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gstract. In this research, we discuss the construction of the analytic
solution of homogenous initial boundary value problem including par-
tial differential equations of fractional order. Since homogenous initial
boundary value problem involves Hybrid fragmal order derivative, it
has classical initial and boundary conditions. By means of separation of
the bles method and the inner product defined on L? [0, {], the solu-
tion 15 constructed in the form of a Fourier series including the bivariate
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diffusion problem which proves the accuracy of the solution.
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1 Introduction

Since mathematical models including fractional derivatives play a vi-
tal role, fractional derivatives have drawn increasing attention from
many researchers in various branches of science. Therefore, there are
many different fractional derivatives such as Caputo, Riemann-Liouville,
Atangana-Bal@hu defined as follows:

The ¢*" order fractional der tive of u(t) in Caputo sense is defined as

D (t) = / P u ™ (8)ds, t € [to, to + T
(n— ‘I)
where u™ ( t). n—1<g<n.
The ¢'" order fra.ctlonal derivative of u(t) in the Riemann-Liouville sense
is defined as .
1
1 d"

t
P =ro—pa / (t = )" u(s)ds, € [to,to + 1]
where n —1 < ¢ < n.

However these fractional derivatives do not satisfy the most important
properties of the ordinary derivative, which leads to many difficulties in
analvzing or obtaining the solution of fractional mathematical models.
As a result, many scientists focus on defining new fractional deriva-
tives to cover the sethacks of the defined ones. Moreover, the success
of mathematical modelling of systems or processes depends on the frac-
tional derivative it involves, since the correct choice of the fractional
derivative allows us to model the real data of systems or processes accu-
rately. In order to the define new fractional derivatives, various methods
exist, and these are classified based on their features and formation such
as non-lof@l fractional derivatives and local fractional derivatives. The
constant proportional Caggto hybrid operator is a newly defined frac-
tional derivative that is a combination of the Caputo derivative and the
proportional derivative and is de as:

{(ITPCD?J(‘ (t) = 1-'(11_“) f(: (K1 () f (1) + Ko () f' (7)) (t — T)—ﬂ dr
Ky (o) JE1,7°F () + Ko () §D £ (1)

where the functions Ky and K satisfv certain properties in terms of limit
[1]. The domain of this operator contains functions f on positive reals
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such that f and its deriv;ave f' are locally L' functions. Moreover,
T ? and § D? represent the Riem iouville integral and Caputo
derivative, respectively.Note that this hybrid fractional operator can be
enounced as a linear combination of the Caputo fractional derivative and
the Riem##8n Liouville fractional integral. Notice that the constant pro-
portional Caputo hybrid operator is obtained by adding a non-locality
property to a proportional derivative operator, which allows us to model
processes with non-local behaviour more efficiently and is the most im-
portant advantage of it. The non-locality property of the constant pro-
portional Caputo hybrid operator is a result of the Riemann-Liouville
integeml which is defined as:

Theﬁemann-Liouville time-fractional integral of a real valued function
u(z,t) is defined as

t
Iu (o, t) = %q)/{; (t —s)* tu(z,s)ds

where o = 0 denotes @e order of the integral.
This new fractional derivative is drawing the attention of many re-
searchers in various branches of science and, as a result, there is a sub-
stantial amount of study in the literature such as on the hybrid fractional
derivative [2, 3, 1, 5, 0], heat and mass transportation [7] and dynamics
of processes [5].
The choice of functions Ky and K5 included in the definition of the
stant proportional Caputo hybrid operator motivates us to analyze
%‘soluﬁon of fractional diffusion equations with initial and boundary
conditions for various functions Ko and K7 and compare them. In this
study, we focus on obtaining the solution of the following fractional dif-
fusion equation with various the constant proportional Caputo hybrid
operator by making use of the separation of variables method (SVM):

B o - a-w 4L F () +a§ D) f () gy
§PDg" F(t) = (1-a®) F1,"F (1) + a®§ DY F ().

where 0 <a< 1,0 <z <1, 0<t<T. Here we use the following forms
of the proportional derivatives: We especially consider the following

fs
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ones:
crepf pu) = (1—a) BEIO0 (1) +aSDOF (1),
§Pep Ft) = (1-a?) BEDCF () + o2 D0 F (1)

The novelty of t@study is the application of the separation of vari-
ables method to a time fractional diffusion equation including the con-
stant proportional Caputo hybrid operator derivative. As a result, the
implementation of this method and its effectiveness and accuracy are
presented explicitly.

From a phy 1 aspect, the intrinsic nature of the physical system can
be reflected to the mathe ical model of the system by using fractional
derivatives. Therefore, the solution of the fractional mathematical model
is in excellent agreement with the predictions and experimental measure-
ment of it. The systems whose behaviour is non-local can he modelled
better 1 fractional mathematical models, and the degree of its non-
locality can be arranged by the order of fractional derivative. In order
to analyze the diffusion in a non-homogenous medium that has memory
effects, it is better to analyze the solution of the fractional mathematical
model for this diffusion. As a result, in order to model a process, the
correct choices of fractional derivative and its order must be determined.
In the mathematical modelling of a diffusion problem for different mat-
ters such as liquid, gas and temperature, the suitable fractional order « is
chosen, since the diffusion coefficient depends on the order « of fractional
derivative [J]. This mathematical modelling describes the behaviour of
matter in a phase. There is a vast amount of published work on the
diffusion of various matters in science, especially in fluid mechanics and
gas dynamies [10, 11, 12, 13, 14, 15]. From this aspect, the analysis
of this problem plays an important role in its application. Moreover,
sub-diffusion cases for which 0 < « < 1 are under consideration. The
solution of the fractional mathematical model of sub-diffusion cases be-
haves much slower than the solution of the integer-order mathematical
model unlike t actional mathematical model for super-diffusion [16].
The m@Ey goal of this study is to establish the analvtic solution of fol-
lowing time fractional differential equations with the Dirichlet boundary




Hybrid Fractional Diffusion Problem

and initial conditions.

|
-2

=

B
®
=
-

{?PCDL u (il’,‘, t)
w(0,1)
u(x,0)

[
== =
—_
B =
e "
o
e
Il
=
——
LG o)
R

where 0 <o < 1,02 <0<t <T,vcR.

2 Main Results

The analytic @m of the solution for the problem (1)-(3) is established
by employing the well known method SVM.
1
![a:, t o) = X(z) T(t; o) (4)
where 0 <x <[,0<t<T.
Utilizing (4) in (1) and some arrangement leads to the following:
oD T a) LB (@)

Tta) | X =) (5)

4
Taking the right hand side of equati#h (5) and related boundary condi-
tions (2) into account the following problem is obtained:

X" (z)+ A\2X (x) =0, (6)
X0)=X(1)=0 (7)

which has the solution X (z) = €*. As a 1'mt the following char-
acteristic equation is reached r? + A2 = 0. Case 1. If A = 0, the
solutions of th aracteristic equation are two coincident roots r; = ro
which cause to the solution of the problem (6)-(7) as X (x) = kyx + ko.
The first boundary condition yields X (0) = ko = 0 which leads to the
solution X (x) = kyx. pilarl}' second boundary condition leads to
X (I) = k1l =0 = k; = () which implies that X () = 0 which implies
that there is not any solution for A = 0,

Case 2. If A > 0, the solutions of the ?a:acteristic equation are two
distinct real roots rq, ro which cause to the solution of the problem (6)-
(7) as X (z) = c1e™* + c9e™*. By making use of the first boundary

o
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condition, e have X (0) = ¢1 + ca = 0 = ¢; = —¢y which leads to the
solution X (z) = ¢1 (€"* — e™2%). Similarly second boundary condition
leads to X () = ¢ (e"li —e"zi) = 0. Since ™! # ™! the equation
X()=a (e"lE — e"zi) = 0 is satisfied if and only if ¢; = 0 = ¢3 which
implies that X (x) = 0 which implies that there is not any solution for
A=0.

Case 3. If A < 0, the solutions of the characteristic equation are
two coffllex roots which cause to the solution of the problem (6)-
(7) as ﬂz) = c1cos (Ax) + ezsin (Az). By making use of the first
boundary condition we havg' (0) = ¢1 = 0. Hence the solution be-
comes X (x) = egsin (Az). Similarly last boundary condition leads to
X (I) = cosin (Al) = 0 which implies that sin (Al) = 0 which yields the
following eigenvalues

.
Wy

o

An = M <A < A3 <.

where w,, = n satisfy the equation sin (w,) = 0.
As a result the solution is obtained as follows:

X, (x)= czsin(wn(?)),n= 1,2,3,...

The second equation in (5) for eigenvalue A, yields the ordinary differ-
ential equation below:

CPCDH(T (t; a)) .
0 o 2y2
Tt(t;a) = =7 /\n

which yields the following solution [1]

—2A2 —Kl(a))
— 7, — t],n=0,1223,...
Kn(a) f\n((x)

T, (t;a) = Etlk‘l‘ 1 (

where a bivariate Mittag-Leffler function Eg}.ﬁ‘ . (,y) proposed by Ozarslan
and Kiirt [L7], is represented in double power series as follows:

() o S (“.f)r+.-s oy
Bays, w (®y) = gﬂgﬂ [(ar+ Bs+r) 1! sl
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where a, 3,7 € C,Re(w),Re (8), Re () > 0. The solution for every
eigenvalue A, is constructed as
Up (IJ L Of) = Xﬂ. (:E) T‘.‘u L Of)

_ Eri‘l‘l (mru‘ _ﬂf‘{:lglr)r) sin (wn (%)), n=10,1,223,...

ghich leads to the following general solution

(x,t; ) = Z A, sin (u,n (T)) Eé‘l‘ i (;{:i:\j 1o ;\{:1(5;'3)‘) 5)_ (8)

n=0

The convergence of the series in (8) is proved in [1].

Note that it satisfies boundary condition and fractional differential equa-
tion.

The coefficients of general solution are established by taking the follow-
ing initial condition into account:

u(x,0) Z A, sin (u,n (T)) .

n=0

The coefficients A, for n = 0,1,2,3, ... determined by the help of inner
product defined on L2[0, []:

A, = %/ﬂi f(x)sin (wn (%))

The advantage of this method comparing the homotopy method or other
numerical methods is that exact solutions of the fractional differential
equations are established by the separation of variables method, while
their approximate solutions are acquired by homotopy and other nu-
merical methods. Although the separation of variables method is a very
common method to construct the solution of partial differential equa-
tions, applying it to fractional differential equations is not included in a
large number of studies in literature.
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3 Illustrative Example

Let the following mathematical problem be considered:

ug(x, t) = ugl(x,t),
w(0,t) = u(l,t),
u(z,0) = sin(mrx) (9)

1
whose solution is given E the following form:

u(x,t) = Sin(wx)e_“%

wherepgx <1,0<t<T.
Now the following time fractional form of above problem is taken in

hand:

17
EPCD?M(:E, t) = g (z,t), (10)
w(0,t) = wu(l,t), (11)
u(x,0) = sin(mx) (12)

where 0 <o <1,0<2 <1, 0<t<T.
The method SVM vields thgfollowing equations:

67D, (T () _ X"(2) _

T (t; ) T X (2) X% (13)

4
Taking the right hand side of equationgfil3) and related boundary con-
ditions (11) into account the following problem is obtained:

X" (z)+ \X (z) =0, (14)
X (0) =X (1)=0, (15)

The representation of the solution for the eigenvalue problem (14)-(15)
is obtained as

%(r) = sin (nmz),n=1,2,3,...

The second equation in (13) for every eigenvalue A, vields the following
equation:
7Dy (T () _
T(t; o)
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which has the following solution

“n?n? K (a)
T, (t;a) = E. R —— n), =0,1,2,3,...
( C\‘) ol 1 (I{n (0) I’\/{] (Q) n 0

For each eigenvalue A,,, we obtain the following solution:

2_2 -
; v e [ Al | LT _'hl ((Jf)
n (55) = Fan, (Kn (Or)t " Ky(a)

t) sin (nrz),n =0,1,2,3, ...

and hence Superposition Principle leads to the following sum:

> 2.2 -
N . N ol —nme . —Ki(e)
u(z, o) = ;}An sin (nmx) £, 4 (Kn (rx)t 'Ky () t].

Utilizing the L?[0, 1] inner product and initial condition (12) allow us to
determine the coeflicients A,, as follows:

00
u(z,0) = Z A, sin (nmzx).
n=(
The coefficients A4,, for n = 0,1, 2,3, ... are determined by the help of

the inner product as follows:
A, = 2/ sin (rz) sin (nma)dz.
0
Forn#1, A, =0n =1 we get

1
A = 2/ sin? (rx)dr = 1.
0

Thus

2 -
) - - K1 (a)
u (x,t; o) = sin (rx) B} ", t]. 16
s(atio) = sin (r) Bl 1 (it e (16)
The accuracy of the obtained solution is checked by substituting e« = 1
into (16) which leads to the solution of the problem (9).
Particularly solution of the problem (10)-(12) have the following form
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for the specific functions Ky and Ky:
Case 1: For Ky (o) = o, K (o) = 1 — v, the solution becomes

2
- a—1
u (x,t; @) = sin (mx)Egq 4 (—t”‘. —n) .
i o o

Case 2: For Ky (e) = a?, Ky (a)=1- o, the solution becomes

2 2
u(z,t;a) = sin (rz) By (?t“, = t) .

The graphics of solutions for Case 1, Case 2 and Problem (9) in 2D are
given in Fig.1-4 for various values of .

0.6
-+ truncated solution for K=o and K =1- o and =0.9

“— Exact solution
truncated solution for K0=r12 andK =1- o? and o=0.9

o

" . . . . ! ORI
L] 005 01 015 02 025 03 035 04 045 05
t

Figure 1: The graphics of solutions for Example for different functions
Ky (e) and K (o) in 2D at 2 = 0.1 and for o« = 0.9.

Note that by truncated solution we mean tifapproximate solution.
It is clear from figures 1-4 that the solution of fime fractional diffusion
equation includin% the constant proportional Caputo hybrid operator
derivative f,jpcDrl [ (t) converges the solution of the integer order dif-
fusion equation as « tends to 1 faster than its solution including the
constant proportional Caputo hybrid operator derivative {?PCDQZ F).
As a result, we conclude that the choice of the functions Kp(«) and
Ki(a) in {(,TPCDQI f(t) are better than those in EPCDQQ f(t). More-
over, the graphs of the solutions move away from the solution of the
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[ —»-fruncated solution for %:. and K‘ =1- o and =095
7 |- Exact solution
4+ truncated solution for K=+ and K,=1- o and a=0.85

Y N O B B e
['] 005 01 015 02 025 03 035 04 045 05
t

Figure 2: The graphics of solutions for Example for different functions
Ky () and K () in 2D at z = 0.1 and for o = 0.95.

corresponding integer order differential equation, as the fractional order
a decreases away from 1.

4 Conclusion

The solution of the mathematical problem with the hybrid time frac-
al derivative is constructed by the separation of variables method
in terms of the bivariate Mittag-Leffler function. Besideqe accuracy
of the solution is tested by taking o« = 1 in the solution which leads to
the solution of the mathematical problem with ordinary derivative. As
a result, the illustrative example indicates that the separation of vari-
ables method plays an influence role in the construction of mathematical
problems including fractional derivatives.
Based on the analytic solution, we reach the conclusion that diffusion
processes decay over time until an initial condition is reached when « is
less than a certain value of « for Case 1 but diffusion processes decay
with time for all values of « between 0 and 1 for Case 2. As « tends to
0, the rate of decaying increases. This implies that in the mathematical
model for diffusion of the matter which has a small diffusion rate, the
value of & must be close to 0. This model can account for various diffu-
sion processes of various methods.

11
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[ |-« truncated solution for K=o and K =1- o and 0=0.98
aal|™® Exact solution
& truncated solution for K=a® and K,=1- v* and 4=0.98
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Figure 3: The graphics of solutions for Example for different functions
Ky (e) and K (o) in 2D at 2 = 0.1 and for o« = 0.98.
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