, t) ∈ [a, b] × [c, d] × [e, f ] and c111, c211, ..., cddd14

9



are assess by dissolve linear system below:1

RN (xw, yv, tz) =
m∑

i=1

riD�i
t

d,d,d∑

i,j,k=1

cijkβr(
xw − 2N i

2N
)βp(

yv − 2N j

2N
)βq(

tz − 2Nk

2N
)

− ∆
d,d,d∑

i,j,k=1

cijkβr(
xw − 2N i

2N
)βp(

yv − 2N j

2N
)βq(

tz − 2Nk

2N
)

−
d,d,d∑

i,j,k=1

F(xw, yv, tz) = 0, w, v, z = 0, ..., d− 1. (17)

Similar previous case, putting Eq.5 can obtain the unknown factors. With Placement points in two modes are
mentioned, two matrices are created. we solve Eq.10 with collocation technique by usage of fBSf . we assume
Pn that maps X onto Xn, define PnU(x, t) to be that atom of Xn that approximate X at the knots used at Eq.13
and Eq.16. We can found following relation:

PnU(X, t) = ŨN (X, t)

with the factors cij with one variable and cijk with two variable specified dissolving the linear system Eq.15 and
Eq.5 next our problem has a alone one answer if

det(RN (xi, tj)) 6= 0

or
det(RN (xw, yv, tz)) 6= 0.

The convergence of this method is guaranteed by means of Theorem 2.3.2

3

4. Applications and Results4

Now, we present the conclusions made for several samples using our method with fBSf for Eq.10 explained5

previously. At samples, the precision of the methods, and we compare with the suggested technique two types of6

error measures, ε∞ that is a maximum absolute error and RMS εR:7

Error =
∥∥∥ŨN (Xi, t)− U(Xi, t)

∥∥∥
∞

, 0 ≤ t ≤ T (18)
8

RMS =

√√√√∑n
i=1

(
ŨN (Xi, t)− U(Xi, t)

)2

n
, (19)

are employed, which the U(Xi, t) is exact answers and ŨN (Xi, t) is approximate answers, N is dimension of fBSf
and n is number knots for plot shape and compute error between exact and approximate answers in order. At every
example, we are assume regular node be regular partition next by solve Eq.15 or (18) and obtain ckl or cijk for
Eq.13 and Eq.16 that it is approximate answers then we divide to n of the equal part the scope of the answer and
by using Eq.

10



Example 1.1

First example, we discuss the Eq.10 with different �1, �2 andt ∈ [0, 1] and 4ti = ti − ti−1 = 0.01 in partition2

Ω = [0, 0.5]. The U(x, t) = x3(t1+�1+�2) is exact solution too3

F(x, t) = −6t2+�1+�2x

+ x3Γ(1 + �1 + �2)(1 + �1 + �2)
[

(t1+�1)Γ(2− �1)
Γ(3 + �1)Γ(1− �2)

+
(t1+�2)Γ(2− �2)

Γ(3 + �2)Γ(1− �1)

]
(20)

and tree term fractal �i, i = 1, 2, 3,
U(x, t) = x3(t1+�1+�2+�3)

also4

F(x, t) = −6t2+�1+�2+�3x

+ x3Γ(1 + �1 + �2 + �3)(1 + �1 + �2 + �3)[
(t1+�1+�2)Γ(2− �3)

Γ(3 + �1 + �2)Γ(1− �3)
+

(t1+�1+�3)Γ(2− �2)
Γ(3 + �2 + �3)Γ(1− �2)

+
(t1+�2+�3)Γ(2− �1)

Γ(3 + �2 + �3)Γ(1− �1)

]
(21)

Table 1: Sample of Eq.10 and RMS Eq.19 and the �1, �2 have tree variable t, x, n .
RMS0

j RMS1
j RMS2

j

�1 = 0.1, �2 = 0.4 1.37691715× 10−4 1.36817007× 10−4 1.36784227× 10−4

�1 = 0.3, �2 = 0.4 1.31697622× 10−4 1.31062956× 10−4 1.31000040× 10−4

�1 = 0.2, �2 = 0.6 1.28816508× 10−4 1.28369975× 10−4 1.27977642× 10−4

�1 = 0.1, �2 = 0.9 2.44772992× 10−4 2.12264571× 10−5 4.87391324× 10−6

�1 = 0.3, �2 = 0.8 3.03165220× 10−5 1.34647287× 10−5 4.79382664× 10−6

5

Table 2: Sample of Eq.10 and RMS Eq.19 and the �1, �2, �3 have tree variable t, x, n.
RMS0

j RMS1
j RMS2

j

�1 = 0.1, �2 = 0.2, �3 = 0.3 1.35596505× 10−4 1.34395454× 10−4 1.34377414× 10−4

�1 = 0.2, �2 = 0.3, �3 = 0.4 1.27265808× 10−4 1.26561905× 10−4 1.25629737× 10−4

�1 = 0.3, �2 = 0.4, �3 = 0.5 1.20259940× 10−5 1.19793031× 10−4 1.16883116× 10−4

�1 = 0.1, �2 = 0.3, �3 = 0.8 2.99362980× 10−5 1.32748298× 10−5 4.65066226× 10−6

�1 = 0.2, �2 = 0.3, �3 = 0.9 2.88319590× 10−5 1.27763920× 10−5 4.65066226× 10−6

6

At our tables, we obtain RMS of Eq.19 for several �’s. The RMS solutions is not much more than 10−4. The7

table 1 with �1,�2 and the table 2 with �1,�2,�3, shows the RMS produced using with n = 500 and several of �8

and ∆t. When the N grow, the RMS is reducing slowly and decreasing the error by grow the X to little by little9

in Fig.15, and Fig.16.10

We are displaying the Error of Eq.18 that estimate answers with �1 = 0.1, �2 = 0.4 and �1 = 0.1, �2 = 0.2,11

�3 = 0.3, the N is number of variable of fBSf at Fig.15 and Fig.16. We view in the Fig.15 and Fig.16, Error12

in axis X is not decrease until 10−3 by attention to that in N = 2 it is 10−4, it is manner is not fast, it is not t13

11
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Figure 15: The shape RMS for �1, �2 that are �1 = 0.1, �2 = 0.4 of Eq.10 and error Eq.18 .
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Figure 16: The shape RMS for �1, �2, �3 that are �1 = 0.1, �2 = 0.2, �3 = 0.3 of Eq.10 and error Eq.18.

rapidity increase tangible .1

Example 22

We discuss the Eq.10 with two variable x, y that is mean X ∈ R2 and several amounts for � and 4ti = 0.013

and t ∈ [0, 1] in partition Ω = [0, 0.5] × [0, 0.5] . The U(x, y, t) = t1+�1+�2x2y2 is solution, and force term can4

12



expreesed as follows1

F(x, y, t) = −2t2+�1+�2(x2 + y2)x2y2 + Γ(1 + �1 + �2)(1 + �1 + �2)[
(t2+�1)Γ(2− �1)

Γ(3 + �1)Γ(1− �2)
+

(t2+�2)Γ(2− �2)
Γ(3 + �2)Γ(1− �1)

]

and tree term fractional �i, i = 1, 2, 3

U(x, y, t) = t1+�1+�2+�3x2y2

also2

F(x, y, t) = −2t2+�1+�2+�3(x2 + y2) + x2y2Γ(1 + �1 + �2 + �3)(1 + �1 + �2)[
(t1+�1+�2)Γ(2− �3)

Γ(3 + �1 + �2)Γ(1− �3)
+

(t1+�1+�3)Γ(2− �2)
Γ(3 + �2 + �3)Γ(1− �2)

+
(t1+�2+�3)Γ(2− �1)

Γ(3 + �2 + �3)Γ(1− �1)

]

In this sample plotting the error of obtained answers by amounts of Degree of fraction, assume one of the variables3

the variable X or Y to be constant then we calculate the RMS.We assume amounts fixed away from knots primary.4

Anew the N is dimension of fBSf and the N is grow Error isn’t increase. The Fig.17, Fig.18, Fig.19 and5

Fig.20 are answers at several time surfaces for � have been presented.6

Table 3: Sample of Eq.10 and RMS Eq.19 and the �1, �2 have tree variable t, x, n, that y is fixed.
RMS0

j RMS1
j RMS2

j

�1 = 0.1, �2 = 0.2 3.94497585× 10−4 9.15524676× 10−5 1.59141638× 10−5

�1 = 0.1, �2 = 0.8 2.48475179× 10−4 4.72961107× 10−5 1.25629737× 10−5

�1 = 0.5, �2 = 0.6 2.17263429× 10−4 3.81143002× 10−5 3.81143002× 10−5

�1 = 0.2, �2 = 0.6 3.17518103× 10−5 1.93898497× 10−6 1.41841301× 10−7

�1 = 0.3, �2 = 0.7 2.85753808× 10−5 1.56945742× 10−6 1.13979494× 10−7

7

Table 4: Sample of Eq.10 and RMS Eq.19 and the �1, �2, �3 have tree variable t, x, n, that y is fixed.
RMS0

j RMS1
j RMS2

j

�1 = 0.1, �2 = 0.2, �3 = 0.3 1.35596505× 10−4 1.34395454× 10−4 1.34377414× 10−4

�1 = 0.2, �2 = 0.4, �3 = 0.6 1.27265808× 10−4 1.26561905× 10−4 1.25629737× 10−4

�1 = 0.3, �2 = 0.6, �3 = 0.7 1.20259940× 10−4 1.19793031× 10−4 1.16883116× 10−4

�1 = 0.1, �2 = 0.5, �3 = 0.8 2.99362980× 10−5 1.32748298× 10−5 4.65066226× 10−6

�1 = 0.4, �2 = 0.5, �3 = 0.6 2.88319590× 10−5 1.27763920× 10−5 4.65066226× 10−6

8

9

10

In our tables, we obtain RMS of Eq.19 for several �’s. The RMS solutions isn’t much more than 10−4. With11

n = 500, several amounts �1, �2 and ∆t with y = 0.5, Beginning The RMS is of 10−4 until to 10−7 that the12

outcomes and the answers are accord and variable time at has nearly effectless when it is tiny enough at tables 313

13



Table 5: Sample of Eq.10 and RMS Eq.19 and the �1, �2 have tree variable t, y, n, that x is fixed.
RMS0

j RMS1
j RMS2

j

�1 = 0.1, �2 = 0.2 6.54169632× 10−4 1.382539696× 10−4 3.93536798× 10−5

�1 = 0.1, �2 = 0.8 4.82846136× 10−4 1.999813782× 10−5 7.21156527× 10−5

�1 = 0.5, �2 = 0.6 4.55836128× 10−4 5.821545927× 10−5 1.60713243× 10−5

�1 = 0.2, �2 = 0.6 5.75138282× 10−5 2.944033108× 10−6 1.78113445× 10−7

�1 = 0.3, �2 = 0.7 5.68271757× 10−5 2.393451379× 10−6 1.43214173× 10−7

Table 6: Sample of Eq.10 and RMS Eq.19 and the �1, �2, �3 have tree variable t, y, n, that x is fixed.
RMS0

j RMS1
j RMS2

j

�1 = 0.1, �2 = 0.2, �3 = 0.3 2.33138317× 10−3 1.56846535× 10−4 3.18440163× 10−5

�1 = 0.2, �2 = 0.4, �3 = 0.6 1.92621300× 10−3 8.62977077× 10−5 1.32199024× 10−5

�1 = 0.3, �2 = 0.6, �3 = 0.7 1.28240167× 10−3 5.23971866× 10−5 1.01573409× 10−5

�1 = 0.1, �2 = 0.5, �3 = 0.8 1.46864232× 10−4 2.23977676× 10−6 9.71019231× 10−8

�1 = 0.4, �2 = 0.5, �3 = 0.6 1.79950021× 10−4 2.21143135× 10−6 9.21224652× 10−8
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Figure 17: The shape RMS for u(x, 0.5, t) with �1, �2 that are �1 = 0.2, �2 = 0.6 of Eq.10 and error Eq.18.

and the table 4 we have tree fractional the �i, i = 1, 2, 3 that have been illustrated for two term �1, �2 and tree term1

�1, �2, �3 with x = 0.5, the RMS is among 10−4 until 10−6 and 10−3 to 10−8 respectively. When the N grow,2

the RMS is reducing slowly and decreasing the error by grow the X to little by little in Fig.15 and Fig.16.3

It is in the above figures∆t = 0.01 and n = 500. For approximate answers with y = 0.5 that in Fig.17 in fact4

displays the Error of Eq.18 and we considered �1 = 0.2, �2 = 0.6 in Fig.18 we considered �1 = 0.1, �2 = 0.5,5

�3 = 0.8, the N is dimensions of fBSf . we look in the shapes RMS in axis X isn’t decrease than 10−3 by notice6

with N = 2 it is 10−4, at in Fig.19 and Fig.20 the powers factional are look to Fig.17 and Fig.18 in order only7

x = 0.5 instead y = 0.5. It is manner is not fast it is not rapidity increase tangible .8

9

Example 310
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Figure 18: The shape RMS for u(x, 0.5, t) with �1, �2, �3 that are �1 = 0.1, �2 = 0.5, �3 = 0.8 of Eq.10 and error Eq.18.
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Figure 19: The shape RMS for u(0.5, y, t) with �1, �2 that are �1 = 0.5, �2 = 0.6 of Eq.10 and error Eq.18.

The third example, we discuss the Eq.10 with two variable x, y that’s mean X ∈ R2 and several amounts for � and1

t ∈ [0, 1] and 4ti = 0.01 in partition Ω = [0, 0.5]× [0, 0.5]. The U(x, y, t) = t1+�1+�2x2ey is solution2

F(x, y, t) = −2t1+�1+�2ey + x2eyΓ(1 + �1 + �2)(1 + �1 + �2)
[

(t2+�1)Γ(2− �1)
Γ(3 + �1)Γ(1− �2)

+
(t2+�2)Γ(2− �2)

Γ(3 + �2)Γ(1− �1)

]
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Figure 20: The shape RMS for u(0.5, y, t) with �1, �2, �3 that are �1 = 0.1, �2 = 0.5, �3 = 0.8 of Eq.10 and error Eq.18.

and tree term fractional �i, i = 1, 2, 3

U(x, y, t) = t1+�1+�2+�3x2ey

also1

F(x, y, t) = −2t2+�1+�2+�3(x2 + y2) + x2eyΓ(1 + �1 + �2 + �3)(1 + �1 + �2)[
(t1+�1+�2)Γ(2− �3)

Γ(3 + �1 + �2)Γ(1− �3)
+

(t1+�1+�3)Γ(2− �2)
Γ(3 + �2 + �3)Γ(1− �2)

+
(t1+�2+�3)Γ(2− �1)

Γ(3 + �2 + �3)Γ(1− �1)

]

In this sample the exact answers is one exponent function in x variable for plot the Error of obtained answers by2

amounts of Degree of fraction, assume one of the variables the variable X or Y to be constant then we calculate the3

RMS.We assume amounts fixed away from knots primary. Anew the N is dimension of fBSf and the N is grow4

Error is not increase. The Fig.21, Fig.22, Fig.23 and Fig.24 are answers at several time surfaces for � have5

been presented.6

Table 7: Sample of Eq.10 and RMS Eq.19 and the �1, �2 have tree variable t, x, n, that y is fixed.
RMS0

j RMS1
j RMS2

j

�1 = 0.5, �2 = 0.6 9.04541182× 10−5 1.41615859× 10−6 6.03249119× 10−7

�1 = 0.1, �2 = 0.7 4.16261408× 10−5 1.93217574× 10−6 8.35037092× 10−7

�1 = 0.3, �2 = 0.6 8.58065467× 10−5 1.73144761× 10−6 7.46330818× 10−7

�1 = 0.2, �2 = 0.4 4.56260027× 10−5 3.62032205× 10−6 6.53930371× 10−7

�1 = 0.7, �2 = 0.8 1.80267851× 10−5 1.36214067× 10−6 2.43485256× 10−7

7

8
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Table 8: Sample of Eq.10 and RMS Eq.19 and the �1, �2, �3 have tree variable t, x, n, that y is fixed.
RMS0

j RMS1
j RMS2

j

�1 = 0.3, �2 = 0.5, �3 = 0.6 5.19353341× 10−4 3.80155456× 10−5 9.73121322× 10−6

�1 = 0.2, �2 = 0.5, �3 = 0.7 4.80850444× 10−4 3.78465263× 10−5 9.69569172× 10−6

�1 = 0.1, �2 = 0.3, �3 = 0.8 4.68682804× 10−4 3.43935168× 10−5 8.59295668× 10−6

�1 = 0.2, �2 = 0.4, �3 = 0.6 4.04031852× 10−4 2.32012072× 10−5 1.42442171× 10−6

�1 = 0.3, �2 = 0.4, �3 = 0.9 3.09153935× 10−4 1.74275616× 10−5 1.04006198× 10−6

Table 9: Sample of Eq.10 and RMS Eq19 and the �1, �2 have tree variable t, y, n, that x is fixed.
RMS0

j RMS1
j RMS2

j

�1 = 0.5, �2 = 0.6 9.04541182× 10−5 1.24974484× 10−6 4.05615235× 10−7

�1 = 0.7, �2 = 0.1 9.90638751× 10−5 1.71281036× 10−6 5.62713624× 10−7

�1 = 0.6, �2 = 0.3 9.26941318× 10−5 1.05348294× 10−6 5.03312048× 10−7

�1 = 0.2, �2 = 0.4 5.54470808× 10−5 6.02212710× 10−6 3.83331255× 10−7

�1 = 0.7, �2 = 0.8 2.16824420× 10−5 2.26147866× 10−6 1.43730085× 10−7

Table 10: Sample of Eq.10 and RMS Eq.19 and the �1, �2, �3 have tree variable t, y, n, that x is fixed.
RMS0

j RMS1
j RMS2

j

�1 = 0.3, �2 = 0.5, �3 = 0.6 7.50950353e× 10−5 9.16838821× 10−6 3.04125495× 10−7

�1 = 0.2, �2 = 0.5, �3 = 0.7 6.99727485× 10−5 9.13493187× 10−6 3.03772247× 10−7

�1 = 0.1, �2 = 0.3, �3 = 0.8 6.64170418× 10−5 8.22103967× 10−6 2.73865500× 10−7

�1 = 0.2, �2 = 0.4, �3 = 0.6 5.59944023× 10−5 4.34802764× 10−6 3.44168282× 10−7

�1 = 0.3, �2 = 0.4, �3 = 0.9 3.74528508× 10−5 2.84022165× 10−6 4.65066226× 10−6

1

2

At Our tables, we obtain RMS of Eq.19 for several �’s. The RMS solutions is not much more than 10−4. With3

n = 1000, several amounts �1,�2 and ∆t with y = 0.5 at tables 7 and 8, Beginning The RMS is of 10−5 until to4

10−7 that the outcomes and the answers are accord and variable time at has nearly effectless when it is tiny enough5

at tables 9 and 10 we have tree fractional the �1,�2,�3 that have been illustrated for two term �1, �2 and tree term6

�1,�2,�3 with x = 0.5, the RMS is among 10−4 until 10−6. It is in the above figures ∆t = 0.01 and n = 500.7

For approximate answers with y = 0.5 that in Fig.21 in fact displays the Error of Eq.18 and we considered8

�1 = 0.3,�2 = 0.6 in Fig.22 we considered �1 = 0.3,�2 = 0.4,�3 = 0.9, the N is dimensions of fBSf . we9

look in the shapes RMS in axis X is not decrease than 10−3 by notice with N = 2 it is 10−4, at in Fig.23 and10

Fig.24 the powers factional are look to Fig.21 and Fig.22 in order only x = 0.5 instead y = 0.5. It is manner is11

not fast it is not rapidity increase tangible.12

Example 4 We discuss the Eq.(10) with two variable x, y that’s mean X ∈ R2 and several amounts for � and13

4ti = ti − ti−1 = 0.01 in partition Ω = [0, 0.5]× [0, 0.5] and t ∈ [0, 1]. The U(x, y, t) = t1+�1+�2x2 sin (πy) is14

solution15

F(x, y, t) = (t1+�1+�2 sin (πy))(−2 + π2x2) + x2 sinπyΓ(1 + �1 + �2)(1 + �1 + �2)[
(t2+�1)Γ(2− �1)

Γ(3 + �1)Γ(1− �2)
+

(t2+�2)Γ(2− �2)
Γ(3 + �2)Γ(1− �1)

]
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Figure 21: Example of Eq.10 and error Eq.18 and in diagram of absolute error of u(x, 0.5, t) at with �1, �2 that are �1 = 0.3, �2 = 0.6.
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Figure 22: The shape RMS for u(x, 0.5, t) with �1, �2, �3 that are �1 = 0.3, �2 = 0.4, �3 = 0.9. of Eq.10 and error Eq.18.

and tree term fractional �i, i = 1, 2, 3

U(x, y, t) = t1+�1+�2+�3x2 sin (πy)
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Figure 23: The shape RMS for u(0.5, y, t) with �1, �2 that are �1 = 0.3, �2 = 0.6 of Eq.10 and error Eq.18.
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Figure 24: The shape RMS for u(0.5, y, t) with �1, �2, �3 that are �1 = 0.01, �2 = 0.4, �3 = 0.9. of Eq.10 and error Eq.18.

also1

F(x, y, t) = (t2+�1+�2+�3)(−2 + (x2 sin (πy)) + x2 sin (πy)Γ(1 + �1 + �2 + �3)(1 + �1 + �2 + �3)[
(t1+�1+�2)Γ(2− �3)

Γ(3 + �1 + �2)Γ(1− �3)
+

(t1+�1+�3)Γ(2− �2)
Γ(3 + �2 + �3)Γ(1− �2)

+
(t1+�2+�3)Γ(2− �1)

Γ(3 + �2 + �3)Γ(1− �1)

]

In this sample the exact answers is one sin(x) function in x variable for plot the Error of obtained answers by2
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amounts of Degree of fraction, assume one of the variables the variable X or Y to be constant then we calculate the1

RMS.We assume amounts fixed away from knots primary. Anew the N is dimension of fBSf and the N is grow2

Error is not increase. The Fig.25, Fig.262, Fig.27 and Fig.28 are answers at several time surfaces for � have3

been presented.4

Table 11: Sample of Eq.10 and RMS Eq.19 and the �1, �2 have tree variable t, x, n, that y is fixed.
RMS0

j RMS1
j RMS2

j

�1 = 0.1, �2 = 0.2 2.48704511× 10−5 2.48680178× 10−5 2.50683895× 10−6

�1 = 0.1, �2 = 0.4 2.11915060× 10−6 2.11905899× 10−6 2.11839033× 10−6

�1 = 0.3, �2 = 0.6 1.47744861× 10−6 1.47738445× 10−6 1.47691804× 10−6

�1 = 0.5, �2 = 0.7 4.45767624× 10−8 1.32072454× 10−8 2.85215545× 10−9

�1 = 0.4, �2 = 0.8 4.45767614× 10−8 1.32072443× 10−8 2.85215514× 10−9

5

Table 12: Sample of Eq.10 and RMS Eq.19 and the �1, �2, �3 have tree variable t, x, n, that y is fixed.
RMS0

j RMS1
j RMS2

j

�1 = 0.1, �2 = 0.2, �3 = 0.3 1.93352892× 10−9 1.93352789× 10−10 1.93351972× 10−10

�1 = 0.2, �2 = 0.4, �3 = 0.5 1.24062859× 10−9 1.24062783× 10−10 1.24062144× 10−10

�1 = 0.5, �2 = 0.6, �3 = 0.7 6.87005350× 10−9 6.87004855× 10−10 6.87000483× 10−10

�1 = 0.3, �2 = 0.5, �3 = 0.9 2.61481782× 10−9 7.74760432× 10−10 1.67347895× 10−10

�1 = 0.7, �2 = 0.8, �3 = 0.9 2.61481782× 10−9 7.74760433× 10−10 1.67347895× 10−10

6

Table 13: Sample of Eq.10 and RMS Eq.19 and the �1, �2 have tree variable t, y, n, that x is fixed.
RMS0

j RMS1
j RMS2

j

�1 = 0.1, �2 = 0.2 8.31787593× 10−13 7.27500489× 10−13 3.77477483× 10−13

�1 = 0.1, �2 = 0.4 6.89621726× 10−13 6.02980391× 10−13 3.12902522× 10−13

�1 = 0.3, �2 = 0.6 4.80796722× 10−13 4.20121940× 10−13 2.18027408× 10−13

�1 = 0.5, �2 = 0.7 2.49135913× 10−14 6.70824908× 10−15 8.76460781× 10−16

�1 = 0.4, �2 = 0.8 2.49126107× 10−14 6.70727405× 10−15 8.76281172× 10−16

7

Table 14: Sample of Eq.10 and RMS Eq.19 and the �1, �2, �3 have tree variable t, y, n, that x is fixed.
RMS0

j RMS1
j RMS2

j

�1 = 0.1, �2 = 0.2, �3 = 0.3 6.29148619× 10−14 5.33007986× 10−15 6.79864808× 10−16

�1 = 0.2, �2 = 0.4, �3 = 0.5 4.03686627× 10−14 3.32564899× 10−15 1.51765516× 10−16

�1 = 0.5, �2 = 0.6, �3 = 0.7 2.23543833× 10−14 1.77788355× 10−15 1.13809033× 10−16

�1 = 0.3, �2 = 0.5, �3 = 0.9 1.46147562× 10−14 3.93388530× 10−15 5.13326847× 10−16

�1 = 0.7, �2 = 0.8, �3 = 0.9 1.46149330× 10−14 3.93429190× 10−15 5.13422205× 10−16

8
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In our tables, we obtain RMS of Eq.19 for several �’s. The RMS solutions is not much more than 10−4. With1

n = 1000, several amounts �1, �2 and ∆t with y = 0.5 at tables 11 and 12, Beginning The RMS is of 10−5
2

until to 10−7 that the outcomes and the answers are accord and variable time at has nearly effectless when it is tiny3

enough at tables 13 and 14 we have tree fractional the �1,�2,�3 that have been illustrated for two term �1, �2 and4

tree term �1, �2, �3 with x = 0.5, the RMS is among 10−4 until 10−6.5

0
0.5

1
1.5

2 0

0.5

1

0

2

4

6

8

x 10
−8

 

 

0

2

4

6

x 10
−8

X

N

Figure 25: The shape RMS for u(x, 0.5, t) with �1, �2 that are �1 = 0.5, �2 = 0.7 of Eq.10 and error Eq.18.
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Figure 26: The shape RMS for u(x, 0.5, t) with with �1, �2, �3 that are �1 = 0.3, �2 = 0.5, �3 = 0.9. of Eq.10 and error Eq.18.
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Figure 27: The shape RMS for u(0.5, y, t) with �1, �2 that are �1 = 0.5, �2 = 0.7, �3 = 0.9. of Eq.10 and error Eq.18.
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Figure 28: The shape RMS for u(0.5, y, t) with �1, �2, �3 that are �1 = 0.3, �2 = 0.5, �3 = 0.9 of Eq.10 and error Eq.18.

From the above figures ∆t = 0.01 and n = 1000. For approximate answers with y = 0.5 that in Fig.25 in1

fact displays the Error of Eq.18 and we considered �1 = 0.5,�2 = 0.7 in Fig.26 we considered �1 = 0.3,�2 =2

0.5,�3 = 0.9, the N is dimensions of fBSf . we look in the shapes RMS in axis X is not decrease than 10−3 by3

notice with N = 2 it is 10−4, at in Fig.27 and Fig.28 the powers factional are look to Fig.25 and Fig.26 in order4

only x = 0.5 instead y = 0.5. It is manner is not fast it is not rapidity increase tangible.5

Example 56
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The fifth sample, we discuss the Eq.10 with two variable x, y that’s mean X ∈ R2 and several amounts for � and1

t ∈ [0, 1] and 4ti = 0.01 in partition Ω = [0, 1]× [0, 0.5]. The U(x, y, t) = t1+�1+�2 cos (πx) sin (πy) is solution2

U(x, y, t) = t1+�1+�2 cos (πx) sin (πy) also3

F(x, y, t) = (cos (πx) sin (πy))[(2π2)(t1+�1+�2 + Γ(1 + �1 + �2)(1 + �1 + �2)[
(t2+�1)Γ(2− �1)

Γ(3 + �1)Γ(1− �2)
+

(t2+�2)Γ(2− �2)
Γ(3 + �2)Γ(1− �1)

]

and tree term fractional �i, i = 1, 2, 3 U(x, y, t) = t1+�1+�2+�3x2 sin (πy) also4

F(x, y, t) = (cos (πx) sin (πy))[(t2+�1+�2+�3)(2π2) + Γ(1 + �1 + �2 + �3)(1 + �1 + �2 + �3)[
(t1+�1+�2)Γ(2− �3)

Γ(3 + �1 + �2)Γ(1− �3)
+

(t1+�1+�3)Γ(2− �2)
Γ(3 + �2 + �3)Γ(1− �2)

+
(t1+�2+�3)Γ(2− �1)

Γ(3 + �2 + �3)Γ(1− �1)

]

In this sample the exact answers is one cos(x) multiplied by sin(y) function in x variable and variable yfor5

plot the Error of obtained answers by amounts of Degree of fraction, assume one of the variables the variable X6

or Y to be constant then we calculate the RMS.We assume amounts fixed away from knots primary. Anew the N7

is dimension of fBSf and the N is grow Error is not increase. The Fig.29, Fig.30, Fig.31 and Fig.28 are8

answers at several time surfaces for � have been presented.9

Table 15: Sample of Eq.10 and RMS Eq.19 and the �1, �2 have tree variable t, x, n, that y is fixed.
RMS0

j RMS1
j RMS2

j

�1 = 0.2, �2 = 0.4 2.66410382× 10−5 8.11472163× 10−6 1.84662960× 10−6

�1 = 0.1, �2 = 0.7 2.12768140× 10−5 6.48025816× 10−6 1.47455616× 10−6

�1 = 0.3, �2 = 0.6 1.90424748× 10−5 5.79995106× 10−6 1.31984354× 10−6

�1 = 0.5, �2 = 0.9 1.10666715× 10−5 3.36960185× 10−6 7.66820560× 10−7

�1 = 0.6, �2 = 0.8 1.10663554× 10−5 3.36976093× 10−6 7.66936795× 10−7

10

Table 16: Sample of Eq.10 and RMS Eq.19 and the �i, i = 1, 2, 3. have tree variable t, x, n, that y is fixed.
RMS0

j RMS1
j RMS2

j

�1 = 0.1, �2 = 0.2, �3 = 0.3 2.64417141× 10−5 7.83458201× 10−6 1.692269728× 10−6

�1 = 0.2, �2 = 0.4, �3 = 0.6 1.36523566× 10−5 4.08011152× 10−6 8.827629491× 10−7

�1 = 0.3, �2 = 0.6, �3 = 0.9 7.20941288× 10−6 2.15433676× 10−6 4.661227410× 10−7

�1 = 0.1, �2 = 0.5, �3 = 0.9 9.89595187× 10−6 2.95725439× 10−6 4.6.3983023× 10−7

�1 = 0.6, �2 = 0.7, �3 = 0.8 5.27428503× 10−6 1.57597159× 10−6 3.409935412× 10−7

11

12

13

In our tables, we obtain RMS of Eq.19 for several �’s. The RMS solutions is not much more than 10−4. With14

n = 1000, several amounts �1, �2 and ∆t with y = 0.5 at tables 15 and 16, Beginning The RMS is of 10−6
15

until to 10−7 that the outcomes and the answers are accord and variable time at has nearly effectless when it is tiny16
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Table 17: Sample of Eq.10 and RMS Eq.19 and the �1, �2 have tree variable t, y, n, that x is fixed.
RMS0

j RMS1
j RMS2

j

�1 = 0.2, �2 = 0.4 1.12350796× 10−4 3.70391510× 10−5 8.11254912× 10−6

�1 = 0.1, �2 = 0.7 5.82415382× 10−5 1.98429677× 10−5 4.56905448× 10−6

�1 = 0.3, �2 = 0.6 3.08286709× 10−5 1.04770384× 10−5 2.41259187× 10−6

�1 = 0.5, �2 = 0.9 4.22480211× 10−5 1.43728151× 10−5 3.30905635× 10−6

�1 = 0.6, �2 = 0.8 2.26190713× 10−5 7.67361570× 10−6 1.76739514× 10−6

Table 18: Sample of Eq.10 and RMS Eq.19 and the �i, i = 1, 2, 3 have tree variable t, y, n, that x is fixed.
RMS0

j RMS1
j RMS2

j

�1 = 0.1, �2 = 0.2, �3 = 0.3 1.35596506× 10−4 1.34395454× 10−4 1.34377414× 10−4

�1 = 0.2, �2 = 0.4, �3 = 0.6 1.27265809× 10−4 1.26561905× 10−4 1.25629738× 10−4

�1 = 0.3, �2 = 0.6, �3 = 0.9 1.20259941× 10−4 1.19793031× 10−4 1.16883116× 10−4

�1 = 0.1, �2 = 0.5, �3 = 0.9 2.99362980× 10−5 1.32748298× 10−5 4.65066226× 10−6

�1 = 0.6, �2 = 0.7, �3 = 0.8 2.88319590× 10−5 1.27763920× 10−5 4.65066226× 10−6
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Figure 29: The shape RMS for u(x, 0.5, t) with �1, �2 that are �1 = 0.3, �2 = 0.6 of Eq.10 and error Eq.18.

enough at tables 17 and 18 we have tree fractional the �i, i = 1, 2, 3 that have been illustrated for two term �1, �21

and tree term �1, �2, �3 with x = 0.5, the RMS is among 10−4 until 10−6.2

From the above figures ∆t = 0.01 and n = 1000. For approximate answers with y = 0.5 that in Fig.29 in3

fact displays the Error of Eq.18 and we considered �1 = 0.3,�2 = 0.6 in Fig.30 we considered �1 = 0.1,�2 =4

0.5,�3 = 0.9, the N is dimensions of fBSf . we look in the shapes RMS in axis X is not decrease than 10−4 by5

notice with N = 2 it is 10−5, at in Fig.31 and Fig.32 the powers factional are look to Fig.29 and Fig.30 in order6

only x = 0.5 instead y = 0.5. It is manner is not fast to it is not rapidity increase tangible.7
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Figure 30: The shape RMS for u(x, 0.5, t) with �i, i = 1, 2, 3 that are �1 = 0.1, �2 = 0.5, �3 = 0.9 of Eq.10 and error Eq.18.
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Figure 31: The shape RMS for u(0.5, y, t) with �1, �2 that are �1 = 0.3, �2 = 0.6 of Eq.10 and error Eq.18.

5. conclusions1

In our manuscript, we have solved multi-term time fractional diffusion-wave equation by Collocation Method2

where theDt) in this is Caputo concept for (0 < � < 1). We have considered an arbitrary one- and two-dimentional.3

Of fBSf used at collocation method.4

We have examined two issues here, the first Simplicity and ease of applying this method to multi-term time frac-5
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Figure 32: The shape RMS for u(0.5, y, t) with �i, i = 1, 2, 3 that are �1 = 0.1, �2 = 0.5, �3 = 0.9 of Eq.10 and error Eq.18.

tional diffusion-wave equation. Our second goal was to apply these basic functions to these types of equations.1

The effectiveness and high accuracy of the proposed numerical approximate scheme provided numerical results2

and figures demonstrate. To test the correctness of the method, we provided several examples with different exact3

answers in the powers. Numerical simulations were performed using Mathlab.4

5
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