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Abstract. Various fractional differential equations have been examined
during the last decades. Among them, singular equations are more
notable. In this article, by using control functions, the existence of a
solution for a bi-singular fractional differential equation with multi-point
initial value conditions is considered. In the following, some examples
elucidate our main result. In this paper by using control functions
method, we prove the existence of the solution.
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1 Introduction

Altough it is awhile that definitions for the fractional derivatives have
been provided, differential equations with fractional order have played
a prominent role in the researches of mathematicians (see, for example,
[1]- [6]), among which singular ones are more significant.(see [7]- [11]).
In fact, differential equations with fractional derivative order, can be
considered as an extension of ordinary ones. One can see that in scien-
tific and engineering problems, a exact mathematical modeling leads to

Received: March 2021; Published: July 2021

1



M. SHABIBI

a differential equation with fractional derivative order (see for examples
12} 21] ).

In 2013, the fractional problem D"v(§) + y(t,v(§)) = 0 with boundary
conditions /(0) = v"(0) = - - - = vFo=1)(0) = 0 and v(1) = fol v(s)d(s)
was investigated, where 0 < £ < 1,n > 2, r € (ko —1, ko), 7(s) is a func-
tion of bounded variation, y could be singular at £ = 1 and fo dvy(s) <1
([22]).

In 2015, the fractional problem D?y(¢) = ¥ (¢, y(¢), D?y(¢)) with bound-
ary conditions y(0)+y'(0) = g(x), fol y(¢)dt = mg and y”(0) = y3)(0) =
-oo = y(=1(0) = 0 was studied where, 0 < ¢ < 1, my is a real number,
n,>2,p€(n,—1,n,),0 <o <1, D and D’ is the Caputo fractional
derivatives, g € C([0,1],R) — R and ¢ : (0,1] x R x R — R is a contin-
uous function in which ¥ (¢, u,v) could has singularity at ¢ = 0 ([23]).
In 2018, the existence of a solution for the following three steps crisis
problem was investigated:

D2(7) + (. 2(7), £/(7), D" x(7), /0 " 0(6)2(6)de, w(z(r))) = 0

with boundary conditions z(1) = 2(0) = 2”(0) = 2™ (0) = 0, where
n > 2 M\Npo e (0,1), Q¢ L'0,1], w : CY0,1] — C0,1] is a
mapping such that ||w(z1) — w(z2)| < wllz1 — x| + ul|z) — x| for
some 1y, 17 € [0,00) and all 21,29 € C[0,1], D" is the n-order Ca-
puto fractional derivative, (7, z1(7), ..., 25(7)) = ¥1(7, 21(7), ..., 25(7))
for all 7 € [0, ), ¥(7, 21(7), ..., 25(T)) = Ya(T, 21(7), ..., 25(7)) for all T €
A, p] and (7, 21(7), ..., 25(7)) = ¢¥3(7, 21(7), ..., 25(7)) for all T € (p, 1],
1(T, .45y, .) and Y3(7, ., ., .,.,.) are continuous on [0, A) and (u, 1] and
Yo (T, .y ey -y -, ) is multi-singular ([21]).

In 2020, the existence of solutions for the strong singular fractional dif-
ferential equation

Dx(t) = f(t,x(t), TP x(t), ..., TP x(t)),

with boundary conditions (2 (0) = - .- = z(»=1(0) = 0, z(0) = fol x(§)d¢
and x(p) = X5 \T%x(v;) was investigated, where o > 1, p1, ..., pm >
0, m > 1, D¢ is the fractional Caputo derivative of order «, ZP is the
Riemann-Liouville integral of order p and f(t,.,...,.) has strong singu-
larity at some points [0, 1] ([25]).
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Motivated by the mentioned articles, we investigate the non-controlled
bi-singular fractional differential equation

D (g(t)D*(v(1))) = O(t, v(t), V' (1), du(t)) (1)
)

with boundary conditions D)y (0) = vU)(0) = 0 for all 1 < j* <
k—1,0<j<n-—1and /(g = Zfil Aiv(7i), for some ko € N, where
n=1la+1, k=[+1,ar>1atr>3 NecR S\ #£0,
n,v € (0,1), g : [0,1] — R is a function which can be zero at some
points t € [0,1], ¢ : X — R is a function such that for all u,v € X and
t € [0, 1], satisfies the following inequality:

|u(t) — ¢o(t)] < wilu(t) —v()] + walu'(t) — ()],

wi,ws € [0,00) and X = C[0,1]. D* is the Caputo fractional derivative
of order a and f : [0,1] x R3 — R is a function such that O(t,.,.,.) is
singular at some points ¢ € [0, 1]. This equation has the advantage that
includes many similar ordinary differential equaltions and fractional or-
der ones. The method which will be in the proposed article leads to
control singular points. Actually, using inequalities and control func-
tions, set fewer and weaker conditions to prove the existence of a solu-
tion. All types of singularity which occur in a differential equation are
important. Bi-singularity ones have been less studied. In this article
we introduce bi-singularity concept and consider a problem with this
type of singularity. In fact, © is stated to be multi-sigular when it is
singular at more than one point ¢. Note that the differential equation
D(g(t)D'w(t)) = U(t,w(t)) is sigular when U is singular or g(t) = 0
at some points ¢t € [0,1]. When U is singular and g(t) = 0, we call
the equation D*(g(t)D*w(t)) = U(t,w(t)) to be bi-singular. Likewise,
Dw(t) + U(t) = 0 is pointwise defined equation on [0, 1] if there is the
set E C [0, 1] such that its measure of complenment E° is zero and equa-
tion on E is being hold. It is obvious that each equation is a pointwisly
defined equation. In this paper, we use ||.||1 as the norm of L[0,1], ||.||
as the sup norm Y = CJ0, 1] and ||w||, = max{|w], ||w’||} as the norm
of X = C'0,1].

The Riemann-Liouville integral of order r» with the lower limit v > 0

for a function Y : (r,00) — R is defined by Z". Y(z) = F(lr) [z —
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¢)"~'Y(¢)d¢ provided that the right-hand side is pointwise defined on
(v,00). we denote Z"Y(x) for Zy, Y(x). Also, The Caputo fractional
derivative of order r > 0 of a function ) : (0,00) — R is defined by

Dry(x) = F(ni_r) /0 @ _yc)fﬂ_m d¢, where n, = [r] + 1 ([20]).

Let ¥ be the family of nondecreasing functions 9 : [0, 00) — [0, c0) such
that Y222, ¢7(¢) < oo for all ¢ > 0 ([27]). Tt is easy to see that ¥)(¢) < ¢
is held for all ¢ > 0 ([27]). Let T : £ - £ and A: £ x & — [0,00) be
two maps. Then 7 is called an A-admissible map whenever A(z,y) > 1
implies A(Tx,Ty) > 1 ([28]). Let (£,d) be a complete metric space,
€ UWand A: & xE — [0,00) a map. A selfmap 7 : &€ — & is
called an A-iy-contraction whenever A(z,y)d(Tz,Ty) < ¢(d(z,y)) for
all z,y € € ([28]). We need the following results.

Lemma 1.1. ([29]) Assume that 0 <n—1<r <n andv € C[0,1] N
L'[0,1]. Then Z'D"v(¢) = v(€) + Z?:_ol 1;€% for some constants
L0y - -+ tn—1 € R.

Lemma 1.2. ([70]) Consider a complete metric space (£,d), a map A :
EXE = [0,00), Y €V, and L — & an A-admissible A-p-contraction. If
L is continuous and there exists ug € € such that A(ug, Lug) > 1, then
L has a fized point.

Lemma 1.3. ([71]) For all { > —1 and w > 0, we have

fg(t —5)""lsCds = B(C + 1, w)t ™S, where B(¢,w) = FF(EZBES)

2 Main Results
Lemma 2.1. Leta>1,t>2, N\, € R, n € (0,1) for1 <i <k, ko €N,

n=1a+1,k=[]+1and f € L'[0,1]. Then 2o € X is a solution for
the problem

DYg(t)D (v(1))) = f(t) (2)

with boundary conditions DET)y(0) = vU)(0) = 0 for all 1 < j* <
k—1,0<j<n—1and v (n) = Zfil Aiv(Vi), if and only if zq is given
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as follow
x[)(t) = F(a)l]_j(t)\/o f(C)Ha,t(t) C)dC
1 n
ST /0 F(QHagr (£, Q)dC
1 ko Vi
_W Z_Zl i ; f(C)HCl,t(’yia ¢)dc,
where

Hu,t(tv C) = / g(g) 5
and A = Zfil i

Proof. Let z( be a solution for the problem (2), then regarding Lemma
(1.1), it is evinced that

1 t
g(t)Drxo(t) = W / (t— Q) LF(Q)dC + mo + mat + ... + my "L
0
Since D'zo(0) = 0, we mg = 0. Also we have (g(¢t)D zo(t)) = my,
t=0
hence

9'(0)D"z0(0) + g(0)DF1arp(0) = 1.

Since for 0 < j <n—1, D"z4(0) = 0, we conclude that m; = 0. Using
the same argument, it is concluded mo = ... = m,_1 = 0. So

Do) = s | (0= 0P (O

g()T

Using Lemma (1.1) again, it is resulted

_ 1 t(t_g)til ¢ _ ~a—1
) = Fara | e €= o rac

+io+ 01t + ...+ Lk_ltk_l.
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As regarded x(j*)(O) =0forl1 <j*<k—1thent; =13=..=15_1=0.
Replacing in the above equality, we have
1 t (t . f)t_l /5 3
zo(t) = — Q)" LF(Q)dC)dE + 1o (3
o0 = e ) g €= 0T+ @)
By differentiating from the last equality, it is deduced that
L= [ e
w(t) = / | €= or o,
W= Tare—n g Uy ETT O

SO

g [ 5”5 U cpazac

_ (77 £)t 2€-9
~ e | o ey,

1
(
t2
t// =9 5 O pe)dcde
1
Tl —1)
1
(

v—1) €)

t—2 13
) = et (] €= 0o
Put
¢

9
€=
G

0 ¢
t _ \e—1
Hu,t<t7 C) = /C (t 6) g(

then, it is obtained that

dg,

xo(n) = W /077 f(QOHae—1(n,¢)dC¢.

Also by (3), we induce that

_ t 1
) = g | S ace
_ 1 t 15 C
- s ) [ - FOdEC + 10
1
= a)F /HuttC dC—l—Lo.
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Hence, for 1 < i < kg, we have

Nixo(yi) = / Hae (73, Q) f(C)dC + Aeo.

Therefore

ko 1 ko » "o
; Aixo (i) = W Zz; i /0 Hae(vi, O) F(C)dC + 1o ; A

By hypothesis xj(n) = Zfil Aizo(7;), so we have
1 / F(O)Hae1(n, )
( F( a,c—1\7,

ko
1
a)F / Hat ’Yza )dC+L0;)\i7

T —

SO 1o is obtained as follow

1 n
Lo = W(f—l)/o f(C)Ha,tfl(n,C)dC

1 ko Yi
e g_; A /0 Hae(i, O F(O)dC,

where A = Zfil Ai. Hence x(t) is given as
1 t
S [, Harlt OFOC

1 n
e eceyl RIS GES

1 ko Vi
AT N ) Heslrn 0RO
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Now, let £ : X — X be defined as
¢
£) = Frairr | Mart- 0B Q) W0 u(O)C

* AF(lt—l / a1 (1, OOC (O, Q). ()i

ZA T Mo (302 OB(C (O (), u(C))C

where ¢ : X — X is a mapping such that
[Bu(t) = ¢o(t)] < wifu(t) — v(t)| + w2’ (t) — 0'(1)],

for all u,0 € X, t € [0, 1] and some functions wy,wsy € [0,00). It easy to
see that £’ is given as follow

cult) = 5 = i | e O (€ au(c)de

1 t )
- et | Has 0O O O

Now, we investigate £ : X — X, to prove the existence of a solution
in X for the problem (1). Applying lemma (1.1), it is indicated that £
has a fixed point in X. In the next results, by using some functions which
are called control functions, we will control the singularity and then,
inequalities help us to consider a sloution for the bi-singular fractional
differential problem.

Theorem 2.2. Leta,v > 1, a+t >3, n=[a]+1, k=[t]+1, \; €R,
A= 2521 Ai #0, n,7 €(0,1), ¢ : X = R is a function such that for
all u,v € X and t € [0, 1],

[6u(t) = do(t)] < wiu(t) — o()] + walu'(t) — o' (1)l
for some wi,wy € [0,00), ¢ [0 1] — R may be zero at some points
to € [0,1], [|Gas—1ll == f, T)'Cdg <00, ©:10,1] x (CY[0,1])> = R
be a singular function at some points t € [0,1] such that
o+
|O(t, w1, wa, w3) — O(t, 21, 22, 23)| < ZG Aj(Jwr — 21|, |wa — 22|, |ws — 23]),
j=1
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for allwy, we, ws, 21, 22, 23 € X, almost t € [0,1] and some k* € N, where
Aj: X3 —[0,00) for each 1 < j < k*, is a nondecreasing function with

respect to all their components, ; : [0,1] — [0,00), lim, o+ A(Z’Z’Z) =
e Gur 1 t§
€ [0,00) cmd||gg;t 1”[0,15} = J e 4 € L0, 1], where Hat(t €)=
fo )"t 20;(C)dC. Also let |O(t, x1,ma,3)| < 305y Ni(t, a;), where

N; - [0 1] x X — [0,00) for each 1 < i < 3 is nondecreasing with respect
to its second component and lim,_,y+ (t 2) = =V;(t) a.e. [0,1], such that
VP oy € £[0,1] and

3

> <|AI(t DI o + (= DIay o

j*l

+Z A8 o,

)) < o, BTG,

(1]

where = = maz{l,w; + wa}. If

a,t— 1
el () SCATTRSE) Sl
k* kO
+qujmr|r§;;u[o,”) 1

j=1i=1

then the singular fractional differential equation

DY (g(t)D*(v (1)) = O, v(t),V/(t), ¢u(t))

with boundary conditions D)y (O) = vU0) =0 for all 1 < j* <
k—1,0<j<n—1andv'(n) = 2101)\1/(%) for some ko € N.

Proof. Firstly, we prove that £ is continuous on X. Let u,v € X, then
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for all ¢ € [0, 1] we have
1 t ,
2ult) ~ £0(0) < i [ Mt <>|]@<c,u<o,u (©), 4u(0))
—e<<,o<<>,o'<<>,¢n<<>>]d<

1 n )
+’A‘F(a)r(t—1)/0 |’Ham1(n,<)l‘®(<,u(<),u(C),czbu(o)
(6. 8(0 (0 ()| a6

TN E Zm/ a0l |G (G (€1 4(0)

- <<,n<c>,n<<>,¢n<o>]d<

“ I >1r< >/t (1metec

k*
<L BOME) ~ o0 (O = VIO ) - ¢n<<>\>)c
1 0
|A|F( ) (t—l)/o <|/Ha,t—1("77C)’
x Ze 0O () — V(O 6u(0) ¢n<<>|>)d<

’A‘F ’)\ |/ <|Hat ’717

< Z%(C)M(MC) (O () — V(O] 64(0) ¢n<<>\>)d<

< T )/ (st

k*
Z Al = off, v = o[l wif|u = off + wol[uw’ — v H)>
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1 n
|A]F( )T (t—l)/O (’Ha,t—l(U,CN

XZ9 Aj(Jfu = ol [[u" = o[, wilfu = o] + wal[u’ —U||)>
‘A’F Z |>‘ |/ <Hat Yi; C

XZ9 Aj([uw = o], ' = o[, wi [l = ]| + walu’ —UH)>

1 t

< -

“ T [ (paste

XZQ Aj(Jlu = o, [Ju —UII*,(w1+w2)|!u—n||*)>dé

1 7

‘A’F (t _ 1) /O (’Ha,t—l(na C)|

xZe Ay (s = ol = o], (o +W2)HU—UH*)>dC
|A|F Z |)\ ‘/ <Hat rYZa

XZQ Aj(flu— ||*7||u—0||*,(w1+w2)|lu—0||*)>dC-

Let = := maxz{l,w; + wa}, then by the last equality, for all ¢ € [0, 1] it

is concluded that

11
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|[Lu(t) = Lo(t)]

k*

Z( = — *’I“E(’al)l]_“—(tt;H*’E’u_nH*) /OyHa7t(t,g)|9j(§)dC)

(=l — o]0, Eut — o]l [ — ]])
*Z < AT ()T (c— 1)

>< / Hasa(n, <>|0j<c>d<>

=l — o]l Zlfu — o]+, Zlfu — v]].)
*Z < NRORG

xgw / ma,t(%,orej(odc)).

Regarding the properties lim,_,o+ w =gj forall 1 < j < k¥,

=2

for € > 0 there exists 0 < d(e) > 0 such that z € (0,4(e)] 1mphes
0< |M| < gj+e forall<j<k*so0< AEzEzEz2) <
(gj +€)Zz, for all z € (0,0(e)] and 1 < j < k*. Let d,,(€) = min{e, o(e)},
then ||u — o]/, < 6y, (€) implies

A(E[[u = o]l Elju — o]l ElJu — v]l,) < E(gj + €)lfu — o], (4)
so when |[u — v|, < d,,(€), then for all ¢ € [0, 1]

|[Lu(t) — Lo(t )I

Elju — vl .
= T'(a)L(x) jz [ 9+ / [ Ha,e(t, O)10;(C )dc}
=|Ju - nu - L
+‘A’p ;:1 [ qj + 5)/0 |Ha,t—1(777C)|9j(C)dC:|

k*

|Z’y;l - Z [ qj + e)(g I\l /0% |Ha,t(%,<)!9j(g)dg>}

J=1
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On the other hand,

/ Hax(t, 0105(Q)dC = / / tlf O gejo,()ic
// ”5 Oy (e
/ / ”5 O g,(pacae.

When a,t > 1 and & € [(,1], we have (t — ()" > (t — &))" and
(t—¢)* 1 > (¢ —¢)* 1, so by the above inequality, we conclude that

t t £
/0 [Har(t, 0)|0;(¢)dC < 1( / (t—&)“(&—o“‘lej(odc)dg

0o l9(6)] 0
t ]. 5 +r—2 ) ¢ éa t(t7 g)
— — )™ 20.(¢)dC ) dE = 7 d
< ) g ([ o e~ [ silas
where foc(t,€) = [S(t — ¢)%20;(C)dC. Tt is evident that fq.(t,&) is

nondecreasing with respect to their components, also HAM < éa’t* when
t > t*. By the same manner, it is resulted that

/ |Hut 177» |9 dC / T 177,

and for all 1 < i < kg, we have

i ) ) v éa,t(%’af)
/O Hae (i, Ol85(C)dC < /0 e

Hence for all ¢ € [0,1] and u,v € X in which |u — o], < (), the
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following inequality can be concluded

[Lu(t) — Lo(t)]

Elu ol g~y [ a0
= Tl () j;(qﬁ )/ PG

0
k* ~
_Hu - nH /’7 Oar—1(1,€)

+ gGte) | —nrdE
AT Z 9 T late)]
_||u—u||* - )\ Oa,c 'Yu

]:1
07" (1.6)

Let §g;t(t,£) = 19(76)7| and Hgng[O’l] = fl gy (1,€)d€. Since 9”(%,5)
is nondecreasing with respect to ¢, gg;t(t,ﬁ) also is nondecreasing with
respect to t. Also since g 1(7i,€) > bar(vi, &) for all t,& € [0,1], we
conclude that ggt(t ) < ggt L(t,€) for all t, & € [0, 1], hence g;”(l,f) €
L'[0,1] implies that g~ 1(1,5) e L'[0,1]. Soforallt € [0,1] andu, € X
in which |ju — o, < 5 (€), we have

=lu — o]
[u(t) — Lo(t)| < (g +6) [ a57(1,€)de
(@) Z /o 0

k;*
= u—U Z ~
] 1
k*

d\‘ﬁl_n‘* Z[%H(ZW/ ~“1£d5)} 5)

Jj=1
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Therefore
k*
"5m €
Lu(t) — Lot a);(z > (ai + 9oy
7j=1
k*
j:1
=0 k* ko
M Z s+ 1 o
':'6 k*
‘ | (a)F <|A; q; +6 ”99 H[O 1]
k* k* ko
o= )Y+ 9l o + S0 Ailgs + 6)\§g;t||[0,1]>~
j=1 j=1 i=1
So
:6 k*
. < = . ~a,v
= o] £ s (w;& + T o
k* *
o= )Y+ Ol Yo+ 55 ) (5 + ) ||01)
j=1 7j=1 =1

Also for all t € [0,1] and u,v € X, we have

£30) = 2901 < i [ 170 (€60

—O(C,v(¢), v'(€), du(€))|dC.

Note that for 3 € X, we have

L350 = i | 00,50, 0O

1 t )
~ ST/, Mot 0B
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For all t € [0,1] and u,v € X, it is concluded that

1L'u(t) — Lo(t)| < W /0 (!Ha,r_l(t, Q)
< 1O(C, 1(0)(0), 6u(0)) — O(C, 0(0), V' (C), ¢n<<>>\)dc

1 t
< I‘(a)F(t—l)/O (IHa,u(t,C)l

k
% 3 0,(A(1u(0) — 0O W (0) — (O] 164(C) — ¢n<<>r>)d<

[Aj(Elu — o[+, Eflu — of+, Efju — vf|+)

2 T(a)(x — 1)

t
x /0 e (1,.0)[6;()dC |

By (4), when |lu — vl < d,,(€), for all ¢ € [0,1] we infer that

£'u () Llo(t)]

_Z el AT

uuu—nu* & r?s ¢)*~
<t g +e) d£9»(<)d<
I'(t—1) ; 7 // 7
_ k* t 2
< roes Do+ [ [ s
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=lu— o]l CL ek
< R 2549 [ g, ¢ 00

_ Elvol S, Y
T (- 1) ;(qﬁ )/0 PG

k*
EHu _ UH* ~a,t—1
< -, . ’
“T(a)(xt—1) j;(qﬂ - 6>”90j ll10,1]
k;*
Eém(e) ~a,v—1
< — . ’
~I(a)(t—1) jz::l(qj T €>H90j ll10.1]
— k*
=€ ~a,v—1
< —v-—— . )
~I(a)(t—1) ;(q] T e)Hgaj 10,11

Ee(r—1)
- F(G)F Zl q] +e H99 ||[01

Which leads to

k*
ZEe(T
e - 2] < S5 X057+ Ol

Therefore

I£u = Lol = max{|[Lu — Lo], [|L'w — L'o[|}

_ E*
=€
< —— | |IA . ~a,t
= AT (@)L (x) <’ ‘;(% I3, lo.y
k*
+(r— 1)max{1 ’A|}Z qj +e) Hgat 1” o1
7=1
k* ko

20 N + 915 o ).

=1 i=1

17
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Since € > 0 is arbitary, u — v in X implies Lu — Lv in X, therefore £
is continuous on X. Now since lim 0+ Nﬁ(tl’f) =Vi(t), foralll1 <i<3
and almost all ¢ € [0,1], lim,_,o+ M( ’“Z) = Vi(t). Therefore for € > 0
there exists d(e) > 0 such that 0 < z § d(e) implies Nilt.Ez) ’“2) < Vi(t) +
and thus N;(¢t,22) < (Vi(t) + €)Z2z, for all 1 < i < 3 and almost all
t € [0,1]. Since

A~ 1 A,
|A|F [Z (’A| v=Dlgy Moy + (€= DlIgy o

+Z\A ’”AMH[O,%H <1

then there exists ¢y > 0 such that

- 3
(i | 2 (1816 = 1135 o + (= Dl

Jj=1

ko ~d 3»_46 _
+Z |)‘i|||gv7th[07%]>:| ‘A’F(a—i—ol) ( ) |:’A|( )Hga,tflu
=1

ko
(e = DG + (3 |Az-r>uga,t||]> <1

=1

similarly since

T
V3u1< !2£:<ng Mo+ (c—1) Zz:qﬂ|“t
k* k()

- Z > quHéSfH[o,l]) <1

j=1 i=1
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there exists €; > 0, such that

=

—_ k*
LAIFH <|A!Z%Hg o + @ = 1> gilldg o
j=1

k* ko
+ Z Z quz-!HQS;tH[o,u)

j=1i=1

k*
Eep _a,
+ e (8 |Z||g o+ 6= 1) L1
+ZZ|MH~“HM)]

7j=1 =1

Let Ry = min{e, Jméel) i(t,pz) < (Vi(t) 4+ €0)pz, for all 0 < z <
Ro. Put Q = {u € X : |Ju|« < Ry}. Define the map A : X2 — [0, 00)
by A(u,v) = 1 when u,v € Q, otherwise let A(u,v) = 0. Suppose that
u,v € X besuch that A(u,0) > 1,sou,v € Q, ||ul. < Ry and ||v]. < Ro.
Then for all ¢ € [0, 1], we have

1 t ,
1£0()] < e / Hax(t, O)[O(C 1(C) 1 (C), du(C)))dC

1 n /
*mm =) / Hae 1 (0, OO 1(0),(€), 6u(C))IdC

ZA [ e Q1O (0, (Dl

IAIF
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1 t
< S /0 Han(t,C)|

. (M(C u(0)) + Na(C1(O)) + Na(C, asu(c)))dc

‘A|F( t—l / ‘Hat 177C)|
» (M(C u(0)) + Mo (O)) + Na(C, ¢u(c>>)dc

N YERE) Zm/ Haelai. ¢

3 (N1<<,u<<>> NG () + N3, ¢>u<<>>>d<.

Consequently, for u € 2, hence

Cu(t y_r /\Huttg

x (M(c Jul) +N2<< 1) -+ A (¢, ] +wzuu'u>)d<

’A‘P( t—l / ’Hat 1 77 C)‘
X <N1(C [ull) + N2 (¢, [w'll) + N3(C, wilul +w2Hu’H)>dC

’A‘F Z |)‘ |/ ’Hﬂt 7@7

x (Nl(C, Jll) + N2 (S, 1w'l]) + N (G, wn fJull + wzl!tl’l!)) dg

1 t
F(a)F(t)/O [Hare(t, €l

. (M@, Slull) + Mo (¢, Ellull) + Na(c, Ellu\m)dc
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|A‘F( t* 1 / |Hat 1 77 C)‘
X <N1(§,:Hu|!*) + N2 (G, Elulls) +N3(C75||u\|*))dC

|A‘F |A |/ ’%at fYZJ

. <N1(c, =lull) + Aa(C, Elull) + (. Ellull*)>d<

1 t
F(a)l“(t)/o [Hae(t, Q)]

. <N1(c, =lull) + Na(C, Elull) + N (C. Ellull*)>d<

1 "
+ |A‘F(G)F(t _ 1) /0 |7‘la,r—1(7]a C)‘

. <N1(<, =lull) + Ao(C, Elull) + N (C. Ellu\l*>)d<
TN e Zm/ Hae(2:)

x (M(c, Slulle) + Ma(C, Elulls) + A (C, E\Iu\\*)>d<

3

/mutcr . (3 VH(Q) + eo)dc
7j=1

3

b/ et (1 Ol (30 VA6 + ol

7j=1
W |>‘|/ [Hae (Vi Q)2 ||« ZV )+ €0)d
_ _Elll
T T(a)T(x) < / [Ha,e(£,O)V5(C)dC) +360/ Hax(t, <)|d<>

E[ufl«

+|A‘F(a)r(t_ 1) <Z;(/O ’Ha7t—1(777<)|vj(g)d€)

n
+3€0/0 ‘,Ha,t—l(nyC”dC)
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- ZDA'(i/ Moo OV ()

+360/ Hae(yi, € >

- H”u” (Z / / tlf O gev, (¢)dc)
o [

N vy (Z/ / tzg O gev,(c)ac)

+3eo// t2§ Caldgdg)

ETerE Z' '< o / et ”6 O devi()do)

e [0 v_gtlgg e ).

thus, it is concluded that for all u € Q and ¢ € [0, 1]

cu(t) “””” ( / / ”5 Oy dca)
360 /O e / (t— ¢ t—1<s—<>“—1dcd§)

3 t2
A=) (Z A / =t S e

o [y -0 “1d4d5>
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- ZW( // tla O (e

w0 [ g |/ O~ CHCM)

Since € € [¢, ], then (t—&)* 1 (¢—¢)* ! < (t—¢)*"*2, hence for ¢ € [(, 1]
we have
¢ (t — f)t_l(g B 3) Cl+t 2
el G r/ Vil
I sae
mvj (tvg)’

also we have fog(t — e - Q)¢ = W So for all u € Q2 and
t € ]0,1] it is infered that

= u, EVRN(L € (- len
vl < iy <Z/ 9] df”“/o alg(@) dg)
=ul. Vit oy 7 (= O
AT () r—l(z/ o] d“?"’/o Al (@) d5>

il Z N |<

+3¢o / b 7( =8 1‘5ad5>,
0

alg(&)]
therefore
E 3€g
cuo)] < ol (516850 + 22 lgne) )
]:1
~HuH 360 |,
+‘A’F Hg;-tH[O,n] + THgﬂ,t—lH
7j=1
3

ko kO
~HuH 0, 3¢ .
AT 2 2\)\"”9%;“[0,%] oDl )

]:1 =
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Taking the supremum norm over [0, 1], we conclude that

= N 360
lu] < ke (Zn o \gmu)
3
+ o= (L1850 + 22 gacct
|A‘F [U’r] Jae—1

=1

J
_Hun - 3o %
MA@ | 2 | 2Pl llos | + 70 O Pab el

=1 -i=1

3
Zju fot Iy
_ A|F\ I [Z<|A|H il + (£ = DIIG o

=1
+ZM|HA“

)

_ .
3Zeq][ul] ) ) o
+ |A[D(a + 1)L (x) |AllGacll + (€ = Dllgae1ll + O N[ Gaell

=1
3
1 a,
= (|A [Z (‘A’ v=Dlgy oy + €= DIIgy o

+Z!A|HA”!

.

.

[I]

)

3Zep [|A|<r ) gartl 5= Dllgaeal + (3 MHM])R
AT+ DT ’ et Pel)lge

< Ryp.

Likewise, for all ¢ € [0,1] and u € £ we have

£90] < ey [ Pas st OO0 Q) C)liG

1 t
S F(Cl)r(t—l)/o |Ha,t—1(t7 C)’
X <N1(C7 [ull) +Na(C, wll) + N3 (G, waJu] +w2Hu’H)>dC
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1 t
< F(a)I‘(t—l)/O |Har—1(t, Q)]

X </\/'1(C, El|ull«) + N2 (E Elul+) + N3¢, E||u||*)>d§
1 t _ 3
< e, s ORI Vi) + e

Jj=1

25

:MM(Z/ Haeor (1, OV (C dc+3eo/ Hax 1 (t C)\d<>

“””t”_1< / / t25 O viaedc
+360/ / )" 26 O dde)

H||ut||_1 <Z// f?g O (g
3eo/o| / €7 2(e - c“d<d§>
< Frte -1 (E/o i, oo

B¢y [! (1 — )2 >
LU Ik YA
s by ger ©

tvat 1 3
T (Z/ 20 gy
_|u 1 3eo | _
o Zug“ ot + 2 lgac-al).

Therefore

3
T o 8
12 = ey ( 2 180 o+ = e
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=[u ~d,t— 3e
|A|1“|(’ y T(x) <|A| (v—1) Z” % o + 1AL = 1) 2llgae- 1||>

. <|A|r_ [iOA'“l oy,

J=1

(e = DIy o

A t 3E€ _

ko
e Dl + (O !)\¢|)Hga,rHDRo < Ry,

i=1
Thus, we conclude that

1£ull. = max{[| Lull, || £ull} < Ro,

hence Lu € Q. By a similar way, it is resulted in Lv € €2, this implies that
A(Lu, Lv) > 1, therefore £ is A- admissible. Evidently €2 is nonempty,
so there exists ug € 2, we further proved that Lug € €2, which leads to
A(ug, Lug) > 1. Let u,0 € X, if A(u,v) # 0, then u, v € Q, therefore

Om(€1)
2

d(u,0) < [[ul« +[Jo][« <2 = Om(€1)-

By (4), the following inequality is held
AE[u = ofls, Elfu — olls, Ellu — v][«) < Z(g; + €1)/[u — o]+,

so for all t € [0,1], (5) implies that
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1
|Lu(t) — Lo(t)] < “”“ ”” ZQJ+61 /0 Jp, (1,6)d¢
=1

uuu—nu - 1 o
+ (qj +e€1) (1,8)d¢
AT (@ ) & A

yﬂru_b‘* i[%ﬂl <ZIA|/ 15d5>}

j=1

_||u ul
Z a4+ € ng 0,17
=1
Ellu—vl. <
Zu— v, .
AT @ -1 2=+ edld o
j=1
Zllu = ol o .
+WZZ(% +€1)|)‘i’”ggj ||[0,1]
7j=11:i=1

k*
[|A|F <‘A|Z%Hg ”[071} +(t—1)ijH§gj,r—
j=1

k*
+quj|xi|rg;;’f||[o,u)

J=11=1

k*
e o
AT (wZug ooy + = 1) S 135 o
=1

.
S g )Mu—nr*.
7j=114i=1

1
0,11
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—_

S [ _1) 1
A [|A\F( T <|A‘ZQJ”99 H[o 1]+ t Zq]ng H[O,l]

k* ko
~a Ze ~q,
+ X a1 o) + 5o (mzw o

j=1i=1
k*
~ 1 ~
te-1 Zn“ 01+ZZ|A|||“HOH)}<1.
J=11i=1

So ||[Lu — Lo|| < Alju — v]|.. By similar way, for u,v € X in which
A(u,0) # 0, it follows that

u||u

1£'u(t) = £0(0)] < £,

[mr( T ('A (e -1 Zq]uga gt mm)
M(\Al Z“”‘“Ho,u)]uu—uu*

< AfJu— o]l

k*

—1
E (2 +e)llgg," Mo,
=1

So [|[Lu — L] < Alu—v|[.. and [[Lu — Lo|. < Alu — of/.. Define
Y :[0,00) — [0,00) as Y(t) = At, then > 2, ' (t) = ﬁt < ooforallt e
[0,00), so 1 € . Therefore we have proved u,v € X in which A(u,v) #
0, A(u,0)d(Lu, Lv) < (d(u,v)). In the case A(u,v) = 0, the inequal-
ity is obvious. So for all u,v € X, the inequality A(u,v)d(Lu, Lv) <
Y (d(u,v)) is held. Now, regarding lemma (1.2), £: X — X has a fixed
point in X, so the singular problem (1) has a solution. O

The following example demonstrates the main result.

Example 2.3. Let

0 tel0,1]NnQ
c(t) =
1 t € (0,1)NQ°.
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and

1
O(t, 1,22, 23) = @(lell + [zl + [ls]])-

Consider the following pointwise defined bi-singular equation

1

D3 (3\/%D3u(t)> = O(t,u(t),u'(t), D2u(t)) (6)

with boundary condition D%ﬂu(O) =u(0) =0for 0 < j < 2and
W(3) =2u(3). Put ko =1, v = 1, n = %, g(t) = 3Vt and ¢u(t) =
D%u(t), then

2
_ < - i
660l < 55— =
sowp =0, wy = % and 2 = max{1l,w; + wy} = 1. Regarding lemma
(1.3), it is resulted in

Y S (SRSl IR e _
||9a7r—1||—/0 3\@—3/0 (1-¢) C—gB(zag)

_T3)re 2
a9

[ = o[ = ==l = v,

N

Let k* = 1, 01(t) = ?107 Ni(t, x;) = Tlt)f% and Ay(x1,z2,23) = 21 +
To + x3, then

1O(t, w1, wa, w3) — O(t, 21, 22, 23)| < O01(t)A1(Jwr — 21|, |w2 — 22|, |ws — 23]),

A1 is nondecreasing with respect to all their components,

. S (t—()2
O e I )

~a,t—1 L 1 1 3 1 _ 38
136, Mljo,1) = 3/0 - (1- Pl e = oo
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O(t, z1, 29, 3)| < S0 Ni(t,zi), Ni @ [0,1] x X — [0,00) for each
1 <4 < 3 is nondecreasing with respect to its second component, V;(t) =

lim; o+ N(t A — c(lt)’

3
Pt /0 (1 — )" Vi(s)ds = 2 [1* — (t — €)’

and .
yo,t—1 _1 .  A\21e5t _l
VP o = 5 [ - (- €T e = .

It is easy to see the other properties in Theorem (2.2) are held and

3

Z(\Aur—wum o + (= DG o

j—l
+Zm||g o) € 0. SEER)

and

—_

k*
W('A'Z%“«% o + (= 1> a5 o
7j=1

k* ko
—I-ZZ(]]' i ~aj’t 7><1.

j=1i=1

Therefore, by using Theorem (2.2) , the bi-singular problem (6) has a
solution.

Example 2.4. Consider the singular problem

3 3 Cu@®)] /
Dz | 5tDz2u(t) | = + w(t) + s)d 7
(sttun) = (10 [ utspas )
with boundary condition D2+Ju( =0for 0 < j < 2 and

u' (0

) = w(0)
V() =u(3). Puthg=1,m =1, A =X =1,1=3, g(t) = 5t

2
¢u(t) = D2u(t) and

O(t, 1, w9, 23) = |lza]| + [zl + [l=3]-
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then

6 — @oll

VAN

|/Otu(s)ds — /Ot v(s)ds| < /Ot lu(s) —v(s)|ds

t
\u—vH/ ds < [lu— o],
0

IN

sow; =1, wy =0 and E = max{1l,w; +wy} = 1. Also we have

1.3
2

1 Ma- 1 [t 1
||ga’t1||:5/0 (Ct)C:5/O(1—C)2<2:5<OO

N

Let k* =1, 01(t) = 1, Ni(t,x;) = x4, and Ay (21,22, 23) = 21 + 22 + X3,
then

ju[ ol [uf + [uf[v] — [uf|o] — [v] lu— o B

- S §|u U|7
L+ ful  1+]v] (1 + [u[)(1 + |o]) (1 + [u) (X + [v])
therefore

|O(t, w1, w2, w3) — O(t, 21, 20, 23)| < O1(t)A1(Jwr — 21], |w2 — 22], |ws — 23]),
A1 is nondecreasing with respect to all their components,

A
¢i := lim 7(27272)

<3 €10,00),
z—0Tt z

R 13
0?*@@%:A<K=@

P _1/% 1
199, " llo) = 5/, gdf =%

O(t, z1, 29, 3)| < S0 Ni(t,zi), Ni @ [0,1] x X — [0,00) for each
1 <4 < 3 is nondecreasing with respect to its second component, V;(t) =

lim, o+ 2202 — 1,

. 3
V?’t_l = / (t —5)*T3Y(s)ds = ¢
0



32

M. SHABIBI

a1 _1/1 2o 2
Vi oy = 5/, §2d = 1

One can see, the following properties are held
3

Z(IAI(t—l)IIAM o + (¢ = DlIgy Nos

jfl
) £ 0 2L,

and

+Z|A|||g =

and

k*
N <|A| quug # D0l oy
‘]:
k* k()
+quj|w§3f||[o,”) <1
j=1i=1

Thus, by using Theorem (2.2) , the singular problem (7) has a solution.

3 Conclusion

There are no many methods regarding the singular differential equations.
Using control functions method causes investigating the multi-singular
differential equations with less limited conditions in their properties.
The given techniques in this paper can be applied to consider a solu-
tion for many other problems, also bi- singular type of the differential
equations can be studied. In this article, we introduce bi-singularity
concept and consider a bi-singular fractional-order differential equation
and prove the existence of a solution for the problem by using inequal-
ities and control functions method. The main result is demonstrated
through two examples.
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