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Abstract. Theory of zeta functions and fractional calculus plays an
important role in the statistical problems and Shannon’s entropy. Es-
timation of Shannon’s entropies of information sources from numerical
simulation of long orbits is difficult. Our aim within this paper is to
present a strong upper bound for the Shannon’s entropy of information
sources.
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1 Introduction

If s > 1, then Riemann function is defined as

ζ(s) =

∞∑
n=1

1

ns
.

The subject of fractional calculus has emerged as a powerful mathemat-
ical instrument during the past years, and is used in every branch of
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the statistics, engineering, and in other fields. S. Golomb showed that
Riemann’s zeta function ζ induces a probability distribution π(n) = n−s

ζ(s)

on the positive integers, for every s > 1 [7]. In Guiasu [9], the author
proved that the probability distribution mentioned above is the unique
solution of an entropy-maximization problem. Fractional calculus of zeta
functions can also be used to maximize

H = −
∑
n

π(n) log π(n),

where {π(n) : n ∈ N} is a probability distribution on N [8].

Theorem 1.1. [8] Let α ∈ R\Z, π(n) > 0 and
∑

n π(n) = 1. The
maximization of Shannon entropy H = −

∑
n π(n) log π(n) and∑

n∈N
π(n) logDα

f n
−x = χα, x > 1 + α,

has a solution given by

π(n) =
Dα
f n
−x

ζ(α)(x)
, n ∈ N.

where the forward Grunwald-Letnikov fractional derivative of f is defined
as follows:

Dα
f f(x) = lim

h→0+

∑∞
m=0

(
α
m

)
(−1)mf(x−mh)

hα
.

Entropy and mutual information for random variables play impor-
tant roles in dynamical systems and information theory. The entropy
actually measures the degree of irregularities of a dynamic system, and
researchers have done so much to calculate this concept, which is often
successful [4, 12], but numerical calculations of entropy are still difficult.
Tapus and Popescu presented a strong upper bound for the classical
Shannon entropy [11]. In [11, 16, 14], the authors presented a strong
upper bound for the classical Shannon entropy. In [13], the authors
presented the algebraic and Shannon entropies for hypergroupoids and
commutative hypergroups, respectively, and studies their fundamental
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properties. In [14], the author applying Jensen’s inequality in informa-
tion theory and we obtain some results for the Shannon’s entropy of
random variables and Shannon’s entropy of information sources. Our
purpose within this work is to present a strong upper bound for the
Shannon entropy of information sources, refining recent results from the
literature.

Let X be a non-empty set, F is an σ-algebra of subsets of X, µ
is a measure on X and µ(X) = 1, then (X,F , µ) is called measure
probability space. A finite set of measurable sets α = {A1, . . . , An} is
called a finite partition if the following properties are fulfilled [17]:

n⋃
i=1

Ai = X, and Ai ∩Aj = ∅ for every i, j(1 ≤ i 6= j ≤ n).

For a partition α = {A1, . . . , An} , the entropy of α is defined by

Hµ(α) := −
n∑
i=1

µ(Ai) log(µ(Ai)).

Definition 1.2. [5] Let S be a random variable on X with discrete finite
state space A = {a1, ..., aN}. We define p : A → [0, 1] by p(s) = µ{ω ∈
X : S(ω) = s}. The Shannon’s entropy of S is defined by

Hµ(S) := −
∑

s∈A, p(s)6=0

p(s) log p(s).

An information sources S is a sequence (Sn)∞n=1 of the random vari-
ables Sn : X −→ A, where n ∈ N. For given L ≥ 1 we define a mapping
p : AL → [0, 1] by p(sL1 ) = µ{ω ∈ X : S1(ω) = s1, ..., SL(ω) = sL}. The
Shannon entropy of order L and the Shannon entropy of source S are
respectively defined by

Hµ(SL1 ) = − 1

L

∑
sL1 ∈AL

p(s1, ..., sL) log p(s1, ..., sL), and hµ(S) = lim
L→∞

Hµ(SL1 ).

where the the summation is taken over the collection {sL1 ∈ AL : p(sL1 ) 6=
0}. In this paper we use the symbol sL1 instead of notation (s1, ..., sL)
and Let p(sL1 ) 6= 0 for every L ∈ N.
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Theorem 1.3. [14] Let I = [a, b] be an interval, H : AL −→ I be a
function, and f : I −→ R be a convex function, then

∑
sL1 ∈AL

p(sL1 )f(H(sL1 ))− f(
∑

sL1 ∈AL

p(sL1 )H(sL1 ))

≥ max{p(rL1 )f(H(rL1 )) + p(tL1 )f(H(tL1 ))

− (p(rL1 ) + p(tL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 )

p(rL1 ) + p(tL1 )
)}, (1)

where the maximum is taken over all rL1 6= tL1 ∈ AL.

2 main results

In this section, we continue with a refinement of Theorem 1.3, as follows:

Theorem 2.1. Let I = [a, b] be an interval, H : AL −→ I be a function,
and f : I −→ R be a convex function, then

∑
sL1 ∈AL

p(sL1 )f(H(sL1 ))− f(
∑

sL1 ∈AL

p(sL1 )H(sL1 ))

≥ max{p(rL1 )f(H(rL1 )) + p(tL1 )f(H(tL1 )) + p(uL1 )f(H(uL1 ))

− (p(rL1 ) + p(tL1 ) + p(uL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
)},

≥ max{p(rL1 )f(H(rL1 )) + p(tL1 )f(H(tL1 )) + p(uL1 )f(H(uL1 ))}

− (p(rL1 ) + p(tL1 ) + p(uL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
)},

where the maximum is taken over all distinct rL1 , t
L
1 , u

L
1 ∈ AL.
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Proof. Choose arbitrary tL1 , r
L
1 , u

L
1 ∈ AL. So,

f(
∑

sL1 ∈AL

p(sL1 )H(sL1 )) = f(
∑

sL1 6=rL1 ,tL1 ,uL1 ∈AL

p(sL1 )H(sL1 ))

+ (p(rL1 ) + p(tL1 ) + p(uL1 ))(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
)

≤
∑

p(sL1 )f(H(sL1 ))

+ (p(rL1 ) + p(tL1 ) + p(uL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
),

where sL1 6= rL1 , t
L
1 , u

L
1 ∈ AL. Therefore,

∑
sL1 ∈AL

p(sL1 )f(H(sL1 ))− f(
∑

sL1 ∈AL

p(sL1 )H(sL1 ))

≥ p(rL1 )f(H(rL1 )) + p(tL1 )f(H(tL1 )) + p(uL1 )f(H(uL1 ))

− (p(rL1 ) + p(tL1 ) + p(uL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
).

Since sL1 , t
L
1 ∈ AL, u1L are arbitrary,

∑
sL1 ∈AL

p(sL1 )f(H(sL1 ))− f(
∑

sL1 ∈AL

p(sL1 )H(sL1 ))

≥ max{p(rL1 )f(H(rL1 )) + p(tL1 )f(H(tL1 )) + p(uL1 )f(H(uL1 ))}

− (p(rL1 ) + p(tL1 ) + p(uL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
)},



6 Y Sayyari

where the maximum is taken over all distinct rL1 , t
L
1 , u

L
1 ∈ AL. On the

other hand,

f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
)

= f(
p(rL1 ) + p(tL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )

p(rL1 )H(rL1 ) + p(tL1 )H(tL1 )

p(rL1 ) + p(tL1 )
+

p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
)

≤ p(rL1 ) + p(tL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 )

p(rL1 ) + p(tL1 )
)

+
p(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
f(H(uL1 )).

So,

(p(rL1 ) + p(tL1 ) + p(uL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
)

≤ (p(rL1 ) + p(tL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 )

p(rL1 ) + p(tL1 )
) + (p(uL1 ))f(H(uL1 )).

Thus,

p(rL1 )f(H(rL1 )) + p(tL1 )f(H(tL1 )) + p(uL1 )f(H(uL1 ))

− (p(rL1 ) + p(tL1 ) + p(uL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 ) + p(uL1 )H(uL1 )

p(rL1 ) + p(tL1 ) + p(uL1 )
)

≥ p(rL1 )f(H(rL1 )) + p(tL1 )f(H(tL1 ))}

− (p(rL1 ) + p(tL1 ))f(
p(rL1 )H(rL1 ) + p(tL1 )H(tL1 )

p(rL1 ) + p(tL1 )
),

which completes the proof. �
In order to present the generalization, we define some notation, as

follows:

Tk := max{
k∑
i=1

p(ri
L
1 )f(H(ri

L
1 ))− (

k∑
i=1

p(ri
L
1 ))f(

∑k
i=1 p(ri

L
1 )H(ri

L
1 )∑k

i=1 p(ri
L
1 )

)}

where 2 ≤ k ≤ NL−1, the maximum is taken over all distinct ri
L
1 ∈ AL.



An improvement of the upper bound on the entropy of information sources7

Theorem 2.2. Let I = [a, b] be an interval, H : AL −→ I be a function,
|A| = N and f : I −→ R be a convex function, then

0 ≤ T2 ≤ T3 ≤ ... ≤ TNL−1 ≤
∑

sL1 ∈AL

p(sL1 )f(H(sL1 ))− f(
∑

sL1 ∈AL

p(sL1 )H(sL1 )).

Proof. The proof is similar to the proof of Theorem 2.1. �

3 The sources entropy upper bound

In this section we present a strong upper bound for the Shannon’s en-
tropy of information sources.

Theorem 3.1. Let S be an information source. Then

hµ(S) ≤ logN −max
k
{ lim
L→∞

1

L
log[{ k∑k

i=1 p(ri
L
1 )
}
∑k

i=1 p(ri
L
1 )]

× [

k∏
i=1

{p(riL1 )}p(riL1 )]}.

Proof. Since

− LHµ(SL1 ) + log(NL) ≥ max
k
{−

k∑
i=1

p(ri
L
1 ) log(

1

p(riL1 )
) + (

k∑
i=1

p(ri
L
1 ))

× log(
k∑k

i=1 p(ri
L
1 )

)} = max
k
{log(

k∏
i=1

{p(riL1 )}p(riL1 ))

+ log[{ k∑k
i=1 p(ri

L
1 )
}
∑k

i=1 p(ri
L
1 )]},

logN −Hµ(SL1 ) ≥ max{ 1

L
log[{ k∑k

i=1 p(ri
L
1 )
}
∑k

i=1 p(ri
L
1 )][

k∏
i=1

{p(riL1 )}p(riL1 )]},

and

Hµ(SL1 ) ≤ logN −max
k
{ 1

L
log[{ k∑k

i=1 p(ri
L
1 )
}
∑k

i=1 p(ri
L
1 )][

k∏
i=1

{p(riL1 )}p(riL1 )]}.
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Therefore,

hµ(S)

≤ logN − lim
L→∞

max
k
{ 1

L
log[{ k∑k

i=1 p(ri
L
1 )
}
∑k

i=1 p(ri
L
1 )][

k∏
i=1

{p(riL1 )}p(riL1 )]}

≤ logN − max
2≤k≤NL−1

{ lim
L→∞

1

L
log[{ k∑k

i=1 p(ri
L
1 )
}
∑k

i=1 p(ri
L
1 )][

k∏
i=1

{p(riL1 )}p(riL1 )]}.

�
Entropy of information sources is very important in synamical sys-

tems and information theory. Let (X,F , µ) me a probability measure
space. For a partition

α = {A0, ..., AN}

and measure-preserving dynamical system f : X −→ X, the maps

Sn : X −→ TN := {0, ..., N},

defined as

Sn(x) = i if and only if fn(x) ∈ Ai

are random variables on the probability measure space X. In this case
we have

p(i) = µ(Ai),

for every i(0 ≤ i ≤ N), and hµ(Sα) = hµ(f, α) where Sα = {Sn} [5].
Since The metric entropy of f is then the supremum of hµ(f, α) over all
finite partitions of (X,F , µ) (i.e.

hµ(f) = sup
α
hµ(f, α) = sup

α
hµ(Sα).) (2)

Thus, an approximation of entropy f is obtained by using 2.
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4 motivation and conclusion

In this paper, we have obtained some mathematical inequalities for en-
tropy of information sources. Also we found new and strong bounds for
the Shannon’s entropy of information sources. Theorem 3.1, shows that
in general,

logN − 1

L
log[{ k∑k

i=1 p(ri
L
1 )
}
∑k

i=1 p(ri
L
1 )]× [

k∏
i=1

{p(riL1 )}p(riL1 )]

can only be expected to be an upper bound of hµ(S), we will try to
extend it in the future.
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divergence and Shannon entropy by Levinson type inequalities via
new Green’s functions and Lidstone polynomial, Ad. Differ. Equ.,
2020, 27 (2020).

[4] J.M. Amigo, M.B. Kennel, Topological permutation entropy. Phys-
ica D. 231.

[5] J.M. Amigo, Permutation Complexity in Dynamical Systems ”Or-
dinal Patterns, Permutation Entropy, and All That”, Springer-
Verlag, Berlin, 2010.

[6] C. Cattani and E. Guariglia, Fractional derivative of the Hurwitz
ζ-function and chaotic decay to zero, J. King Saud Univ. Sci. 28
(1) (2016), 75–81, https://doi.org/10.1016/j.jksus.2015.04.003.



10 Y Sayyari

[7] S.W. Golomb, A class of probability distributions on the integers,
J. Number Theory, 2 (1970), 189-192.

[8] E. Guariglia, Fractional calculus, zeta functions and
Shannon entropy, Open Mathematics, 19 (1) (2021),
https://doi.org/10.1515/math-2021-0010.

[9] S. Guiasu, An optimization problem related to the zeta
function, Canad. Math. Bull. 29 (1) (1986), 70–73,
https://doi.org/10.4153/CMB-1986-013-7.

[10] R.L. Magin, C. Ingo, Entropy and information in a fractional order
model of anomalous diffusion, 16th IFAC Symposium on System
Identification The International Federation of Automatic Control
Brussels, Belgium. (2012), 11-13.

[11] N. Tapus, P.G. Popescu, A new entropy upper bound, Appl. Math.
Lett. 25 (11) (2012), 1887-1890.

[12] Ch. Corda, M. FatehiNia, M.R. Molaei, Y. Sayyari, Entropy of
Iterated Function Systems and Their Relations with Black Holes
and Bohr-Like Black Holes Entropies, Entropy. 20, 56, (2018).

[13] A. Mehrpooya, Y. Sayyari, M.R. Molaei, Algebraic and Shannon
entropies of commutative hypergroups and their connection with
information and permutation entropies and with calculation of en-
tropy for chemical algebras, Soft Computing 23 (24) (2019), 13035-
13053.

[14] Y. Sayyari, New bounds for entropy of information sources,
Wavelets and Linear Algebra, 7 (2) (2020), 1-9.

[15] Y. Sayyari, New entropy bounds via uniformly convex func-
tions, Chaos, Solitons and Fractals 141 (2020), 110360
(Doi.org/10.1016/j.chaos.2020.110360).

[16] S. Simic, Jensen’s inequality and new entropy bounds, Appl. Math.
Lett. 22 (8) (2009), 1262-1265.

[17] P. Walters, An introduction to ergodic theory (Springer Verlag,
New York, 2000).



An improvement of the upper bound on the entropy of information sources11

Yamin Sayyari
Department of Mathematics
Assistant Professor of Mathematics
Sirjan University Of Technology
Sirjan, Iran

E-mail: ysayyari@gmail.com


	1 Introduction
	2 main results
	3 The sources entropy upper bound
	4 motivation and conclusion
	References

