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Abstract. The fractional Sturm-Liouville equations have considerable
role applications in some different phenomena such as mechanical and
electrical engineering, medicine and physics. Thus, it is good we review
different versions of this equation. We study a k-dimensional system
of Sturm-Liouville hybrid equations by using the a-admissible method.
We investigate the existence of solutions for the k-dimensional system
of hybrid equations with some multi-point boundary value conditions.
We provide an example to illustrate our main result.
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1 Introduction

Human life at this time has become inextricably linked to mathemat-
ics and has improved people’s living standards. Mathematics has also
found its applications in various sciences such as laboratory sciences,
chemistry, physics, and engineering. During last years, researchers have
studied the complex fractional differential equations which increase their
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ability to model most real-world phenomena. Among the fractional dif-
ferential equations that are widely used in engineering, physics and wave
and quantum theory is the Strom-Liouville fractional differential equa-
tion. ([20, 33]). Over the past twenty years, researchers have paid close
attention to examining the existence of solutions for fractional differ-
ential equations with different boundary conditions (see for examples,

[777 ’ ) ) ’ ’ ) ) ) ’ ) ’ ) ) ) ])

New and advanced models of different events are being studied and
developed by researchers in mathematics by using fractional differen-
tial equations with specific or general boundary conditions (see for ex-
amples, [2, 6, 7, 10, 11, 29]). In recent years, systems of hybrid dif-
ferential equations and non-hybrid systems with different hybrid and
non-hybrid boundary conditions have been considered by researchers

([ ] ’ ? ’ ’ ])

As we know, the fractional Caputo derivative of order b—1< o < b
for the function v is defined by

d® " (r — s)bmem @by(s)
Dv(t) =I""%—uv(r) = d
v(t) ') /0 T(h—po) dtb
and the Riemann-Liouville fractional integral of order ¢ > 0 for a func-
-1
tion v € L*[0, K] is given by I%(r) = [ (T}‘EZS v(s)ds (see [28, 31]).

In 2011, Zhao et al. studied the fractional problem ¢D? & =
I(r,v(r))

h(r,v(r)) with boundary initial condition v(0) = 0, where 0 < p < 1,
¢D? denotes the Caputo fractional derivative, | € C(I x R,R \ {0})
and h € C(I x R,R) ([38]). In 2019, the Sturm-Liouville problem
cDe(m(r)v'(r)) + p(r)v(r) = f(r)h(v(r)) via the multi-point boundary
conditions v'(r) = 0, 37, Gu(ai) = 7377 ¢;jv(z;) investigated, where
o € (0,1], ¢D? denotes the fractional Caputo derivative, m € C*(I,R),
p(r) and f(r) are absolutely continuous functions on I = [0, K] with
K >0,m(r)#0forallr €I, f: R — R is differentiable on the interval
LO0<ai<as< - <ay<c,d<z1<z<- <z, <K, c<dand
Cly--+yCus T1,- .., Ty and p are real constants ([16]).
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Let o € (0,1), D¢ is the Caputo fractional derivative of order g, I =
[0, K] with K < oo, m,m € CY(I,R), m(r), p(r) and f(r) are absolutely
continuous functions on I with m(r) # 0 for all # € I, h,h : R — R are
defined and differentiable on the interval I and 0 < a1 < as < --- <

ay <, d<z1 < 29<---<zp < K,ec<dand (1,...,Cu, T1,---,Tn
u n

and p are real constants with Z G — pz 7; # 0. Now by mixing the
i=1 j=1

ideas in these works and main idea of [13], we review the k-dimensional

hybrid differential system

. D§<m1(r) < h(vl(ﬂ > _ ml(r)i“(vl(r)))

r,v1(r))

+aq1(r)vi(r) = fi(r)hi(vi(r)),

D3 (ma(r) (H”)  ia(r)ia(ea(r) )

r,v2(r))

+q2(r)va(r) = fa(r)ha(va(r)), (1)

r, k(1))

f () (1 20 (et

+ak(r)oe(r) = fre(r)hi(ve(r)), (r€I),

\

with the sigma boundary value conditions
vi(t) )' (ﬁu(r) - ,
= hi(vi(r)) ) (1<i<k)
(lz’(h vi(r) ) g \ma(t) r=0

- ' vi(a;) _ - . vi(z))
ZCZ(Zi(ahUi(ai))) —pzz J<li(zjavi(zj)))'

=1

Let I be an interval in R.Consider the space W = C(I,R) via the norm
|lw|| = sup,er|w(t)] and the norm [jw| = f0K|w(s)|ds on 4]0, K],
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where |w(t)| is the usual norm on R™. Consider the Banach product
space WH = (W x W x ... x W, ||.||) with the norm [jwy,ws, ..., wy|| =
max{||wi|], |wzl|, ..., ||wk||}. The Riemann-Liouville fractional integral of
order p for a function h is defined by I2h(r) = ﬁ Jo (r = s)e"1h(s)ds
(0 > 0) and the Caputo derivative of order g for a function A is defined
by ¢Deh(r) = "2 4L h(r) = gy Jo 1 M) rds, where n = [g] + 1

drm r—s)e—n+1

([28], [31]). Assume that ¥ is a family o)f non-descending functions
Y 1 [0,400) — [0,400) such that > °°, ¥"(t) < 4oo for all r > 0,
where ™ is the n-th iterate of 1. Let K : W — W be a selfmap and
a: W x W — [0,+00) a function. We say that K is a-admissible
whenever a(w,z) > 1 implies a(Kw, Kz) > 1 ([30]). Let v € ¥ and
a: X xX — [0,+00) be a map. A self-map K : W — W is called
an a-1-contraction whenever o(w,z)d(Kw, Kz) < t¢(d(w,z)) for all
w,z € W ([30]). We need next result.

Lemma 1.1. [30] Suppose that (W, d) is a complete metric space, 1 €
U, aa: X xX — [0,+00) is a map and K : W — W is an «a-
admissible a-1)-contraction. Assume that there exists wg € W such that
a(wy, Kwy) > 1 and a(wy, w) > 1 for all n whenever {w,} is a sequence
in W such that a(wp—1,wy) > 1 for allm > 1 and w, — w. Then K
has a fixed point.

2 Main Results

To study the problem (1)-(2), we consider the following assumptions.

(A1) The maps hq, ..., hg, hi,...h,: R — R are bounded are differen-
tiable on [0, K] and the functions %, g %Lt’“ a~nd %’ A % are
bounded on [0, K] with \g—ﬁﬂ < § and |g—2ﬂ <Sforali=1,...,k

and two constants S and S.

(A2) The map my,....my € C*(I,R) have this property that m;(r) # 0
for all r and inf,c; |m;(r)] = m; for all i = 1,... k. Also, m;(r),
pi(r) and h;(r) are absolutely continuous functions on I for all
i=1,...,k



ON A K-DIMENSIONAL SYSTEM OF HYBRID FRACTIONAL...

(A3) The functions I1,...,l; : I x R — R\ {0} are continuous in the

two variables and there are mappings &1,...,&; > 0 such that
|Li(r,w) — li(r,x)| < &(r)|w — x| for all (r,w,x) in I x R x R and
1=1,...,k.

(A4) There exists a real number ¢ > 0 such that

(J1&]1t 4 1.0) (it + ®i2) < t and (20; 1t + ®4.2)[1&] + lo®i1 < 1,

where

K (3 - i Sllhi
911 = 2 (S + K QLS (15 ZmﬂmZm +1),

K Kei \|h||h0)( (” "
D2 = — | hollrall + =55 | (1B > Gl + 1ol D oIl ) + 1),
ml( (|72 T(o: + 2) |B| izl\ |+ \j:1|J|

h@() = ’hl(O)’, hi,O = ‘hz(O)‘ and li70 = supre[ li(T, 0) for 1 S ) S k.
Now, we provide our main result.

Theorem 2.1. Assume that the assumptions (A1)-(Az) hold. Then,
the hybrid system (1) with boundary conditions (2) has a solution v =
(v1,...,0y), where

-BY G /O Ma(S) 5 (e (s)) ds

#8326 [ Nt~ By Y [ ot

+Bplzn |7 g o wuts)s @

_BZQ/ 'mi 12 (ha(s)ha(vi(s)))ds

+ (5 i(vi(s dsf/ (s s)vi(s))ds
"L e, s)hi(vi(s)))ds
+f mi(s)a (hs(s)hi w3 (5)))d }
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1
foralli=1,...k and B = —3 = . Also,
i1 G — i T
Vs
2 e cYI.R
o) ¢ F

an %” or all i i(r,vi (1)) en
d <li(r,vi(r))> € Li(I,R) f Wi. If (li(r,vi(r)))" € C(I,R), th

v; € CYI,R) (i=1,...,n).
Proof. Define the map Ay : Wk — W* by

Agvg(r) = (ll(r, v (r))Hyvi(r), ..., lg(r, Uk(’l”))HkUk(T)),
where

H;v;i(r) = Bp; Z’T]/ z (s))ds — BZQ /Oai mz:(s) hi(vi(s))ds

+ BZ@ / s = B > [ see)ds
+BpiZ;Tj/o ] m (S)I
- BZ@ / T ()

i(vi(s ds—/ mils vi(s))ds
IE(fi(s)hi(vi(s)))ds.

+

mz

for all i = 1, ..., k. In accordance with (Ay), there exists ¢ > 0 such that

(€1t + 1io) (Aiit + ®i2) <t and (2®;1t + ®i2)[I€]] + lio®i1 < 1.

Consider the closed ball E;, where E; = {v; € W* . ||jv;|| < t}. it is clear
that E; is bounded and closed subset of W*. Define the function o :
WFx Wk —[0,00) by o(vi, ¢;) = 1 whenever v;, ¢; € E; and o(v;, ;) = 0
otherwise. Then, we have

[Bi(vi())] = [hi(vi(s)) = hi(0) + hi(0)] < [hi(vi(s)) = hi(0)] + P (0)]
< Svi(9))] + 17:(0)] < Sljvill + hio,
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[1i (s, vi(s))| < [I€ll[|vi]l + 1o and |h;(vi(s))| < S]lvill + hio. We show that
the A}, operator satisfy the conditions of Lemma 1.1. We show that
|Agvg|| <t whenever v; € E;. Let v; € E;. Then,

n Zj |05 . . Bl|pill|m g’Uz’ +}{1 " Tz
\Bllpi\zml/ i }Z%Esil‘hi(vi(s))ldsg | Bllpilllrall(Slvill + hos) 27—y 7512
=1 0

S m;

< [Bllp:llimali(St + hoi) 37, Im|K

(4)
mq
_ KBS Sl | KIBlollbilo 5 7]
m; mq
and
|B|§j|<z\ | e oo
_ KBS T, 1G], | KIBlho iy [l
m; mq
Since I7(1) = [ (S_F"ZZ:; do = g+1) we obtain
|B\Z\<z| | o))
Bllpilllvdll <~ St
< [l ;'Q'/o (f CF—doas
KB S 16,
B mil'(0i + 2)
and
’B”pZ|Z|T]|/ I (Ipi(s)|vi(s)|)ds
Kg’+1|BHPi\HPiH > i |7l
- m;I'(0; + 2)
Also,
K8 |Blplllfoll S0y I
|B\|pz|2|n\/ £(1 () hawi(s)))ds < a =

m;I'(gi +2)
Kg‘+1|B||PiH|fz‘||hz‘,0Z-zl\ ;| .
+ mil(os 1 2) : |B|Z\Q|/ f (1fs ()l hi(vi(s))])ds

o KeTSIB|Ifil X Gl K B||fil hio Zi:l ICi\
- mil‘(gi + 2) miF(gi + 2) ’
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"mi(s)] 5 K8||in; Khi ol|rit;
[/ g < Sl Kol
0

[mi(s)| m; m;

Ko pil|

' 1 b i\S)|VilS S
[ s < Sl

[mi(s)]

and

r 0it+lg ; Keitl 1k
/ L re(15(s) Is(ui(s))ds < e SUil, | K2l ilhio
o TG

Since

[Hui(r)] < |B||pij§ ol [ e (s ds
DS ATE LXABIE

+18] §:j 6l [ e o)
+1Blloi Z ol [ g Ol )ds

1Bl S [ s A oo s

+1B] Z |Gl /a _;If(lfi(S)lIhi(vi(S))I)dS

'm O (v (5))ds + / e (o) s

1(3

/ |m1(5 I(| £i ()| i (vi(s)) ) ds,

miT'(o; + 2) m;I'(0; +2)
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by using (4)-(5), we get [Hv;(r)| < ®;1t + ®;,2, where

K|B|lpilllri:llS 35—y I N K|B||ii]|S 27, 1)

i1 = o s
n K Bl iy 16
mil'(0i +2)
KBl pilllpill 25—y 73] K@ SBllpalll fill Y27, 7]
mil'(0i + 2) mil'(0i +2)
KeHSB||fill i, 16
mil‘(gi + 2)
4 KSlmall K pi]| n Ke*1S| fill
m; miL(oi +2)  miI'(0i + 2)

_ KIS (|B|(_Z|<i\ o Y ) + 1)
i +1 w N
+ m K|B\(Z 1G] + |pi] Z I751) + 1>(sz‘\| +3\|fi\|)]

= 25 (Sl + 2 (”1(’2'”8”1"2” ) (121¢ Z|<|+\pz|2|n +1)

and

w12 = - (ol + T 1) (|B|<Z Gl + 1o Z i) +1).

Thus,

|Azvi(r)] = |Li(r,vi(r)|[Hvi(r)] < (€]t + loi) (®iat + ®i2) <t
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and so ||Agvg|| <t and so A Ey C E;. Assume that v;, ¢; € Ey. Similar
to above proofs, we can conclude that

|Bllpal 20—y 17l Jy? Tt il (vi(s)) = hilai(s))lds

KIBllpi il S S5y |
< el b2 22 19 s — all,

Bl ST (Gl fy e Ra(vi(s) — a(ai(s)ds <
o+1 u

IBI S, (Gl e 12 pa(o)loi(s) — qi(s))ds < KBl Sy 1l g,
1Bllosl S0y 15 5 e 22 (i) i) — wi(s) s

< K Bpilllpil D0y Il
m; T (0;+2) ”UZ - qz”a

1Bllpil =51 |71 o7ty 2 (1fi ()i (vi(s)) — hi(qi(s))])ds

< Kit1S|Bllpilll £ HZ"_me gl
Ml (2 +2) Vi — 4l

IBI S, (Gl sy T2 () awi(s)) — ha(ga(s)) ) ds

KoHS|BIIfill Sty 16l
< miF(QhLZ)Z l[oi = aill,

S 2 Ry (03 (5)) — ha(gi(s))]ds < LRy, — g,]],
[m; (s)] i

e;+1
I i 18 (pi(s)lJoi(s) — pi(s))ds < Ko ledl iy, — gy

and
| s hs(wuts) = halas(s) s < S =i
Thus,

|Hui(r) — Hai(r)|

< |Bllpil S5 171 o7 T a(vi(s) — halgi(s))lds

Bl Gl o (S Ra(vils)) — Raai(s))|ds

HBI S 1G]y ke 1 (pi(s) Jvi(s) — gils)])ds

HBllpil Sy 175 S e I (i) vs(s) — ais)])dls

HBlpil S5y 175 fi? st 12 F(9) i) — haai(s)) )ds

Bl (G o sy L i) hi(vi(5)) — hi(ai(s))])ds

+ Jo [ i (vils)) = Bags(s)lds + [y g TE(pi()l[vi(s) = vils)])ds
+ Jo e IS ()i (vi(s)) = halgi(s)))ds < @i [lvi = gil.
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Therefore, |Hv;(r) — Hg;(r)| <

v; — ¢i||. This implies that

|Agvi(r) — Aggi(r)| = [li(r, vi(r))Hoi(r) — Li(r, qi(r)) Hgi(r)|

= |li(r,vi(r))Hvi(r) — Li(r,vi(r)) Hgi(r)

+ 1i(r,vi(r) Hai(r) — Li(r, qi(r)) Hai(r)]

= [li(r,vi(r)) [Hoi(r) — Hai(r)] + Hgqi(r)[li(r, vi(r)) — li(r, qi(r))]|
< |li(ry vi(r))|[Hvi(r) — Hai(r)| + [Hai(r)|[1(r, vi(r)) — U(r, qi(r))]
< (Il + loi)®iallvi — gill + (@it + @i2) 1€l llvi — il

= ((2®z’,1t + ®i2) 1€l + lO®i,1> lvi — gl

PN

and also [|Agv; — Argi|| < ((2®i,1t + ®i2)l[€]l + l0®z’,1> [vi — qil| for
all v;,q; € Ey and i@ = 1,...,k. Consider the map ;(r) = <(2®Z~71t +

®i2) 1€ + l0®i71>r. Then, one can easily find that ¢ € ¥ and ||Agv; —

Argill < ¥(||lvi — ¢|) for all v;,q; € Ey and ¢ = 1,...,k. Thus, we
get 0i(vi, @) || Akvi — Argi|l < ¥(||vi — ¢|) for all v;,q; € C(I,R), that
is, Ay is an a-t-contraction. Now, we show that Ay is a-admissible.
Let 0;i(vi,q;) > 1. Then, v;,q; € E¢ and so Agv;, Axg; € E; and
so 0i(Agvi, Akg;) > 1. Let {v,} is a sequence in C(I,R) such that
o(vp—1,vn) > 1 for all n > 1 and v, — v € C(I,R). Then, {v,} is a
sequence in E;. Since E; is closed, v € E; and so g(vy,v) > 1 for all n.
Let vg € Ey. Since ApEy C Ey, Agvo € Ey and so o(vg, Agvg) > 1. Now
by using Lemma 1.1, Ay has a fixed point in C'(I,R) which is a solution
for the system. O

3 Example

Now, we provide an example to illustrate our main result.

11
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Example 3.1. Consider the two-dimensional hybrid system

o) )

= e " sinrtan—t(v(r) + 2)

)5 i)

= e 3 sinrtan"t(v(r) + 2)
(6)
with boundary value conditions
( v (1) ! 1 1
I S — ~v;(0 2,
<li(r,vi(r))>rzo 70000 <4”( )+ )
(7)
23: < vilz5) >:24 1 < vi(2) >
2= 3000; Li(Z5,vi(4)) 222 <= 100/ (2, vi(2))
where 1;(r,v;(r)) = 1Si§fr| 2+v|l(f()|)1 + 5 ;37”" Put 0 = it K =
Lt =01 G = 500 &2 = 30000 Tt = 300 T2 = 2700_7%73 = 3000
mi(r) = 500v3 + 13, ma(r) = 400v3 +r4, myi(r) = 200, ma(r) =
e 37 .
Soo» pilr) = eV fi(r) = €_~2TSIHT7 filvi(r)) = tan™!(vi(r) + 2),
hi,(vi(r)) = Zsinv;(r) + 3 and ho,(vi(r)) = Zsinv;(r) + 3. Then, we
have |20 < 1 = 8 hg =T, |0 < 3 =S Ry =1, m = 500,
Il = 555: Ipll = 1. || ] = 1. Also,
) = (] = el
3m o (LA Joi(r))(X + lgi(r)])
< 'S;I;T‘ 01(r) — 0.
2 3

5000 = ~ 000 7 0 2“%5 = —8000. Then, ‘B|(Z§:1 Gl+pl 22:1 |751)+
1= 6000(7000 + 323 2000) +1 =8 and so
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o1 = X (S + UL S

(‘B'(i &1+ 19 Z ) + 1)

16 (1 3
- —° ) ~0.01499506341
1200 <600 * r(g)) ’

X

90 =1 (Holiall+ 1 5150 ) (|B(Z\<J\ +lo Z )

8 2 T
= | — ~ 0.005269853
600 <200 * 4F(%g)> ’

(IENlr + go) (Arr + ®2) = (:—4 + 7)(0.0159506855 x 0.1 +0.0063796996)

~ 0.0041143065 <0l1=t

and
(2017 + @) || 6|l + go®1 & (2 x 0.0.005269853 x 0.10.005269853) x —

1
+ 3 % 0.01499506341 ~ 0.0095892469 < 1.

Now by using Theorem 2.1, the problem (6)-(7) has a solution.

4 Conclusion

In today’s world, most events are modeled by systems of fractional equa-
tions which increase our abilities to provide a good study of various phe-
nomena. It is always good to focus on solving complex fractional dif-
ferential equations. One of the most important types of these equations
is the hybrid fractional differential equations with complex boundary
conditions. In this work, we studied a k-dimensional system of hybrid
fractional differential equations with hybrid boundary conditions. By

13
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using the a-i-technique we reviewed the system. We provided an ex-
ample to illustrate our main result.
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