A Look at $P(X>Y)$ in the Binomial Case

J. Behboodian
Islamic Azad University - Shiraz Branch

Abstract

In this article we consider $P(X>Y)$ for two independent random variables $X \sim B\left(n+m, p_{1}\right)$ and $Y \sim B\left(n, p_{2}\right)$. This is a useful measure in biomedical studies and engineering reliability. The calculation of this probability is discussed by using a combinatorial identity and the approximate value of that is given when n is large. Finally some special cases are discussed.

AMS Subject Classification: 62F10.
Keywords and Phrases: Binomial variable, combinatorial identities, conditional probability, central limit theorem.

1. Introduction

There are some interesting problems in probability and statistics regarding two independent random variables X and Y. One of them is about the exact value, or parametric estimate, or non-parametric estimate of $P(X>Y)$. This is a useful measure, for example, in biomedical studies where X represents the result of an old treatment and Y the result of a new treatment. This probability is also useful for measuring the reliability of engineering systems ([6; pp 27-30]).

Suppose that f and F are the density and distribution of X, respectively and g and G of Y. Since X and Y are independent, conditioning on Y, we have easily
$P(X>Y)=1-P(X \leqslant Y)= \begin{cases}1-\int_{-\infty}^{\infty} F(z) g(z) d z & \text { (continuous case) } \\ 1-\sum_{z} F(z) g(z) & \text { (discrete case) }\end{cases}$
For example, if $X \sim N\left(\mu_{1}, \sigma^{2}\right)$ and $Y \sim N\left(\mu_{2}, \sigma^{2}\right)$ are independent, then

$$
P(X>Y)=1-\Phi\left(\frac{\mu_{2}-\mu_{1}}{\sigma \sqrt{2}}\right)
$$

where Φ is the standard normal distribution. As another example, if $X \sim \operatorname{Exp}\left(\theta_{1}\right)$ and $Y \sim \operatorname{Exp}\left(\theta_{2}\right)$ are independent, then

$$
P(X>Y)=\frac{\theta_{2}}{\theta_{1}+\theta_{2}}
$$

However, when X and Y are discrete, the calculation of $P(X>Y)$ is not always straightforward or the result is not so simple. The purpose of this article is to study $P(X>Y)$ when $X \sim B\left(n+m, p_{1}\right)$ and $Y \sim B\left(n, p_{2}\right)$ are independent.

In Section 2, a simple example is given to show the method of calculation. In Section 3, a general case is considered and the complexity of the problem is discussed. In Section 4, an approximate value for $P(X>Y)$ is suggested when n is large by using the Bernoulli representation of X and Y and the Central Limit Theorem.

2. A Simple Example

We first look at the following simple example before we discuss about the general case.

Example 1. Let $X \sim B\left(4, \frac{1}{2}\right)$ and $Y \sim B\left(3, \frac{1}{2}\right)$ be two independent Bernoulli variables. We can easily find the joint probability table of X and Y as follows:

$y \backslash x$	0	1	2	3	4	$P(Y=y)$
0	$\frac{1}{128}$	$\frac{4^{*}}{128}$	$\frac{6^{*}}{128}$	$\frac{4^{*}}{128}$	$\frac{1^{*}}{128}$	$\frac{1}{8}$
1	$\frac{3}{128}$	$\frac{12}{128}$	$\frac{18}{128}$	$\frac{12}{12}$	$\frac{3}{128}$	$\frac{3}{8}$
2	$\frac{3}{128}$	$\frac{12}{128}$	$\frac{18}{18}$	$\frac{12}{12}$	$\frac{13}{128}$	$\frac{3}{8}$
3	$\frac{1}{128}$	$\frac{4}{128}$	$\frac{6}{128}$	$\frac{4}{128}$	$\frac{1}{128}$	$\frac{1}{8}$
$P(X=x)$	$\frac{1}{16}$	$\frac{4}{16}$	$\frac{6}{16}$	$\frac{4}{16}$	$\frac{1}{16}$	1

Using this table, we find all the events for which $X>Y$ and their probabilities (marked by ${ }^{*}$). For example, $P(X=3, Y=1)=12 / 128$. Therefore, we obtain

$$
P(X>Y)=\frac{4^{*}}{128}+\frac{6^{*}}{128}+\ldots+\frac{1^{*}}{128}=\frac{1}{2} .
$$

Actually, we have

$$
\begin{aligned}
P(X>Y) & =\sum_{y=0}^{3} \sum_{x=1}^{4-y} P(Y=y, X=y+x) \\
& =\sum_{y=0}^{3} \sum_{x=1}^{4-y}\binom{3}{y}\binom{4}{y+x}\left(\frac{1}{2}\right)^{7}=\frac{1}{2}
\end{aligned}
$$

In Section 3 we find a general formula for $P(X>Y)$.

3. A General Case

Let $X \sim B\left(n+m, p_{1}\right)$ and $Y \sim B\left(n, p_{2}\right)$ be two independent binomial random variables. Following the pattern of the above simple example, we obtain:

$$
\begin{aligned}
P(X>Y) & =\sum_{y=0}^{n} \sum_{x=1}^{m+n-y} P(Y=y, X=y+x) \\
& =\sum_{y=0}^{n} \sum_{x=1}^{m+n-y} P(Y=y) P(X=y+x) \\
& =\sum_{y=0}^{n} \sum_{x=1}^{m+n-y}\binom{n}{y} p_{2}^{y} q_{2}^{n-y}\binom{m+n}{y+x} p_{1}^{y+x} q_{1}^{m+n-y-x} \\
& =\sum_{y=0}^{n} \sum_{x=1}^{m+n-y}\binom{n}{y}\binom{m+n}{y+x} p_{2}^{y} q_{2}^{n-y} p_{1}^{y+x} q_{1}^{m+n-y-x}
\end{aligned}
$$

This double sum is too complicated and it cannot be simplified. We consider some special cases.
(I) For $p_{1}=q_{1}=p_{2}=q_{2}=\frac{1}{2}$, we have:

$$
P(X>Y)=\left(\frac{1}{2}\right)^{2 n+m} \sum_{y=0}^{n} \sum_{x=1}^{m+n-y}\binom{n}{y}\binom{m+n}{y+x}
$$

Here, we can reduce the double sum to a single sum. For this purpose, we use the fact that

$$
\binom{N}{k}=0 \quad ; \quad k>N
$$

and we write

$$
\sum_{y=0}^{n} \sum_{x=1}^{m+n-y}\binom{n}{y}\binom{m+n}{y+x}=\sum_{y=0}^{n} \sum_{x=1}^{m+n}\binom{n}{y}\binom{m+n}{y+x} .
$$

Now, we are able to interchange the summation signs and to have

$$
\sum_{x=1}^{m+n} \sum_{y=0}^{n}\binom{n}{y}\binom{m+n}{y+x} .
$$

Next, we use the following combinatorial identity Number (10), given in
[5], page 217:

$$
\sum_{k=0}^{M}\binom{M}{K}\binom{N}{R+K}=\binom{M+N}{M+R} .
$$

This identity can be proved easily by the usual box-and-balls argument if we replace $\binom{M}{K}$ by $\binom{M}{M-K}$. Thus, we have:

$$
P(X>Y)=\left(\frac{1}{2}\right)^{2 n+m} \sum_{x=1}^{m+n}\binom{2 n+m}{n+x} .
$$

(II) It is interesting to observe that for $m=1$ and any integer $n \geqslant 1$, we have $P(X>Y)=\frac{1}{2}$. This follows from the two identities

$$
\binom{N}{K}=\binom{N}{N-K} \quad, \quad \sum_{K=0}^{N}\binom{N}{K}=2^{N}
$$

and the fact that

$$
\begin{aligned}
\sum_{x=1}^{n+1}\binom{2 n+1}{n+x} & =\binom{2 n+1}{n+1}+\binom{2 n+1}{n+2}+\ldots+\binom{2 n+1}{2 n+1} \\
& =\binom{2 n+1}{n}+\binom{2 n+1}{n-1}+\ldots+\binom{2 n+1}{0} \\
& =\frac{1}{2}\left(2^{2 n+1}\right)=2^{2 n} .
\end{aligned}
$$

You could obtain this result by looking at the $(2 n+1)$ th row of a Pascal Triangle. For $m=2$ and $m=3$ some rather simple results are obtained by an argument similar to the case $m=1$.

4. Approximation of $P(X>Y)$

As we discussed in Section 3, we cannot simplify $P(X>Y)$ in a general case. However, we can find an approximate value for this probability when n is large.

For this purpose we first consider the Bernoulli representation of X and Y. Then we apply conditional probability and the Central Limit Theorem.

It is well known that the independent random variables $X \sim B(n+$ $\left.m, p_{1}\right)$ and $Y \sim B\left(n, p_{2}\right)$ can be expressed in the following way:

$$
\begin{aligned}
X & =X_{1}+X_{2}+\ldots+X_{n}+X_{n+1}+\ldots+X_{n+m} \\
Y & =Y_{1}+Y_{2}+\ldots+Y_{n}
\end{aligned}
$$

where X_{1}, \ldots, X_{n+m} are independent Bernoulli variables with success probability p_{1} and Y_{1}, \ldots, Y_{n} are independent Bernoulli variables with success probability $p_{2} ; X_{i}$'s are independent from Y_{j} 's.

$$
\text { Now, let } U=X_{1}+X_{2}+\ldots+X_{n} \text { and } W=X_{n+1}+X_{n+2}+\ldots+X_{n+m}
$$

It is clear that $U \sim B\left(n, p_{1}\right), W \sim B\left(m, p_{1}\right)$, and $Y \sim B\left(n, p_{2}\right)$ are independent with $X=U+W$. We observe that

$$
\begin{aligned}
P(X>Y) & =P(U+W>Y)=P(Y-U<W) \\
& =\sum_{k=0}^{m} P(Y-U<W \mid W=k) P(W=k) \\
& =\sum_{k=0}^{m} P(Y-U<k) P(W=k) \\
& =\sum_{k=0}^{m} P(Y-U<k)\binom{m}{k} p_{1}^{k} q_{1}^{m-k} .
\end{aligned}
$$

Using the above Bernoulli representations, we can write

$$
Y-U=\left(Y_{1}-X_{1}\right)+\left(Y_{2}-X_{2}\right)+\ldots+\left(Y_{n}-X_{n}\right)=\sum_{i=1}^{n} V_{i}
$$

where $V_{1}, V_{2}, \ldots, V_{n}$ are independent and identically distributed as

$$
\begin{array}{c|ccc}
V=v & -1 & 0 & 1 \\
\hline P(V=v) & p_{1} q_{2} & p_{1} p_{2}+q_{1} q_{2} & p_{2} q_{1}
\end{array}
$$

with $E(V)=p_{2} q_{1}-p_{1} q_{2}=a$ and $\operatorname{Var}(V)=p_{1} q_{1}+p_{2} q_{2}=b$. Now, by the Central Limit Theorem an approximate value for $P(Y-U<k)$ can be computed as follows:

$$
\begin{aligned}
P(Y-U<k) & \approx P(Y-U \leqslant k-0.5) \\
& =P\left(\frac{Y-U-n a}{\sqrt{n b}} \leqslant \frac{k-0.5-n a}{\sqrt{n b}}\right) \\
& \approx P\left(Z \leqslant \frac{k-0.5-n a}{\sqrt{n b}}\right)
\end{aligned}
$$

$$
=\Phi\left(\frac{k-0.5-n a}{\sqrt{n b}}\right)=h(k ; a, b)
$$

where $Z \sim N(0,1)$ has distribution Φ. Thus, we have:

$$
P(X>Y) \approx \sum_{k=0}^{m} h(k, a, b)\binom{m}{k} p_{1}^{k} q_{1}^{m-k}
$$

The exact value of the probability, for $m=1$ and $n \geqslant 1$, and independent $X \sim B(n+1, p)$ and $Y=B(n, p)$ is

$$
\begin{aligned}
P(X>Y) & =q P(Y-U<0)+p P(Y-U<1) \\
& =q P(Y-U<0)+p[1-P(Y-U<0)] \\
& =p+(q-p) P(Y-U<0)<\frac{1}{2}
\end{aligned}
$$

This follows from the fact that $Y-U$, i.e., the difference of two independent random variables Y and U with common distribution $B(n, p)$, is symmetric about zero with positive probabilities at $0, \pm 1, \pm 2, \ldots, \pm n$. For $p=q=\frac{1}{2}$ we have $P(X>Y)=\frac{1}{2}$. This is the same answer we obtained in Section 3 by a combinatorial analysis.

It may be useful to observe that for two independent binomial variables $Y \sim B\left(n_{1}, p_{1}\right)$ and $U \sim B\left(n_{2}, p_{2}\right)$, the probability function of $Y-U$ with $p_{1}=p_{2}=\frac{1}{2}$ is

$$
P(Y-U=k)=\left(\frac{1}{2}\right)^{n_{1}+n_{2}}\binom{n_{1}+n_{2}}{n_{2}+k}, \quad k=0, \pm 1, \pm 2, \ldots, \pm n
$$

For obtaining this probability function, it is easy to show that Y $U+n_{2}$ has binomial distribution $B\left(n_{1}+n_{2}, \frac{1}{2}\right)$. This can be proved by using the moment generating function of $Y-U+n_{2}$ or the fact that $Y+n_{2}-U$ is the sum of two independent binomial variables with distributions $B\left(n_{1}, \frac{1}{2}\right)$ and $B\left(n_{2}, \frac{1}{2}\right)$. Now, $P(Y-U=k)=P(Y-U+$ $n_{2}=k+n_{2}$) gives the result. Of course, for a general case, we cannot find a simple expression ([1;p 55]).

References

[1] N. L. Johnson and S. Kotz, Discrete distributions, Haughton Mifflin Company, 1969.
[2] M. S. Klamkin, A probability of more heads, Mathematics Magazine, 44 (1971), 146-149.
[3] M. S. Klamkin, Symmetry in probability distributions, Mathematics Magazine, 61 (1988), 193-194.
[4] S. M. Ross, A first course in probability, 6th edition, Prentice Hall, 2002.
[5] A. Tucker, Applied combinatorics, 3rd edition, John Wiley, 1995.
[6]D. A. Wolfe, and R. V. Hogg, Constructing statistics and reporting data, The American Statistician, (1971), 27-30.

Javad Behboodian

Department of Mathematics
Islamic Azad University - Shiraz Branch
Shiraz, Iran
Email: Behboodian@stat.susc.ac.ir

