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Abstract. Isoparametric hypersurfaces of Lorentz-Minkowski spaces,
which has been classified by M.A. Magid in 1985, have motivated some
researchers to study biconservative hypersurfaces. A biconservative hy-
persurface has conservative stress-energy with respect to the bienergy
functional. A timelike (Lorentzian) hypersurface x : M7 — E?*! iso-
metrically immersed into the Lorentz-Minkowski space E7 !, is said to
be biconservative if the tangent component of vector field A%?x on M}
is identically zero. In this paper, we study the Lj-extension of biconser-
vativity condition. The map Ly on a hypersurface (as the kth extension
of Laplace operator Lo = A) is the linearized operator arisen from the
first variation of (k + 1)th mean curvature of hypersurface. After il-
lustrating some examples, we prove that an Li-biconservative timlike
hypersurface of E?“, with at most two distinct principal curvatures
and some additional conditions, is isoparametric.
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1 Introduction

The study of biconservative maps, with conservative stress-energy with
respect to the bienergy functional, is a natural extension of the theory
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of conservative maps. The matter has been motivated by their sev-
eral physical and geometric applications. For instance, according to the
role of biharmonic surfaces in elastics and fluid mechanics ([1, 13]) and
also in computational geometry, some researchers are interested to gen-
eralize the subject of biconservative hypersurfaces. In [9], I. Dimitrié
has generalized the subject to the submanifolds of higher dimensional
Euclidean spaces which belong to one of several families containing reg-
ular curves, submanifolds with constant mean curvatures, hypersurfaces
with at most two distinct principal curvatures, pseudo-umbilical sub-
manifolds of dimension n # 4 and finite type submanifolds. The subject
of biconservative hypersurfaces will be complicated when we consider
them in the Minkowski space. The biconservativity condition plays a
main role in the classification of biharmonic hypersurfaces. Several ex-
amples of biharmonic spacelike surfaces in E? is presented in [7], which
are failed to be minimal. However, biharmonicity implies minimality
in some special cases. In [¢], Chen and Munteanu gave a classifica-
tion of biharmonic timelike surfaces in E with constant nonzero mean
curvature and flat normal connection. In [5], it is proved that any bihar-
monic timelike hypersurface in Ef is minimal. On the other hand, the
family of finite type submanifolds was interested by many researchers
(see Chen’s book [6]). In [10], Kashani has introduced the notion of
Li-finite type hypersurfaces in the Euclidean spaces, where, Ly is the
linearized operator of the first variation of the (k+ 1)th mean curvature
of a hypersurface, defined by Ly (f) = tr(PyoV2f) for any f € C>®(M),
and P denotes the k-th Newton transformation associated to the sec-
ond fundamental from of the hypersurface and V2f is the hessian of f.
Note that, the Lg-operator is a natural generalization of the Laplace
operator Ly = A. Recently, many people ([2, 3, 11, 14, 16, 17]) have
used the Lg-operators to study some hypersurfaces of the Riemannian
or Lorentzian space forms. Therefore, it is natural to advance Chen’s
conjecture for hypersurfaces of the Lorentz-Minkowski spacetime, re-
placing A by Ly (see, for instance, [2, 17]). This operator is defined by
Li(f) = tr(P, o V2f) for any f € C°°(M), where P} denotes the kth
Newton transformation associated to the second fundamental from of
the hypersurface and V2f is the hessian of f. It is interesting to gen-
eralize the definition of biconservative hypersurface by replacing A by
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Lyj. In this paper, we show that every Lg-biconservative hypersurfaces
in the Minkowski space E?H, with constant ordinary mean curvature
and at most two distinct real principal curvatures, is isoparametric. On
the other hand, Martin A. Magid (in [12]) has proved that a timelike
isoparametric hypersurface in ]E’f“, whose principal curvatures are all
real numbers, has at most one non-zero principal curvature.

The organization of paper is as follow. In section 2, we remember
some preliminary concepts and notations and in the rest of section we
present some examples of Ljg-biconservative Lorentzian hypersurfaces
in IE’f"H. Section 3 is dedicated to Lg-biconservative Lorentzian hy-
persurfaces of E’f“. First, in theorems 3.2, 3.3 and 3.4 we discuss on
Li-biconservative Lorentzian hypersurfaces of IE?H with diagonalizable
shape operator. Other cases that the shape operator of hypersurface is
non-diagonalizable will be seen in theorems 3.5, 3.6 and 3.7.

2 Preliminaries

In this section, we recall preliminaries from [2, 11, 12, 15]. The Lorentz-
Minkowski space E7* is the m-dimensional vector space R™ endowed with
the Lorentz scalar product < z,y >:= —x1y1 + X% ,x;y;, for z,y € R™.
In IE?H, any n-dimensional submanifold with induced metric of index p
is called a spacelike hypersurface when p = 0 and a timelike hypersurface
when p = 1. For a hypersurface x : My — E?H, the symbols V and
VY denote the Levi-Civita connections of My and IE?H, respectively,
and the Weingarten formula is V())(Y =VxY+ < S5X,Y > N, for every
X,Y € x(M), where, N is a (locally) unit normal vector field on M and
S is the shape operator of M relative to IN.

Definition 2.1. ([12]) (i) For a Lorentzian vector space V|, a basis
B :={e1,...,en} is said to be orthonormal if it satisfies < e;, e; >= €;67
fori,j =1,...,n, where e = —1 and ¢; = 1 for i = 2,...,n. As usual, 5{
stands for the Kronecker function.

(1) A basis B := {e1, ..., e, } for V" is called pseudo-orthonormal if it
satisfies < e1,e1 >=< ez,e2 >=0, < e1,ex >= —1 and < ¢;,¢; >= (55-,
fori=1,...,nand j=3,...,n.
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Remark 2.2. For any pseudo-orthonormal basis B := {ey, ..., e, }, tak-
ing €1 := %(61 + e2) and €3 = %(61 — e3), we obtain an orthonormal
basis denoted by B := {é7, €2, €3, ..., e, }.

From [12, 18], it is well-known that any self-adjoint linear operator
T:V = VP (ie. <Tv,w >=< v, Tw > for every v,w € V" ) has
four possible matrix forms named I, II, I1I and IV with respect to
suitable bases of V]*. Precisely, in cases I and IV the considered basis
is orthonormal and in cases 11 and 111 the basis is pseudo-orthonormal.
In three first cases the eigenvalues are real, while in case I'V there exist
two complex eigenvalues x 4+ ¢A. So, denoting the matrix form of T
in cases I and IV (where the basis is orthonormal) with B; and Ba,
respectively, we have

Bl :diag[)\l,...,)\n], B4: . s ()\750)
A An—‘z
Also, in cases II and III (where, the chosen basis is pseudo -
orthonormal), we denote the matrix form of 7" with By and Bs, re-
spectively, as follow.

K 0
1 K
A1
B2 == ’
An—2

0 0

0 K 1

-1 0 K

A
Bs = :
An—3

Remark 2.3. In two cases II and III (where, the chosen basis is
pseudo-orthonormal and the matrix form of T is denoted by Bs and
Bs, respectively), we introduce another representation of T by changing
the pseudo-orthonormal basis of V" to an orthonormal one. pseudo-
orthonormal basis to an orthonormal one, by transformation B —s B as
Remark 2.2. Therefore, we obtain new matrix forms By and B (instead
of By and Bjs, respectively) for T as follow.

1
1 3
o
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K 0 V2
0 K 7\/25/2
- i _va .
Bs = : : A1

An—3

Also, to unify the notations we put By := B; and By := B,.

Now, Let x : M} — E?™! be an isometric immersion of a connected
Lorentzian hypersurface into (n+1)-dimensional Lorentz-Minkowski space
with a chosen spacelike unit normal vector field N and the shape oper-
ator S. At each p € M, the operator S has (locally) matrix of the form
Bi (1<i<4).

Notation: According to four possible matrix forms of the shaper
operator S, at each point p € M, we define the principal curvatures x;’s
of M, as follow. When S, = By, we put £;(p) = i, fori = 1, ...,n. In the
second and third cases where S, = By (for | = 2,3), we take #;(p) := &
fori=1,...,1 =1, and k;(p) = Aj—141 for ¢ =, ...,n. Finally, in the case
S, = By, we put £1(p) = £ + M, ra(p) = & — M, and k;(p) = \i_a, for
1=3,..,1N.

The characteristic polynomial of .S}, is of the form

n n

Qp(t) = [J(t = ri(p) = D (1) s;(p)t" 7,

i=1 j=0

where, sj(p) = Zl§i1<...<ij§n Kiy (p)---ki;(p). For j = 1,..,n, the j-
th mean curvature H; of M is defined by H; = sz. When Hjyq is

7

identically null, M7 is said to be j-minimal.

Definition 2.4. (i) A Lorentzian hypersurface x : MJ* — E'™ with
diagonalizable shape operator, is said to be isoparametric if all of it’s
principal curvatures are constant on M7

(i7) A Lorentzian hypersurface x : M{* — E’f“, with non-diagonalizable
shape operator, is said to be isoparametric if the minimal polynomial of
it’s shape operator is constant on M.

Remark 2.5. Here we remember Theorem 4.10 from [12], which assures
us that there is no isoparametric Lorentzian hypersurface of E’f“ with
complex principal curvatures.
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The well-known Newton transformations on the hypersurface, P; :
X(M) — x (M), is defined by

P():I, Pj:S]’I—SOPj_l, (]:1,,n)

Using its explicit formula, P; = g:O(—l)isj_iSi (where sp = 1 and
SY = I is the identity map), it can be seen that, P; is self-adjoint and
commutative with S (see [2, 17]).

Now, we define the general notation
Hii,gz,ejisk *= 5 Kiy - -Kig s
i1 <. <, 1 E{J1.52,-d¢}

where the positive integers j;’s are mutually distinct, 1 < k < n and
t < n — k. Specially, we use the formula

k

ik = (=) (F_y) He—urh. (1<j<n 1<k<n)
=0

Corresponding to the four possible forms B; (for 1 < i < 4) of S, the
Newton transformation P; has different representations. In the case
I, where S, = Bi, we have Pj(p) = diag[p1;(p), ..., pn;j(p)], for j =
1,...n—1.

When S, = Bj (in the case IT), we have

p1,2:5 + (5 — 2p12-1 — 31,251
FH1,2;5—1 p1,2;5 + (5 + S)pr a1

Pg(p) — w35 (P)
Hnyj(P)
and for j=1,...,n—1,
8§ = p1,2;5 + 2Kp1,2;5-1 + H2M1,2;j—2-
In the case I11, we have S, = B3, and

A
Ha;5(p)

Hnyj ()
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wj +2ruj_1 + (k2 — Dluj_o —Lu;_o 7§(uj71+muj72)
A= Lu; 5 wj 4 2ruj g+ (24 Dy N2 (uj g+ ruj_g)
M (ujo o+ ruj2) G (ujon + w2 uj o+ 2mujo1 + sPuj g,
and

8j = uj + 3Ku;—1 + 3&21@_2 + HSUj_g
for j =1,..,n — 1, where u; = pj 2,3, for every [ € {1,...,n — 3}. In the
case IV, S, = By,

KpP1,2:5—1 + H1,2;5 —Ap1,2;5-1
B1,2;5—1 Kp1,2;5—1 T H1,2;5

P](p) — MS;j(P) § ,
' Hn;j (P)
and
Sj = H1,2;5 + 2"£M1,2;j71 + (HQ + )\2)M1,2;j727
forj=1,...,n— 1.
Fortunately, in all cases we have the following important identities
for j =1,...,n — 1, similar to those in [2, 3, 17].

Sj+1 = Kifbisj + [hisj+1, (1<i<n)

Hij+1 = Kifig+ i1, (1< 6,0<n, 1 51)
tr(Pj) = (n—j)sj = cjHj
tr(PjoS)=(n—(n—j—1))sjy1 = ¢jHjt1,
tr(PjoS?) = (1) [nHiHj1—(n—j—1)Hjya),
where ¢; = (n—7)(}) = (7 + D (}11)-

The linearized operator of the (j + 1)th mean curvature of M, L; :
C>®(M) — C*®(M) is defined by the formula L;(f) := tr(P; o V2f),
where, < V2f(X),Y >=< VxV/f,Y > for every X,Y € x(M).

For a Lorentzian hypersurface x : M} — EJ*! with a chosen (
locally ) unit normal vector field N, for an arbitrary vector a € IE?H we

use the decomposition a = a’ + a" where a’ € TM is the tangential
component of a, a¥ | TM, and we have the following formulae from

[2, 17, 4].

(i) V<x,a>=al, (1) V < N,a>= —Sa’. (1)
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and, then

(1) Lpx = cxHi11N, (k=1,..,n—1)

(i) LyN
n n
= k41 V(Hk+1)_ k41 [nHlHk+1_(n—k—1>Hk+2]N7
(2)
and
n
sz = —Ck[B <k 4 1> Hk+1VHk+1 — 2Pk+IVHk+1]

n
— Ck[TL(k n 1)H1H;f+1 + chp1 Hip1 Hiqo — LiHy 1] N.

Assume that a hypersurface x : M]* — E?“ satisfies the condition
Lix = 0, For an integer k (where, 0 < k < n), then it is said to be
Li-biharmonic. By (2), one clearly obtain a condition equivalent to
Lj-biharmonicity, as Ly(Hk11N) = 0. Clearly, k-minimal immersions
are Lp-biharmonic. By elementary calculations (as in [1]), one obtains
equivalent conditions for M7 to be Lj-biharmonic in E?H, namely

n

(i) LyHpp1 = (k+ 1

>Hk+l(nH1Hk+1 —(n—k —1)Hgy2),
(3)

g 3/ n
(i4) Pry1VHpy1 = 3 (k n 1>Hk+1VHk+1.

A timelike hypersurface x : MJ* — E7™! is said to be Lg-bicoservative if
its (k + 1)th mean curvature satisfies the condition (3)(ii).
The structure equations of E’f“ are given by

n+1
dw; = Zwi’j Nwj, wij+twj; =0, (4)
j=1

n+1

dw; j = Zw“ AWy j- (5)
=1
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When restricted to M, we have wy, 1 = 0 and
n
0= dwpt1 = an—i-l,i A wj. (6)
i=1

By Cartan’s lemma, there exist functions h;; such that
n
Wnti = Y hijwj,  hij = hyi. (7)
j=1

This gives the second fundamental form of M, as B = ) hjjwiwjeni1.
/L"j
The mean curvature H is defined by H = 2 3~ h;;. From (4) - (7) we
%

obtain the structure equations of M.

n
dw; = E wij A\ Wj, wij + wji = 0,
Jj=1

n 1 n
dwij = ) wikg Nwrj — = Rijriwi N wi,
2
k=1 k=1

and the Gauss equations
Rijii = (hirhji — hahji),

where R;j;j; denotes the components of the Riemannian curvature tensor
of M.
Let h;ji, denote the covariant derivative of h;;. We have

Z hijkwk = dh;j + Z hkjwm- + Z hikwkj-
k k k

Thus, by exterior differentiation of (7), we obtain the Codazzi equation
hijr = hikj-

Now we recall the definition of an Ly-finite type hypersurface from [10],
which is a basic notion in this paper.
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Definition 2.6. An isometrically immersed hypersurface x : M7 —
]E?'H is said to be of Ly-finite type if x has a finite decomposition x =
Yoty Xi, for some positive integer m, satisfying the condition Lpx; =
7;X;, where , 7; € R and x; : M" — E’f“ is smooth maps, for i =
1,2,---,m, and xq is constant. If all 7;’s are mutually different, M™ is
said to be of Li-m-type. An Li-m-type hypersurface is said to be null
if for some i (1 <7< m), 7, =0.

Now, we see two families of examples of Li-biconservative Lorentzian
hypersurfaces in IE?H, some of them are not Lj-biharmonic.

Example 2.7. Assume that M;(r) be the product S7*(r) x E»=™ C
E’f“ where r > 0 is a real number and m = 2,3,---,n — 1. It has
another representation as

Mi(r) = {(Y1s oo Yng1) € RITY =y + 93 + .. + y2 4 =2,

having the spacelike normal vector field N(y) = —%(yl, ey Ym+1,0, ..., 0)
as the Gauss map. Clearly, it has two distinct principal curvatures
Kl = ..=FKm= %, Km41l = ... = kp, = 0, and the constant higher order

%forkﬁmandezofork>m. Also,

one can see that for k > m we have Lz = 0 and otherwise Lz # 0.

mean curvatures Hy =

Example 2.8. Let Ma(r) be the product EJ* x S"~™(r) C E}t! where
r > 0 is a real number and m = 2,3,--- ,n— 1. It can be represented as

Ma(r) ={(y1, -, Yn+1) € R?+1|y31+1 + ...+ y72L+1 = 7'2}7

with the Gauss map N(y) = —1(0,...0, Y41, .., Ynt1). It has two dis-

tinct principal curvatures kK1 = ... = &y, = 0, Bl = ... = Kp = 1,

_ (n=—m){(n—k)! for
n!(n—m—k)lrk
k<n-—m,and H, = 0 for £k > n —m. So, Also, one can see that

Lix;éOforkgn—m,WehaveLix:Ofork>n—m.

and the constant higher order mean curvatures Hy

3 Results on timelike hypersurfaces

From now on, Let x : M — E?™! be an isometrically immersion from
a connected timelike hypersurface M7 into the Minkowski space E’f“,
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with the Gauss map NN. We have six theorems on the Lj-biconservative
connected orientable timelike hypersurface in E’f“ with constant ordi-
nary mean curvature. Theorems 3.2, 3.3 and 3.4 are appropriated to the
case that the shape operator on hypersurface is diagonalizable. Theo-
rems 3.5, 3.6 and 3.7 are related to the cases that the shape operator
on hypersurface is of type I1, I11 and IV, respectively. First we see a
common lemma.

Lemma 3.1. Let M{* be a connected orientable timelike hypersurface
in the Minkowsk:i space E’f“ with non-zero (k + 1)th mean curvature,
which satisfies the Ly-biconservativity condition for some integer k €
{0,1,...,n—1}. Let {e1,...,en} be a local orthonormal tangent frame on
M. Then, we have

n

3
Zez‘ < VHjpi1,6 >< Pytiei,ej >= 5 (k Z 1) Hyy1 < VHpy1,e5 >,

i=1

for 7 =1,2,....,n, where €1 := —1 and ¢; := 1 for i > 2.
Proof. Using the polar decomposition of the gradient vector field
VHj41 in terms of the orthonormal basis {ei,...,e,}, and the linear-

ity of PkJrl’ we have Pk+1VHk+1 = Z?:l € < ka+1,ei > Pk+1ei,
which, by comparing with the equation (3)(ii), gives the result. O

3.1 Timelike hypersurfaces with diagonalizable shape op-

erator
First, we remember the Theorem 2.2 from [12] on a Lorentzian isopara-
metric hypersurface of E’f“ with diagonalizable shape operator and ex-
actly [ distinct constant principal curvatures A, --- , A; (respectively) of
multiplicities myq,--- ,m;, which says that on such a hypersurface we
have equalities
Z mj)\i)\j —0

. LA A

Je{1, 13 —{i}
for i =1,---,l. An easy consequence of this fact is that, if Lorentzian

hypersurface of E?H with diagonalizable shape operator has exactly two
distinct constant principal curvatures A; and A9, then we have A\ Ay =0
which gives A1 =0 or Ay = 0.

11
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In Theorem 3.2, the only principal curvature is not assumed to be
constant.

Theorem 3.2. Let x : M{' be a connected orientable timelike hyper-
surface in the Minkowski space E’f“ with diagonalizable shape operator,
which has one principal curvature of multiplicity n. If M{* satisfies the
Ly-biconservativity condition (3)(ii) for an integer k € {1,...,n — 1},
then it has to be isoparametric.

Proof. Let x : MJ — E!™ be the position vector field of M} in
]E’f+1 which satisfies assumed conditions. Defining the open subset U
of M as U := {p € M} : VHy41(p) # 0}, we prove that U is empty.

Assuming U # &, we consider {ej,---,e,} as a (local) orthonormal
frame of principal directions of S on U such that for ¢ = 1,--- ,n we
have Se; = \e; and
n—1
k1 = AL Hpq = AL 8
i k41 <I<:+1> k1 (8)

By condition (3)(ii), we have Py (VHgy1) = %(kL)HkHVHkHv which,
using the polar decomposition VHy1 = > ;" 6 < VHpi1,e; > e,
gives €, < VHpi1,€; > (fik+1 — %(kzil)Hk-H) =0onUfori=1,---,n.
Hence, if for some i we assume < VHy1,e; ># 0 on U, then we get

3 n
; = - H
Hik+1 B (k: i 1) k+1,

which, using equalities (8), gives A**1 = 0 and then Hj,; = 0 on U,
which is a contradiction. Hence U is empty and Hj4 1 is constant on M7
and then, A is constant and M7 is isoparametric. [

Theorem 3.3. Let M{* (for an integer number n > 3) be a timelike hy-
persurface of E?H with diagonalizable shape operator, constant ordinary
mean curvature and exactly two distinct principal curvature functions 7
and X of multiplicities 1 and n — 1, respectively. If M* satisfies the Ly-
biconservativity condition (3)(ii) for an integer k € {1,...,n — 1}, then
it has to be isoparametric and at least one of n and A is identically zero.

Proof. Let x : MJ — E7™ be the position vector field of M} in
IE?H which satisfies assumed conditions. Taking the open subset V of
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MP asV = {p € M : VH,%H(p) # 0}, we prove that V is empty.

Assuming V # @, we consider {ei, - ,e,} as a local orthonormal frame
of principal directions of A on V such that Se; = Ae; fori=1,--- ,n—1
and Ae, = ne,. Therefore, we obtain
n—2 n—2

— .= — plan AR

M1 k+1 Pn—1,k+1 <k n 1) + & 1,
n—1

_ )\kJrl

un,k+1 <l€ + 1) )

nHy =(n—1D)A+n, nn—1)Hy=(n—1)(n—2)A*+2(n—1)An,
<l<; :L_ 1> Hpy1 = <Z; D)\k“ + <n ; 1) Ay,
(9)

Using the polar decomposition VHy11 =Y 1 & < VHpi1,e; > e,
from equality (3)(ii) we have ¢; < VHyy1,e; > (pig+1— 5 (1) Hit1) =

k+1
Oon VYV for¢=1,---,n. Since, by definition of the subset VV, we have
< VHpi1,e; ># 0 on V for some ¢, then we get
3 n
; == H 10
i k+1 B (k: 4 1) k+15 (10)

for some ¢, which gives one of the following states:
State 1. < VHyy1,e; ># 0, for some ¢ € {1,---,n — 1}. Using
formulae (9), from equality (10) we obtain (n+2k+1)(n —k — 1)\ 4

(n+2k —1)(k+ 1N = 0. If A = 0 then Hy = 0. Otherwise, we
(n42k4+1)(n—k—1)

get 1 = — T DE A, which, using nH; = (n — 1)\ + 7, gives
\ = nk(zsrkﬂl_)y;jg(]; __1,2_1) H, and then Hj 1 is constant on V. Therefore,

we obtain a contradiction which implies that V = (.
State 2. < VHyiq,e; >= 0, for all i € {1,---,n — 1} and <
VHyy1,en, >7# 0 and then,

3 n
= — Hi.q.
Hn k+1 B <k i 1) k+1

Similar to State 1, by equalities (9), we obtain A =0 or n = —%)\.

If A = 0 then Hy = 0. Otherwise, we get A = %Hl and

13
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then Hy.; is constant on V. Therefore, we obtain a contradiction which
implies that V = ().

Therefore, Hy; is constant on M7{'. Since H; is constant on M7, we
obtain that, A and 7 are constant on M7'. Hence, M7 is isoparametric.
So, by Theorem 2.2 in [12], we get An =0. O

Theorem 3.4. Let M[' be a timelike hypersurface of E’f“ with diago-
nalizable shape operator, constant ordinary mean curvature and exactly
two distinct principal curvature functions n and A of multiplicities t
and n — t, respectively, where 2 <t < n — 2. If M{* satisfies the Lj-
biconservativity condition (3)(it) for an integer k € {1,...,n — 1}, then
it has to be isoparametric. Furthermore, when n # 2t, we get An = 0.

Proof. Let x : MJ — E!™ be the position vector field of M} in

]E’lHl which satisfies assumed conditions. Defining the open subset V
of M* as V := {p € M}" : VH2 ,(p) # 0}, we prove that V is empty.

Assuming V # @, we consider {ei, - ,e,} as a local orthonormal frame
of principal directions of S on V such that Se; = Ae; fori=1,--- ,n—t
and Se; =ne; fori =n—t+1,--- ,n. Therefore, we obtain
k+1
n—t—1 t
) e _ — A\S k+1—s
(1) p1 k41 Hon—t k41 Sz:;( . ><I<:—|— 1 8> 0 ;
k+1
n—t t—1
s B - .= _ A8 k+1-—s
(”) Hn—t41,2 Hn,2 §< s ><k+1—s> 2 )

(#i7) nHy = (n — k)X + kn,

n el n—t t
. _ - s k+1l—s
(iv) <k+1>Hk+1_Z< S ><k‘—|—1—s>>\'u '

s=0

Using the definition of Py and equation (3)(ii), we obtain

3 n
Piy1(VHyyq) = 3 (k n 1) Hy 1V Hy

on U. Therefore, applying VHy1 =Y " ;€ < VHpy1,e > e, we get

n

3
< VHpi1,ei > (Higs1 — <

H —
5 > k1) =0,
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and then, < VHyi1,e; >=0 or

3 n
== == Hyq. 12
H1,k+1 Hqk+1 5 </~c+ 1) k+1 (12)
on U for every ¢ = 1,...,n. This gives one or both of the following

states.
State 1. < VHy41,e; ># 0, for some ¢ € {1,--- ,n —t}. Then, by
(12) and (11)(7), we obtain

’f[ n—t—1 t 3 (n—t Y petior
— s k+1—s 2\ s k+1—s H -

which, using (11)(i7), gives a polynomial equation in terms of A. This
implies that A and the n and Hy4, are constant on . Therefore, Hy
is constant on M.

State 2. < VHpi1,e; >= 0, for all i € {1,---,n —t} and <
VHjq1,e5 ># 0 for some j € {n—t+1,---,n}. By (12) and (11)(44),
we obtain

k+1

—t t—1 —t t
S )G ) =2 () (e st =
~ s k+1—s 2 s k+1—s

which, using (11)(7i7), gives a polynomial equation in terms of A. This
implies that A and the n and Hjq are constant on Y. Therefore, Hy 1
is constant on M7".

Since H; is also constant on M{*, we obtain that, A and n are constant
on M7{ and M7 is isoparametric. So, in the case n # 2t, by Theorem
2.2in [12], we get Anp=0. O

3.2 Hypersurfaces with non-diagonalizable shape opera-
tor

This subsection is appropriated to cases that the Lorentzian hypersur-
faces of E"*! have shape operator of type II, III or IV. First, on the
type I1, we will use Theorem 2.4 from [12], which says that each isopara-
metric timelike hypersurface M{" of IE’f"H with shape operator of type
II (with minimal polynomial as m(z) = (z — A1)%(z — A2) -+~ (z — \))

15
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and exactly [ distinct constant principal curvatures Aq,---,\; (respec-
tively) of multiplicities mq,--- ,m;, satisfies Zje{l,---,l}f{i} %&/\J’ =0
for i = 1,---,1. As a consequence of this fact, if a Lorentzian hyper-
surface of ]E?Jr1 with shape operator of type I has exactly two distinct
constant principal curvatures A1 and Ao, then we have A\{\y = 0 which

gives Ay =0 or Ao = 0.

Theorem 3.5. Let M' be a timelike hypersurface of E?H with shape
operator of type 11, constant ordinary mean curvature and exactly two
distinct principal curvatures. If M satisfies the Ly-biconservativity con-
dition (3)(ii) for an integer k € {1,...,n — 1}, then it has to be isopara-
metric and at least one of it’s principal curvatures is identically zero.

Proof. Assume that, an isometric immersion x : M{* — IE?H satisfies
all conditions of the theorem. Taking the open subset U = {p € M} :
VHj.1(p) # 0}, we show that & = (). By the assumption, with respect

to a suitable (local) orthonormal tangent frame {ei,--- ,e,} on M, the
shape operator S has the matrix form Bs, such that Se; = (k + %)61 —
%62, Seqg = %61 + (k — %)62 and Se; = Ae; for ¢ = 3,--- ,n. Then, we

have the following equalities.

(i) nHy =2k+ (n—2)\,

(i) (k i 1>Hk+1 _ <Z_|—_ i) AL 2(n ; 2> U (Z - f) 2k
(i1) Prirer = [<Z+ f) ALy (n . 2) (k — %))\k]el + ;(" . 2) Aees,
(iv) Ppyreo = —% <n ; 2> Mo, + [<Z—_i— i) ARFL (n ; 2) (k + %))\k]€2,

o n_?) 2\ k—1 n—3 k n—3 k+17,
(v) Pk+1€z—[<k_1>/€/\ —|—2< i >/{)\ + 1 A ey

(=3, ,n)
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n

Using the polar decomposition VHs = > €;e;(H2)e;, from condition
i=1

(3)(i7) we get

(Z) (A — C)Elel(Hk_H) = CEQGQ(Hk+1),
(ZZ) (A + C)GQ@Q(Hk+1) = —C’elel(Hk+1), (14)
(ZZZ) DEiCi(Hk+1) = 0, (l = 3, ce ,n),

where A= ()M 4 (2)mxE — 3,2 ) B, € = ()0 and

n—3 n—3 n—3 3 n
D: 2vk—1 2 k k-‘rl_i H .
<k—1>“A + ( k )“A'+ k1) T a\kg 1)

Now, we prove the main claim.

Claim: e;(Hg11) =0fori=1,--- n.
If e(Hz) # 0, then by dividing both sides of equalities (14)(i,4i) by
e1e1(Hz) we get

(i) A—C=Cu, (i) (A+CQ)u=—C, (15)

%. By substituting (15)(i) in (15)(4), we obtain A\¥(1+
u)? =0, then A\ =0 or u = —1. If A = 0, then, from (15)(i) and (13)(i)
we obtain that Hp, 1 is constant. Otherwise, we have u = —1, which
gives A = 0, then we obtain

n—2 n—2 3 n
(h+JAHJ+( k)mﬁ_2<h+JHm4:&

Since nH; = 2k + (n — 2)\ is assumed to be constant on M, by substi-
tuting which in the last equality, we get a polynomial equation which
means ~ and then Hjy; is constant on M7'. So, we got a contradiction
and therefore, the first part of the claim is proved.

If eo(Hs) # 0, then by dividing both sides of equalities (14)(7,47) by
esea(Ha) we get

where u 1=

(@) (A-Cw=0C, (i) A+C=—Cu, (16)

where v := Z;E;Egﬁ; By substituting the equation (16)(iz) in (16)(i),

we obtain A\¥(1 +v)? = 0. If A\ = 0, then, from (13)(i) and (16)(ii), we

17
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obtain that Hy, 1 is constant. Otherwise, we have v = —1, which gives
A = 0, then similar to the first part, we obtain that Hy; is constant
on M{'. So, we got a contradiction and therefore, the second part of the
claim is proved.

Finally, each of assumptions e;(Hy) # 0 fori = 3,--- ,n, gives D = 0,
which by simplification gives the polynomial equation

nt2k o, (kD) 2k-2)

Ty s A ey e oy

k(k +1)(n + 2k — 4)
2n—k—-1)(n—k—-2)(n—k—3)

Similar to two first cases, using formula nH; = 2k + (n — 2)A, from
the last equation we obtain a polynomial equation in terms of A, which
gives that Hy is constant on M. Since H; is also constant on M7, we
obtain that, A and x are constant on M{* and M7 is isoparametric. So,
by Theorem 2.4 from [12], we get Ak =0. O

Now, for the type I1I, we recall Theorem 2.6 from [12] which says
that each isoparametric timelike hypersurface M7{" of E’f“ with shape
operator of type I1I (with minimal polynomial as m(x) = (z —A1)3(z —
Ag) -+ (x — A;)) and exactly [ distinct constant principal curvatures

+ AN = 0.

A1, -+, A (respectively) of multiplicities my, - - - ,my, satisfies the equal-
ities Zje{l,---,l}—{z'} %i\);ﬂ =0fori=1,---,l. As a consequence of this

fact, if an isoparametric Lorentzian hypersurface of IE?H with shape op-
erator of type I11 has exactly two distinct constant principal curvatures
A1 and A2, then we have A\j Ay = 0 which gives \; =0 or Ao = 0.

Theorem 3.6. Let M{* be a timelike hypersurface of E;‘H with shape
operator of type 111, constant ordinary mean curvature and exactly two
distinct principal curvatures. If M{* satisfies the Ly-biconservativity con-
dition (3)(it) for an integer k € {1,...,n — 1}, then it is isoparametric
and at least one of it’s principal curvatures is identically zero.

Proof. Assume that, an isometric immersion x : M — E’f“ satis-
fies all conditions of the theorem. By the assumption, with respect to
a suitable (local) orthonormal tangent frame {ei,---,e,} on M7, the

V2

shape operator S has the matrix form Bs, such that Se; = ke — oes,
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Ses = key — geg, Ses = gel — ?62 + kez and Se; = MAe; for
1 =4,---,n. Then, we have

(1) nHy =3k+ (n—3)\,

.. n
) (k + 1>H'“+1 = ups1 + 3up + 367w + Ko up-2,
1

1
(7i1) Pgiire1 = [ugs1 + 2kuy + (k% — i)uk_l]el + o Uk-1€2

2
+ 7[1% + Kug_1]es,

. 1 1
(zv) Pyiie0 = _§Uk_161 + [uk_H + 2Kuy + (Ii2 + §)uk_1]62
(17)

2
+ T[Uk + Kug_1)es,

2
(v) Prires = T[uk + kug_1ler + 7[Uk + Kug—1]e2

+ [ugt1 + 2kug + /ﬁQuk,l]eg,

) n—4 -~ n—4 B
(vi) Priire; = [<k—2>ﬁ3)\k 2+3<k_1>1<;2)\k !

n=4\ k(A ke
+3( i >/<;/\ +(k+1>)\ lei,

for i =4,--- ,n. Where, w; = 11 2.3y for every I € {1,...,n — 3}.
Similar to proof of Theorem 3.5, we assume that Hy; is non-constant
and considering the open subset U = {p € M{" : VHi1(p) # 0}, we
n
prove that & = (). Using polar decomposition VHy1 = > €;e;(Hp11)e;,
i=1
from condition (3)(ii) we get the following system of conditions:
i) [/Nl — C’]elel(HkH) — éegeg(H;H_l) — D63€3(Hk+1)
ZZ) C’elel(HkH) + [A + 6]6262(Hk+1) + b63€3(Hk+1)
ZZZ) D(Glel(HQ) + 6262(H2)) + /16363(H2) =0, (18)

, 3 2
i) [K7,2,3,6k—2 + 3K 11,2,3,ik—1 + BRH12,30k T 11,2,3,5:k41

3/ n .
-5 (k N 1> Hii1)leiei(Hgrr) =0. (i=4,---,n).

0
0

(
(
(
(
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where A = [ug1 + 2Kup, + K2up_1] — %(kil)Hk+17 C = %Uk—l and

D= ?[uk + Kug_1].
Now, we prove that Hy,1 is constant .
Claim: e;(Hg11) =0fori=1,--- n.
If e1 (Hgy1) # 0, then by dividing both sides of equalities (18)(i, ii, iit) by

€1e1(Hp11), and using the identity (17)(i7) and notations vy := 72255:13
Hy,
and vy 1= %, we get

(l) A—é—él/l—bl/gzo,
(ii) C + (A4 C)vy + Dup =0, (19)
(i33) D(1+ 1) 4+ Avg = 0,

From summation of equations (19)() and (19)(ii), we obtain A(14v;) =
0.

Assuming A # 0, from the last equality we get v1 = —1 and then,
by (19)(7it), we obtain vo = 0. From these results, by (19)(ii), we get
A =0. So, we get a contradiction, which implies that A = 0.

The equality A=0 gives a polynomial equation in terms A and k.
Since nHj = 3k + (n — 3)\ is assumed to be constant, so we obtain a
polynomial equation in terms A, which implies that A and then s and
Hy 1 are constant on . This is a contradiction and implies that, the
first claim e; (Hyy1) = 0 is proved.

If ea(H2) # 0, then by dividing both sides of equalities (18)(3, 44, 9i7)

by €ze2(Hz), and using the identity (17)(¢i) and notations vy := Z;Z;Egﬁ;
and vs := %, we get

(i) (A= C)v — C — Dvy = 0,
(i1) Cvy + A+ C + Dvy = 0, (20)
(i33) D(vy + 1) 4+ Avg = 0,
From summation of equations (20)(i) and (20)(ii), we obtain A(1+v;) =
0.
Assuming A # 0, from the last equality we get v; = —1 and then,

by (20)(éii), we obtain vy = 0. From these results, by (20)(ii), we get
A = 0. So, we get a contradiction, which implies that A = 0.
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The equality A = 0 gives a polynomial equation in terms A and &.
Since nH; = 3k + (n — 3)\ is assumed to be constant, so we obtain a
polynomial equation in terms A, which implies that A and then s and
Hj 1 are constant on Y. This is a contradiction and implies that, the
first claim ej(Hy41) = 0 is proved.

If e3(Hs) # 0, then by dividing both sides of equalities (18)(%, i1, 7i1)

by eszes3(Hs), and using the identity (17)(i7) and notations wy := 22;21%;
ezea(Ha)

and wy = cacs ()2 Ve get

(Z) (fl—(j’)wl —C’wg —D = 0,
(i1) Cwy + (A + C)wg + D =0, (21)
(iii) D(Wy 4 wq) + A =0,

From equations (21)(7) and (21)(ii), we obtain A(w; 4 ws) = 0.

Assuming A # 0, from the last equality we get wp = —w; and then,
by (21)(iii), we obtain A = 0.

The equality A = 0, by (21)(4,44,4ii), gives D = 0. So, we get
A-D= Uug+1 — Kug = 0, which is a polynomial equation in terms A and
k. Since nHy = 3k + (n — 3)A is assumed to be constant, so we obtain
a polynomial equation in terms A, which implies that A and then x and
Hy 1 are constant on Y. This is a contradiction and implies that, the
3rd claim ej(Hg41) = 0 is proved.

The forth stage is assumption e;(Hy11) # 0 for some i > 4. By a
same manner, from (18)(iv) we get

(D)ot T g (1)t o

k—2)2n—k—1) k—1) 2(n—k-2)
n—4\3(—n—-2k+3) . n—4\-n—-2k+1 ..,

A e U )
< k ) on—k—3) +<k+1>2(n—k—4)

Since nH; = 3k + (n — 3)\ is assumed to be constant, so we obtain a
polynomial equation in terms A, which implies that A and then s and
Hj 41 are constant on Y. Hence, M is isoparametric and by Theorem
2.6 in [12], we get Ak =0. O

Finally, about the case that shape operator is of type I'V, we restate
Corollary 2.9 from [12], which says that each isoparametric timelike
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hypersurface M{* of E?H with shape operator of type IV and complex
principal curvatures k + Ai (where A # 0) has at most one non-zero real
principal curvature.

Theorem 3.7. Let M{* be a timelike hypersurface of E;‘H with shape
operator of type IV, two complex principal curvatures k + \i with con-
stant N2 + k? = kg, a real principal curvature n and constant ordinary
mean curvature Hy. If M7 satisfies the Ly-biconservativity condition
(3)(i7) for an integer k € {1,...,n — 1}, then it has constant k + 1th
mean curvature.

Proof. Assume that, an isometric immersion x : MJ* — EJ*! satisfies
all conditions of the theorem. By the assumption, with respect to a
suitable (local) orthnormal tangent frame {ej,--- ,e,} on M}, the shape
operator S has the matrix form By. Considering the open subset U =
{p € M : VHii1(p) # 0}, we try to show U4 = (). By assumption,
the shape operator S of M is of type IV with at most three distinct
eigenvalue functions. Then, we have Se; = ke — Aeg, Sea = Aey + Kea,
Se; = ne; for ¢ = 3,--- ,n. Then, we have

E+1

Pryier = (Kpa2k + H12k41)€1 + Al ke,

n
( )Hk:—i-l = p1,2:k+1 + 2601 2;k + (52 + )\z)ﬂl,z;k—l,

Prirez = =M gker + (K2 + f1,256+1) €2,
and Pyi1€; = i py1€; for i =3, ,n.

n
Using the polar decomposition VHy 1 = > €;e;(Hp11)e;, from con-

i=1

dition (3)(i7) we get

. 3( n
(Z) (fﬂ?,ul,Z;k + p12:k+1 — 35 < >Hk+1)6161(Hk+1)

2\k+1
— A 2k€2e2(Hyq1) = 0,
(44) Apigkerer(Hys1) + (kpa 20 + 112,641 (22)
3 n
~3 <l<: N 1> Hjy1)esea(Hypq1) =0,

3 n )
(1i1) (Mi;k+1 b (k I 1>Hk+1)eie,~(Hk+1) =0, (1=3,--+,n).
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Claim: e;(Hp11) =0fori=1,--- ,n.
If e1(Hg11) # 0, then by dividing both sides of equalities (22)(i, i) by
e2e2(Hpy1)

erer(Hypq) V€ get a system of

€1e1(Hg11), and using the notations ¢ :=
equations as

. 3 n
(1)  Rprom + M2k41 — 5 Hy 1 = A ,2,1€5
2\k+1
(23)
.. 3
(#4) Apn gk + (Rpok + 2041 = 5

n
H =0,
bt 1> k+1)6
which gives Ay 2.(1 + ¢?) = 0 and then AnF = 0. Since A is assumed
non-zero, we get 7 = 0 and by (23)(i), Hgr1 = 0 on U. This is a
contradiction which proves that e;(Hy4+1) = 0.
If eo(Hg11) # 0, then by dividing both sides of equalities (22)(3, 1)

ere1 (Hyg41)

by ere1(Hyy1), and using the notations ¢ := s ()2 We get a system

of equations as

n

Hi 1) — =0
k:—i—l) k+1)C — A2 = 0,

. 3
(1) (kp12k + B 2041 — 5

P 3 n
1) AU1.9: . gl — = Hi. 1 =0,
(#4) Ab12iG + Kpazge + 12k41 = 5 <k N 1> k1
which gives A1 2.6(1 + (%) = 0 and then An¥ = 0. Then, similar to the
first case, we get ea(Hpy1) = 0.
The third stage is assumption e;(Hg41) # 0 for some i > 3. By a
same manner, from (22)(iii) we get

n—3 —n—2k+4ﬁ Bl n—3 —n—2k:—i—2/€k
k—1)2n—k—1)""" k) k-2 "

n—3\ -n-—-2k ..,
—_ =0.
+(k+ 1) 2(n—k—3)"
Since nH; = 2k + (n — 2)n is assumed to be constant, so we obtain a

polynomial equation in terms A, which implies that A and then s and
Hj 1 are constant on U. g
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