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Abstract. Isoparametric hypersurfaces of Lorentz-Minkowski spaces,
which has been classified by M.A. Magid in 1985, have motivated some
researchers to study biconservative hypersurfaces. A biconservative hy-
persurface has conservative stress-energy with respect to the bienergy
functional. A timelike (Lorentzian) hypersurface x : Mn

1 → En+1
1 , iso-

metrically immersed into the Lorentz-Minkowski space En+1
1 , is said to

be biconservative if the tangent component of vector field ∆2x on Mn
1

is identically zero. In this paper, we study the Lk-extension of biconser-
vativity condition. The map Lk on a hypersurface (as the kth extension
of Laplace operator L0 = ∆) is the linearized operator arisen from the
first variation of (k + 1)th mean curvature of hypersurface. After il-
lustrating some examples, we prove that an Lk-biconservative timlike
hypersurface of En+1

1 , with at most two distinct principal curvatures
and some additional conditions, is isoparametric.
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1 Introduction

The study of biconservative maps, with conservative stress-energy with
respect to the bienergy functional, is a natural extension of the theory
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of conservative maps. The matter has been motivated by their sev-
eral physical and geometric applications. For instance, according to the
role of biharmonic surfaces in elastics and fluid mechanics ([1, 13]) and
also in computational geometry, some researchers are interested to gen-
eralize the subject of biconservative hypersurfaces. In [9], I. Dimitrić
has generalized the subject to the submanifolds of higher dimensional
Euclidean spaces which belong to one of several families containing reg-
ular curves, submanifolds with constant mean curvatures, hypersurfaces
with at most two distinct principal curvatures, pseudo-umbilical sub-
manifolds of dimension n 6= 4 and finite type submanifolds. The subject
of biconservative hypersurfaces will be complicated when we consider
them in the Minkowski space. The biconservativity condition plays a
main role in the classification of biharmonic hypersurfaces. Several ex-
amples of biharmonic spacelike surfaces in E4

s is presented in [7], which
are failed to be minimal. However, biharmonicity implies minimality
in some special cases. In [8], Chen and Munteanu gave a classifica-
tion of biharmonic timelike surfaces in E4

s with constant nonzero mean
curvature and flat normal connection. In [5], it is proved that any bihar-
monic timelike hypersurface in E4

1 is minimal. On the other hand, the
family of finite type submanifolds was interested by many researchers
(see Chen’s book [6]). In [10], Kashani has introduced the notion of
Lk-finite type hypersurfaces in the Euclidean spaces, where, Lk is the
linearized operator of the first variation of the (k+ 1)th mean curvature
of a hypersurface, defined by Lk(f) = tr(Pk ◦∇2f) for any f ∈ C∞(M),
and Pk denotes the k-th Newton transformation associated to the sec-
ond fundamental from of the hypersurface and ∇2f is the hessian of f .
Note that, the Lk-operator is a natural generalization of the Laplace
operator L0 = ∆. Recently, many people ([2, 3, 11, 14, 16, 17]) have
used the Lk-operators to study some hypersurfaces of the Riemannian
or Lorentzian space forms. Therefore, it is natural to advance Chen’s
conjecture for hypersurfaces of the Lorentz-Minkowski spacetime, re-
placing ∆ by Lk (see, for instance, [2, 17]). This operator is defined by
Lk(f) = tr(Pk ◦ ∇2f) for any f ∈ C∞(M), where Pk denotes the kth
Newton transformation associated to the second fundamental from of
the hypersurface and ∇2f is the hessian of f . It is interesting to gen-
eralize the definition of biconservative hypersurface by replacing ∆ by
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Lk. In this paper, we show that every Lk-biconservative hypersurfaces
in the Minkowski space En+1

1 , with constant ordinary mean curvature
and at most two distinct real principal curvatures, is isoparametric. On
the other hand, Martin A. Magid (in [12]) has proved that a timelike
isoparametric hypersurface in En+1

1 , whose principal curvatures are all
real numbers, has at most one non-zero principal curvature.

The organization of paper is as follow. In section 2, we remember
some preliminary concepts and notations and in the rest of section we
present some examples of Lk-biconservative Lorentzian hypersurfaces
in En+1

1 . Section 3 is dedicated to Lk-biconservative Lorentzian hy-
persurfaces of En+1

1 . First, in theorems 3.2, 3.3 and 3.4 we discuss on
Lk-biconservative Lorentzian hypersurfaces of En+1

1 with diagonalizable
shape operator. Other cases that the shape operator of hypersurface is
non-diagonalizable will be seen in theorems 3.5, 3.6 and 3.7.

2 Preliminaries

In this section, we recall preliminaries from [2, 11, 12, 15]. The Lorentz-
Minkowski space Em1 is them-dimensional vector space Rm endowed with
the Lorentz scalar product < x, y >:= −x1y1 + Σm

i=2xiyi, for x, y ∈ Rm.
In En+1

1 , any n-dimensional submanifold with induced metric of index p
is called a spacelike hypersurface when p = 0 and a timelike hypersurface
when p = 1. For a hypersurface x : Mn

p → En+1
1 , the symbols ∇ and

∇0 denote the Levi-Civita connections of Mn
p and En+1

1 , respectively,
and the Weingarten formula is ∇0

XY = ∇XY+ < SX, Y > N , for every
X,Y ∈ χ(M), where, N is a (locally) unit normal vector field on M and
S is the shape operator of M relative to N.

Definition 2.1. ([12]) (i) For a Lorentzian vector space V n
1 , a basis

B := {e1, ..., en} is said to be orthonormal if it satisfies < ei, ej >= εiδ
j
i

for i, j = 1, ..., n, where ε1 = −1 and εi = 1 for i = 2, ..., n. As usual, δji
stands for the Kronecker function.

(ii) A basis B := {e1, ..., en} for V n
1 is called pseudo-orthonormal if it

satisfies < e1, e1 >=< e2, e2 >= 0, < e1, e2 >= −1 and < ei, ej >= δji ,
for i = 1, ..., n and j = 3, ..., n.
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Remark 2.2. For any pseudo-orthonormal basis B := {e1, ..., en}, tak-
ing ẽ1 := 1

2(e1 + e2) and ẽ2 := 1
2(e1 − e2), we obtain an orthonormal

basis denoted by B̃ := {ẽ1, ẽ2, e3, ..., en}.
From [12, 18], it is well-known that any self-adjoint linear operator

T : V n
1 → V n

1 ( i.e. < Tv,w >=< v, Tw > for every v, w ∈ V n
1 ) has

four possible matrix forms named I, II, III and IV with respect to
suitable bases of V n

1 . Precisely, in cases I and IV the considered basis
is orthonormal and in cases II and III the basis is pseudo-orthonormal.
In three first cases the eigenvalues are real, while in case IV there exist
two complex eigenvalues κ ± iλ. So, denoting the matrix form of T
in cases I and IV (where the basis is orthonormal) with B1 and B2,
respectively, we have

B1 = diag[λ1, ..., λn], B4 =

 κ λ
−λ κ

λ1

.
.
.

λn−2

, (λ 6= 0)

Also, in cases II and III (where, the chosen basis is pseudo -
orthonormal), we denote the matrix form of T with B2 and B3, re-
spectively, as follow.

B2 =

 κ 0
1 κ

λ1

.
.
.

λn−2

,
B3 =


κ 0 0
0 κ 1
−1 0 κ

λ1

.
.
.

λn−3

.
Remark 2.3. In two cases II and III (where, the chosen basis is
pseudo-orthonormal and the matrix form of T is denoted by B2 and
B3, respectively), we introduce another representation of T by changing
the pseudo-orthonormal basis of V n

1 to an orthonormal one. pseudo-
orthonormal basis to an orthonormal one, by transformation B −→ B̃ as
Remark 2.2. Therefore, we obtain new matrix forms B̃2 and B̃3 (instead
of B2 and B3, respectively) for T as follow.

B̃2 =

 κ + 1
2

1
2

− 1
2

κ− 1
2

λ1

. .
.

λn−2

,
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B̃3 =


κ 0

√
2

2
0 κ −

√
2/2

−
√

2
2

−
√

2
2

κ
λ1

.
.
.

λn−3

.
Also, to unify the notations we put B̃1 := B1 and B̃4 := B4.

Now, Let x : Mn
1 → En+1

1 be an isometric immersion of a connected
Lorentzian hypersurface into (n+1)-dimensional Lorentz-Minkowski space
with a chosen spacelike unit normal vector field N and the shape oper-
ator S. At each p ∈M , the operator S has (locally) matrix of the form
B̃i ( 1 ≤ i ≤ 4).

Notation: According to four possible matrix forms of the shaper
operator S, at each point p ∈M , we define the principal curvatures κi’s
of M , as follow. When Sp = B̃1, we put κi(p) = λi, for i = 1, ..., n. In the
second and third cases where Sp = B̃l (for l = 2, 3), we take κi(p) := κ
for i = 1, ..., l− 1, and κi(p) = λi−l+1 for i = l, ..., n. Finally, in the case
Sp = B̃4, we put κ1(p) = κ + λi, κ2(p) = κ − λi, and κi(p) = λi−2, for
i = 3, ..., n.

The characteristic polynomial of Sp is of the form

Qp(t) =

n∏
i=1

(t− κi(p)) =

n∑
j=0

(−1)jsj(p)t
n−j ,

where, sj(p) =
∑

1≤i1<...<ij≤n κi1(p)...κij (p). For j = 1, ..., n, the j-

th mean curvature Hj of M is defined by Hj = 1
(nj )
sj . When Hj+1 is

identically null, Mn
1 is said to be j-minimal.

Definition 2.4. (i) A Lorentzian hypersurface x : Mn
1 → En+1

1 , with
diagonalizable shape operator, is said to be isoparametric if all of it’s
principal curvatures are constant on Mn

1 .
(ii) A Lorentzian hypersurface x : Mn

1 → En+1
1 , with non-diagonalizable

shape operator, is said to be isoparametric if the minimal polynomial of
it’s shape operator is constant on Mn

1 .

Remark 2.5. Here we remember Theorem 4.10 from [12], which assures
us that there is no isoparametric Lorentzian hypersurface of En+1

1 with
complex principal curvatures.



6 F. PASHAIE

The well-known Newton transformations on the hypersurface, Pj :
χ(M)→ χ(M), is defined by

P0 = I, Pj = sjI − S ◦ Pj−1, (j = 1, ..., n).

Using its explicit formula, Pj =
∑j

i=0(−1)isj−iS
i (where s0 = 1 and

S0 = I is the identity map), it can be seen that, Pj is self-adjoint and
commutative with S (see [2, 17]).

Now, we define the general notation

µj1,j2,...,jt;k :=
∑

i1<...<ik, ij 6∈{j1,j2,...,jt}

κi1 ...κik ,

where the positive integers jl’s are mutually distinct, 1 ≤ k < n and
t ≤ n− k. Specially, we use the formula

µj;k =

k∑
l=0

(−1)l(nk−l)Hk−lκ
l
j . (1 ≤ j ≤ n, 1 ≤ k < n)

Corresponding to the four possible forms B̃i (for 1 ≤ i ≤ 4) of S, the
Newton transformation Pj has different representations. In the case
I, where Sp = B̃1, we have Pj(p) = diag[µ1;j(p), ..., µn;j(p)], for j =
1, ..., n− 1.

When Sp = B2 (in the case II), we have

Pj(p) =


µ1,2;j + (κ− 1

2
)µ1,2;j−1 − 1

2
µ1,2;j−1

1
2
µ1,2;j−1 µ1,2;j + (κ + 1

2
)µ1,2;j−1

µ3;j(p)

.
.
.

µn;j(p)


and for j = 1, ..., n− 1,

sj = µ1,2;j + 2κµ1,2;j−1 + κ2µ1,2;j−2.

In the case III, we have Sp = B3, and

Pj(p) =

 Λ
µ4;j(p)

.
.
.

µn;j(p)


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where

Λ =

(
uj + 2κuj−1 + (κ2 − 1

2
)uj−2 − 1

2
uj−2 −

√
2

2
(uj−1 + κuj−2)

1
2
uj−2 uj + 2κuj−1 + (κ2 + 1

2
)uj−2

√
2

2
(uj−1 + κuj−2)√

2
2

(uj−1 + κuj−2)

√
2

2
(uj−1 + κuj−2) uj + 2κuj−1 + κ2uj−2,

)
and

sj = uj + 3κuj−1 + 3κ2uj−2 + κ3uj−3

for j = 1, ..., n− 1, where ul = µ1,2,3;l for every l ∈ {1, ..., n− 3}. In the
case IV , Sp = B4,

Pj(p) =

 κµ1,2;j−1 + µ1,2;j −λµ1,2;j−1
λµ1,2;j−1 κµ1,2;j−1 + µ1,2;j

µ3;j(p)

.
.
.

µn;j(p)

,
and

sj = µ1,2;j + 2κµ1,2;j−1 + (κ2 + λ2)µ1,2;j−2,

for j = 1, ..., n− 1.
Fortunately, in all cases we have the following important identities

for j = 1, ..., n− 1, similar to those in [2, 3, 17].

sj+1 = κiµi;j+µi;j+1, (1 ≤ i ≤ n)

µi;j+1 = κlµi,l;j+µi,l;j+1, (1 ≤ i, l ≤ n, i 6= l)

tr(Pj) = (n−j)sj = cjHj ,

tr(Pj ◦S) = (n−(n−j−1))sj+1 = cjHj+1,

tr(Pj ◦S2) = (nj+1)[nH1Hj+1−(n−j−1)Hj+2],

where cj = (n− j)(nj ) = (j + 1)(nj+1).
The linearized operator of the (j + 1)th mean curvature of M , Lj :

C∞(M) → C∞(M) is defined by the formula Lj(f) := tr(Pj ◦ ∇2f),
where, < ∇2f(X), Y >=< ∇X∇f, Y > for every X,Y ∈ χ(M).

For a Lorentzian hypersurface x : Mn
1 → En+1

1 , with a chosen (
locally ) unit normal vector field N, for an arbitrary vector a ∈ En+1

1 we
use the decomposition a = aT + aN where aT ∈ TM is the tangential
component of a, aN ⊥ TM , and we have the following formulae from
[2, 17, 4].

(i) ∇ < x,a >= aT , (ii) ∇ < N,a >= −SaT . (1)
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and, then

(i) Lkx = ckHk+1N, (k = 1, ..., n− 1)

(ii) LkN

= −
(

n

k + 1

)
∇(Hk+1)−

(
n

k + 1

)
[nH1Hk+1 − (n− k − 1)Hk+2]N,

(2)

and

L2
kx = −ck[3

(
n

k + 1

)
Hk+1∇Hk+1 − 2Pk+1∇Hk+1]

− ck[n
(

n

k + 1

)
H1H

2
k+1 + ck+1Hk+1Hk+2 − LkHk+1]N.

Assume that a hypersurface x : Mn
1 → En+1

1 satisfies the condition
L2
kx = 0, For an integer k (where, 0 ≤ k < n), then it is said to be

Lk-biharmonic. By (2), one clearly obtain a condition equivalent to
Lk-biharmonicity, as Lk(Hk+1N) = 0. Clearly, k-minimal immersions
are Lk-biharmonic. By elementary calculations (as in [4]), one obtains
equivalent conditions for Mn

1 to be Lk-biharmonic in En+1
1 , namely

(i) LkHk+1 =

(
n

k + 1

)
Hk+1(nH1Hk+1 − (n− k − 1)Hk+2),

(ii) Pk+1∇Hk+1 =
3

2

(
n

k + 1

)
Hk+1∇Hk+1.

(3)

A timelike hypersurface x : Mn
1 → En+1

1 is said to be Lk-bicoservative if
its (k + 1)th mean curvature satisfies the condition (3)(ii).

The structure equations of En+1
1 are given by

dωi =
n+1∑
j=1

ωi,j ∧ ωj , ωi,j + ωj,i = 0, (4)

dωi,j =

n+1∑
l=1

ωi,l ∧ ωl,j . (5)
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When restricted to M , we have ωn+1 = 0 and

0 = dωn+1 =

n∑
i=1

ωn+1,i ∧ ωi. (6)

By Cartan’s lemma, there exist functions hij such that

ωn+1,i =

n∑
j=1

hijωj , hij = hji. (7)

This gives the second fundamental form of M , as B =
∑
i,j
hijωiωjen+1.

The mean curvature H is defined by H = 1
n

∑
i
hii. From (4) - (7) we

obtain the structure equations of M .

dωi =

n∑
j=1

ωij ∧ ωj , ωij + ωji = 0,

dωij =

n∑
k=1

ωik ∧ ωkj −
1

2

n∑
k,l=1

Rijklωk ∧ ωl,

and the Gauss equations

Rijkl = (hikhjl − hilhjk),

where Rijkl denotes the components of the Riemannian curvature tensor
of M .

Let hijk denote the covariant derivative of hij . We have∑
k

hijkωk = dhij +
∑
k

hkjωki +
∑
k

hikωkj .

Thus, by exterior differentiation of (7), we obtain the Codazzi equation

hijk = hikj .

Now we recall the definition of an Lk-finite type hypersurface from [10],
which is a basic notion in this paper.
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Definition 2.6. An isometrically immersed hypersurface x : Mn
1 →

En+1
1 is said to be of Lk-finite type if x has a finite decomposition x =∑m
i=0 xi, for some positive integer m, satisfying the condition Lkxi =

τixi, where , τi ∈ R and xi : Mn → En+1
1 is smooth maps, for i =

1, 2, · · · ,m, and x0 is constant. If all τi’s are mutually different, Mn is
said to be of Lk-m-type. An Lk-m-type hypersurface is said to be null
if for some i (1 ≤ i ≤ m), τi = 0.

Now, we see two families of examples of Lk-biconservative Lorentzian
hypersurfaces in En+1

1 , some of them are not Lk-biharmonic.

Example 2.7. Assume that M1(r) be the product Sm1 (r) × En−m ⊂
En+1
1 where r > 0 is a real number and m = 2, 3, · · · , n − 1. It has

another representation as

M1(r) = {(y1, ..., yn+1) ∈ Rn+1
1 | − y21 + y22 + ...+ y2m+1 = r2},

having the spacelike normal vector field N(y) = −1
r (y1, ..., ym+1, 0, ..., 0)

as the Gauss map. Clearly, it has two distinct principal curvatures
κ1 = ... = κm = 1

r , κm+1 = ... = κn = 0, and the constant higher order

mean curvatures Hk = m!(n−k)!
n!(m−k)!rk for k ≤ m and Hk = 0 for k > m. Also,

one can see that for k > m we have L2
kx = 0 and otherwise L2

kx 6= 0.

Example 2.8. LetM2(r) be the product Em1 × Sn−m(r) ⊂ En+1
1 where

r > 0 is a real number and m = 2, 3, · · · , n− 1. It can be represented as

M2(r) = {(y1, ..., yn+1) ∈ Rn+1
1 |y2m+1 + ...+ y2n+1 = r2},

with the Gauss map N(y) = −1
r (0, ...0, ym+1, ..., yn+1). It has two dis-

tinct principal curvatures κ1 = ... = κm = 0, κm+1 = ... = κn = 1
r ,

and the constant higher order mean curvatures Hk = (n−m)!(n−k)!
n!(n−m−k)!rk for

k ≤ n − m, and Hk = 0 for k > n − m. So, Also, one can see that
L2
kx 6= 0 for k ≤ n−m, we have L2

kx = 0 for k > n−m.

3 Results on timelike hypersurfaces

From now on, Let x : Mn
1 → En+1

1 be an isometrically immersion from
a connected timelike hypersurface Mn

1 into the Minkowski space En+1
1 ,
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with the Gauss map N. We have six theorems on the Lk-biconservative
connected orientable timelike hypersurface in En+1

1 with constant ordi-
nary mean curvature. Theorems 3.2, 3.3 and 3.4 are appropriated to the
case that the shape operator on hypersurface is diagonalizable. Theo-
rems 3.5, 3.6 and 3.7 are related to the cases that the shape operator
on hypersurface is of type II, III and IV , respectively. First we see a
common lemma.

Lemma 3.1. Let Mn
1 be a connected orientable timelike hypersurface

in the Minkowski space En+1
1 with non-zero (k + 1)th mean curvature,

which satisfies the Lk-biconservativity condition for some integer k ∈
{0, 1, ..., n− 1}. Let {e1, ..., en} be a local orthonormal tangent frame on
Mn

1 . Then, we have

n∑
i=1

εi < ∇Hk+1, ei >< Pk+1ei, ej >=
3

2

(
n

k + 1

)
Hk+1 < ∇Hk+1, ej >,

for j = 1, 2, ..., n, where ε1 := −1 and εi := 1 for i ≥ 2.

Proof. Using the polar decomposition of the gradient vector field
∇Hk+1 in terms of the orthonormal basis {e1, ..., en}, and the linear-
ity of Pk+1, we have Pk+1∇Hk+1 =

∑n
i=1 εi < ∇Hk+1, ei > Pk+1ei,

which, by comparing with the equation (3)(ii), gives the result. �

3.1 Timelike hypersurfaces with diagonalizable shape op-
erator

First, we remember the Theorem 2.2 from [12] on a Lorentzian isopara-
metric hypersurface of En+1

1 with diagonalizable shape operator and ex-
actly l distinct constant principal curvatures λ1, · · · , λl (respectively) of
multiplicities m1, · · · ,ml, which says that on such a hypersurface we
have equalities ∑

j∈{1,··· ,l}−{i}

mjλiλj
λi − λj

= 0

for i = 1, · · · , l. An easy consequence of this fact is that, if Lorentzian
hypersurface of En+1

1 with diagonalizable shape operator has exactly two
distinct constant principal curvatures λ1 and λ2, then we have λ1λ2 = 0
which gives λ1 = 0 or λ2 = 0.
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In Theorem 3.2, the only principal curvature is not assumed to be
constant.

Theorem 3.2. Let x : Mn
1 be a connected orientable timelike hyper-

surface in the Minkowski space En+1
1 with diagonalizable shape operator,

which has one principal curvature of multiplicity n. If Mn
1 satisfies the

Lk-biconservativity condition (3)(ii) for an integer k ∈ {1, ..., n − 1},
then it has to be isoparametric.

Proof. Let x : Mn
1 → En+1

1 be the position vector field of Mn
1 in

En+1
1 which satisfies assumed conditions. Defining the open subset U

of M as U := {p ∈ Mn
1 : ∇Hk+1(p) 6= 0}, we prove that U is empty.

Assuming U 6= ∅, we consider {e1, · · · , en} as a (local) orthonormal
frame of principal directions of S on U such that for i = 1, · · · , n we
have Sei = λei and

µi,k+1 =

(
n− 1

k + 1

)
λk+1, Hk+1 = λk+1. (8)

By condition (3)(ii), we have Pk+1(∇Hk+1) = 3
2

(
n
k+1

)
Hk+1∇Hk+1, which,

using the polar decomposition ∇Hk+1 =
∑n

i=1 εi < ∇Hk+1, ei > ei,
gives εi < ∇Hk+1, ei > (µi,k+1− 3

2

(
n
k+1

)
Hk+1) = 0 on U for i = 1, · · · , n.

Hence, if for some i we assume < ∇Hk+1, ei >6= 0 on U , then we get

µi,k+1 =
3

2

(
n

k + 1

)
Hk+1,

which, using equalities (8), gives λk+1 = 0 and then Hk+1 = 0 on U ,
which is a contradiction. Hence U is empty and Hk+1 is constant on Mn

1

and then, λ is constant and Mn
1 is isoparametric. �

Theorem 3.3. Let Mn
1 (for an integer number n ≥ 3) be a timelike hy-

persurface of En+1
1 with diagonalizable shape operator, constant ordinary

mean curvature and exactly two distinct principal curvature functions η
and λ of multiplicities 1 and n− 1, respectively. If Mn

1 satisfies the Lk-
biconservativity condition (3)(ii) for an integer k ∈ {1, ..., n − 1}, then
it has to be isoparametric and at least one of η and λ is identically zero.

Proof. Let x : Mn
1 → En+1

1 be the position vector field of Mn
1 in

En+1
1 which satisfies assumed conditions. Taking the open subset V of



AN EXTENDED BICONSERVATIVITY CONDITION ON
HYPERSURFACES ... 13

Mn
1 as V := {p ∈ Mn

1 : ∇H2
k+1(p) 6= 0}, we prove that V is empty.

Assuming V 6= ∅, we consider {e1, · · · , en} as a local orthonormal frame
of principal directions of A on V such that Sei = λei for i = 1, · · · , n−1
and Aen = ηen. Therefore, we obtain

µ1,k+1 = · · · = µn−1,k+1 =

(
n− 2

k + 1

)
λk+1 +

(
n− 2

k

)
λkη,

µn,k+1 =

(
n− 1

k + 1

)
λk+1,

nH1 = (n− 1)λ+ η, n(n− 1)H2 = (n− 1)(n− 2)λ2 + 2(n− 1)λη,(
n

k + 1

)
Hk+1 =

(
n− 1

k + 1

)
λk+1 +

(
n− 1

k

)
λkη.

(9)

Using the polar decomposition ∇Hk+1 =
∑n

i=1 εi < ∇Hk+1, ei > ei,
from equality (3)(ii) we have εi < ∇Hk+1, ei > (µi,k+1− 3

2

(
n
k+1

)
Hk+1) =

0 on V for i = 1, · · · , n. Since, by definition of the subset V, we have
< ∇Hk+1, ei >6= 0 on V for some i, then we get

µi,k+1 =
3

2

(
n

k + 1

)
Hk+1, (10)

for some i, which gives one of the following states:
State 1. < ∇Hk+1, ei >6= 0, for some i ∈ {1, · · · , n − 1}. Using

formulae (9), from equality (10) we obtain (n+ 2k+ 1)(n−k−1)λk+1 +
(n + 2k − l)(k + 1)λkη = 0. If λ = 0 then H2 = 0. Otherwise, we

get η = − (n+2k+1)(n−k−1)
(n+2k−1)(k+1) λ, which, using nH1 = (n − 1)λ + η, gives

λ = n(k+1)(n+2k−1)
nk(n+2k−1)−2(n−k−1)H1 and then Hk+1 is constant on V. Therefore,

we obtain a contradiction which implies that V = ∅.
State 2. < ∇Hk+1, ei >= 0, for all i ∈ {1, · · · , n − 1} and <

∇Hk+1, en >6= 0 and then,

µn,k+1 =
3

2

(
n

k + 1

)
Hk+1.

Similar to State 1, by equalities (9), we obtain λ = 0 or η = −n−k−1
3(k+1)λ.

If λ = 0 then H2 = 0. Otherwise, we get λ = 3n(k+1)
(n−1)(3k+2)+kH1 and
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then Hk+1 is constant on V. Therefore, we obtain a contradiction which
implies that V = ∅.

Therefore, Hk+1 is constant on Mn
1 . Since H1 is constant on Mn

1 , we
obtain that, λ and η are constant on Mn

1 . Hence, Mn
1 is isoparametric.

So, by Theorem 2.2 in [12], we get λη = 0. �

Theorem 3.4. Let Mn
1 be a timelike hypersurface of En+1

1 with diago-
nalizable shape operator, constant ordinary mean curvature and exactly
two distinct principal curvature functions η and λ of multiplicities t
and n − t, respectively, where 2 ≤ t ≤ n − 2. If Mn

1 satisfies the Lk-
biconservativity condition (3)(ii) for an integer k ∈ {1, ..., n − 1}, then
it has to be isoparametric. Furthermore, when n 6= 2t, we get λη = 0.

Proof. Let x : Mn
1 → En+1

1 be the position vector field of Mn
1 in

En+1
1 which satisfies assumed conditions. Defining the open subset V

of Mn
1 as V := {p ∈ Mn

1 : ∇H2
n+1(p) 6= 0}, we prove that V is empty.

Assuming V 6= ∅, we consider {e1, · · · , en} as a local orthonormal frame
of principal directions of S on V such that Sei = λei for i = 1, · · · , n− t
and Sei = ηei for i = n− t+ 1, · · · , n. Therefore, we obtain

(i) µ1,k+1 = · · · = µn−t,k+1 =

k+1∑
s=0

(
n− t− 1

s

)(
t

k + 1− s

)
λsµk+1−s,

(ii) µn−t+1,2 = · · · = µn,2 =
k+1∑
s=0

(
n− t
s

)(
t− 1

k + 1− s

)
λsµk+1−s,

(iii) nH1 = (n− k)λ+ kη,

(iv)

(
n

k + 1

)
Hk+1 =

k+1∑
s=0

(
n− t
s

)(
t

k + 1− s

)
λsµk+1−s.

(11)

Using the definition of Pk+1 and equation (3)(ii), we obtain

Pk+1(∇Hk+1) =
3

2

(
n

k + 1

)
Hk+1∇Hk+1

on U . Therefore, applying ∇Hk+1 =
∑n

i=1 εi < ∇Hk+1, ei > ei, we get

< ∇Hk+1, ei > (µi,k+1 −
3

2

(
n

k + 1

)
Hk+1) = 0,
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and then, < ∇Hk+1, ei >= 0 or

µ1,k+1 = · · · = µq,k+1 =
3

2

(
n

k + 1

)
Hk+1. (12)

on U for every i = 1, . . . , n. This gives one or both of the following
states.

State 1. < ∇Hk+1, ei >6= 0, for some i ∈ {1, · · · , n− t}. Then, by
(12) and (11)(i), we obtain

k+1∑
s=0

[

(
n− t− 1

s

)(
t

k + 1− s

)
− 3

2

(
n− t
s

)(
t

k + 1− s

)
]λsµk+1−s = 0,

which, using (11)(iii), gives a polynomial equation in terms of λ. This
implies that λ and the η and Hk+1 are constant on U . Therefore, Hk+1

is constant on Mn
1 .

State 2. < ∇Hk+1, ei >= 0, for all i ∈ {1, · · · , n − t} and <
∇Hk+1, ej >6= 0 for some j ∈ {n − t + 1, · · · , n}. By (12) and (11)(ii),
we obtain

k+1∑
s=0

[

(
n− t
s

)(
t− 1

k + 1− s

)
− 3

2

(
n− t
s

)(
t

k + 1− s

)
]λsµk+1−s = 0,

which, using (11)(iii), gives a polynomial equation in terms of λ. This
implies that λ and the η and Hk+1 are constant on U . Therefore, Hk+1

is constant on Mn
1 .

Since H1 is also constant on Mn
1 , we obtain that, λ and η are constant

on Mn
1 and Mn

1 is isoparametric. So, in the case n 6= 2t, by Theorem
2.2 in [12], we get λη = 0. �

3.2 Hypersurfaces with non-diagonalizable shape opera-
tor

This subsection is appropriated to cases that the Lorentzian hypersur-
faces of En+1 have shape operator of type II, III or IV . First, on the
type II, we will use Theorem 2.4 from [12], which says that each isopara-
metric timelike hypersurface Mn

1 of En+1
1 with shape operator of type

II (with minimal polynomial as m(x) = (x − λ1)2(x − λ2) · · · (x − λl))
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and exactly l distinct constant principal curvatures λ1, · · · , λl (respec-

tively) of multiplicities m1, · · · ,ml, satisfies
∑

j∈{1,··· ,l}−{i}
mjλiλj
λi−λj = 0

for i = 1, · · · , l. As a consequence of this fact, if a Lorentzian hyper-
surface of En+1

1 with shape operator of type II has exactly two distinct
constant principal curvatures λ1 and λ2, then we have λ1λ2 = 0 which
gives λ1 = 0 or λ2 = 0.

Theorem 3.5. Let Mn
1 be a timelike hypersurface of En+1

1 with shape
operator of type II, constant ordinary mean curvature and exactly two
distinct principal curvatures. If Mn

1 satisfies the Lk-biconservativity con-
dition (3)(ii) for an integer k ∈ {1, ..., n− 1}, then it has to be isopara-
metric and at least one of it’s principal curvatures is identically zero.

Proof. Assume that, an isometric immersion x : Mn
1 → En+1

1 satisfies
all conditions of the theorem. Taking the open subset U = {p ∈ Mn

1 :
∇Hk+1(p) 6= 0}, we show that U = ∅. By the assumption, with respect
to a suitable (local) orthonormal tangent frame {e1, · · · , en} on Mn

1 , the
shape operator S has the matrix form B̃2, such that Se1 = (κ+ 1

2)e1 −
1
2e2, Se2 = 1

2e1 + (κ − 1
2)e2 and Sei = λei for i = 3, · · · , n. Then, we

have the following equalities.

(i) nH1 = 2κ+ (n− 2)λ,

(ii)

(
n

k + 1

)
Hk+1 =

(
n− 2

k + 1

)
λk+1 + 2

(
n− 2

k

)
κλk +

(
n− 2

k − 1

)
κ2λk−1

(iii) Pk+1e1 = [

(
n− 2

k + 1

)
λk+1 +

(
n− 2

k

)
(κ− 1

2
)λk]e1 +

1

2

(
n− 2

k

)
λke2,

(iv) Pk+1e2 = −1

2

(
n− 2

k

)
λke1 + [

(
n− 2

k + 1

)
λk+1 +

(
n− 2

k

)
(κ+

1

2
)λk]e2,

(v) Pk+1ei = [

(
n− 3

k − 1

)
κ2λk−1 + 2

(
n− 3

k

)
κλk +

(
n− 3

k + 1

)
λk+1]ei

(i = 3, · · · , n).

(13)
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Using the polar decomposition ∇H2 =
n∑
i=1

εiei(H2)ei, from condition

(3)(ii) we get

(i) (A− C)ε1e1(Hk+1) = Cε2e2(Hk+1),

(ii) (A+ C)ε2e2(Hk+1) = −Cε1e1(Hk+1),

(iii) Dεiei(Hk+1) = 0, (i = 3, · · · , n),

(14)

where A :=
(
n−2
k+1

)
λk+1 +

(
n−2
k

)
κλk − 3

2

(
n
k+1

)
Hk+1, C := 1

2

(
n−2
k

)
λk and

D =

(
n− 3

k − 1

)
κ2λk−1 + 2

(
n− 3

k

)
κλk +

(
n− 3

k + 1

)
λk+1− 3

2

(
n

k + 1

)
Hk+1.

Now, we prove the main claim.
Claim: ei(Hk+1) = 0 for i = 1, · · · , n.

If e1(H2) 6= 0, then by dividing both sides of equalities (14)(i, ii) by
ε1e1(H2) we get

(i) A− C = Cu, (ii) (A+ C)u = −C, (15)

where u := ε2e2(H2)
ε1e1(H2)

. By substituting (15)(i) in (15)(ii), we obtain λk(1+

u)2 = 0, then λ = 0 or u = −1. If λ = 0, then, from (15)(i) and (13)(i)
we obtain that Hk+1 is constant. Otherwise, we have u = −1, which
gives A = 0, then we obtain(

n− 2

k + 1

)
λk+1 +

(
n− 2

k

)
κλk − 3

2

(
n

k + 1

)
Hk+1 = 0.

Since nH1 = 2κ+ (n− 2)λ is assumed to be constant on M , by substi-
tuting which in the last equality, we get a polynomial equation which
means κ and then Hk+1 is constant on Mn

1 . So, we got a contradiction
and therefore, the first part of the claim is proved.

If e2(H2) 6= 0, then by dividing both sides of equalities (14)(i, ii) by
ε2e2(H2) we get

(i) (A− C)v = C, (ii) A+ C = −Cv, (16)

where v := ε1e1(H2)
ε2e2(H2)

. By substituting the equation (16)(ii) in (16)(i),

we obtain λk(1 + v)2 = 0. If λ = 0, then, from (13)(i) and (16)(ii), we



18 F. PASHAIE

obtain that Hk+1 is constant. Otherwise, we have v = −1, which gives
A = 0, then similar to the first part, we obtain that Hk+1 is constant
on Mn

1 . So, we got a contradiction and therefore, the second part of the
claim is proved.

Finally, each of assumptions ei(H2) 6= 0 for i = 3, · · · , n, gives D = 0,
which by simplification gives the polynomial equation

[
n+ 2k

2(n− k − 1)
λ2 +

(k + 1)(n+ 2k − 2)

(n− k − 3)(n− k − 2)
κλ

+
k(k + 1)(n+ 2k − 4)

2(n− k − 1)(n− k − 2)(n− k − 3)
κ2]λk−1 = 0.

Similar to two first cases, using formula nH1 = 2κ + (n − 2)λ, from
the last equation we obtain a polynomial equation in terms of λ, which
gives that Hk+1 is constant on M . Since H1 is also constant on Mn

1 , we
obtain that, λ and κ are constant on Mn

1 and Mn
1 is isoparametric. So,

by Theorem 2.4 from [12], we get λκ = 0. �
Now, for the type III, we recall Theorem 2.6 from [12] which says

that each isoparametric timelike hypersurface Mn
1 of En+1

1 with shape
operator of type III (with minimal polynomial as m(x) = (x−λ1)3(x−
λ2) · · · (x − λl)) and exactly l distinct constant principal curvatures
λ1, · · · , λl (respectively) of multiplicities m1, · · · ,ml, satisfies the equal-

ities
∑

j∈{1,··· ,l}−{i}
mjλiλj
λi−λj = 0 for i = 1, · · · , l. As a consequence of this

fact, if an isoparametric Lorentzian hypersurface of En+1
1 with shape op-

erator of type III has exactly two distinct constant principal curvatures
λ1 and λ2, then we have λ1λ2 = 0 which gives λ1 = 0 or λ2 = 0.

Theorem 3.6. Let Mn
1 be a timelike hypersurface of En+1

1 with shape
operator of type III, constant ordinary mean curvature and exactly two
distinct principal curvatures. If Mn

1 satisfies the Lk-biconservativity con-
dition (3)(ii) for an integer k ∈ {1, ..., n − 1}, then it is isoparametric
and at least one of it’s principal curvatures is identically zero.

Proof. Assume that, an isometric immersion x : Mn
1 → En+1

1 satis-
fies all conditions of the theorem. By the assumption, with respect to
a suitable (local) orthonormal tangent frame {e1, · · · , en} on Mn

1 , the

shape operator S has the matrix form B̃3, such that Se1 = κe1 −
√
2
2 e3,
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Se2 = κe2 −
√
2
2 e3, Se3 =

√
2
2 e1 −

√
2
2 e2 + κe3 and Sei = λei for

i = 4, · · · , n. Then, we have

(i) nH1 = 3κ+ (n− 3)λ,

(ii)

(
n

k + 1

)
Hk+1 = uk+1 + 3κuk + 3κ2uk−1 + κ3uk−2,

(iii) Pk+1e1 = [uk+1 + 2κuk + (κ2 − 1

2
)uk−1]e1 +

1

2
uk−1e2

+

√
2

2
[uk + κuk−1]e3,

(iv) Pk+1e2 = −1

2
uk−1e1 + [uk+1 + 2κuk + (κ2 +

1

2
)uk−1]e2

+

√
2

2
[uk + κuk−1]e3,

(v) Pk+1e3 =
−
√

2

2
[uk + κuk−1]e1 +

√
2

2
[uk + κuk−1]e2

+ [uk+1 + 2κuk + κ2uk−1]e3,

(vi) Pk+1ei = [

(
n− 4

k − 2

)
κ3λk−2 + 3

(
n− 4

k − 1

)
κ2λk−1

+ 3

(
n− 4

k

)
κλk +

(
n− 4

k + 1

)
λk+1]ei,

(17)

for i = 4, · · · , n. Where, ul = µ1,2,3;l for every l ∈ {1, ..., n− 3}.
Similar to proof of Theorem 3.5, we assume thatHk+1 is non-constant

and considering the open subset U = {p ∈ Mn
1 : ∇Hk+1(p) 6= 0}, we

prove that U = ∅. Using polar decomposition∇Hk+1 =
n∑
i=1

εiei(Hk+1)ei,

from condition (3)(ii) we get the following system of conditions:

(i) [Ã− C̃]ε1e1(Hk+1)− C̃ε2e2(Hk+1)− D̃ε3e3(Hk+1) = 0

(ii) C̃ε1e1(Hk+1) + [Ã+ C̃]ε2e2(Hk+1) + D̃ε3e3(Hk+1) = 0

(iii) D̃(ε1e1(H2) + ε2e2(H2)) + Ãε3e3(H2) = 0,

(iv) [κ3µ1,2,3,i;k−2 + 3κ2µ1,2,3,i;k−1 + 3κµ1,2,3,i;k + µ1,2,3,i;k+1

− 3

2

(
n

k + 1

)
Hk+1)]εiei(Hk+1) = 0. (i = 4, · · · , n).

(18)
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where Ã := [uk+1 + 2κuk + κ2uk−1] − 3
2

(
n
k+1

)
Hk+1, C̃ := 1

2uk−1 and

D̃ =
√
2
2 [uk + κuk−1].

Now, we prove that Hk+1 is constant .
Claim: ei(Hk+1) = 0 for i = 1, · · · , n.

If e1(Hk+1) 6= 0, then by dividing both sides of equalities (18)(i, ii, iii) by

ε1e1(Hk+1), and using the identity (17)(ii) and notations ν1 :=
ε2e2(Hk+1)
ε1e1(Hk+1)

and ν2 :=
ε3e3(Hk+1)
ε1e1(Hk+1)

, we get

(i) Ã− C̃ − C̃ν1 − D̃ν2 = 0,

(ii) C̃ + (Ã+ C̃)ν1 + D̃ν2 = 0,

(iii) D̃(1 + ν1) + Ãν2 = 0,

(19)

From summation of equations (19)(i) and (19)(ii), we obtain Ã(1+ν1) =
0.

Assuming Ã 6= 0, from the last equality we get ν1 = −1 and then,
by (19)(iii), we obtain ν2 = 0. From these results, by (19)(ii), we get
Ã = 0. So, we get a contradiction, which implies that Ã = 0.

The equality Ã = 0 gives a polynomial equation in terms λ and κ.
Since nH1 = 3κ + (n − 3)λ is assumed to be constant, so we obtain a
polynomial equation in terms λ, which implies that λ and then κ and
Hk+1 are constant on U . This is a contradiction and implies that, the
first claim e1(Hk+1) ≡ 0 is proved.

If e2(H2) 6= 0, then by dividing both sides of equalities (18)(i, ii, iii)

by ε2e2(H2), and using the identity (17)(ii) and notations v1 := ε1e1(H2)
ε2e2(H2)

and v3 := ε3e3(H2)
ε2e2(H2)

, we get

(i) (Ã− C̃)v1 − C̃ − D̃v2 = 0,

(ii) C̃v1 + Ã+ C̃ + D̃v2 = 0,

(iii) D̃(v1 + 1) + Ãv2 = 0,

(20)

From summation of equations (20)(i) and (20)(ii), we obtain Ã(1+v1) =
0.

Assuming Ã 6= 0, from the last equality we get v1 = −1 and then,
by (20)(iii), we obtain v2 = 0. From these results, by (20)(ii), we get
Ã = 0. So, we get a contradiction, which implies that Ã = 0.
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The equality Ã = 0 gives a polynomial equation in terms λ and κ.
Since nH1 = 3κ + (n − 3)λ is assumed to be constant, so we obtain a
polynomial equation in terms λ, which implies that λ and then κ and
Hk+1 are constant on U . This is a contradiction and implies that, the
first claim e1(Hk+1) ≡ 0 is proved.

If e3(H2) 6= 0, then by dividing both sides of equalities (18)(i, ii, iii)

by ε3e3(H2), and using the identity (17)(ii) and notations w1 := ε1e1(H2)
ε3e3(H2)

and w2 := ε2e2(H2)
ε3e3(H2)

, we get

(i) (Ã− C̃)w1 − C̃w2 − D̃ = 0,

(ii) C̃w1 + (Ã+ C̃)w2 + D̃ = 0,

(iii) D̃(W1 + w2) + Ã = 0,

(21)

From equations (21)(i) and (21)(ii), we obtain Ã(w1 + w2) = 0.
Assuming Ã 6= 0, from the last equality we get w2 = −w1 and then,

by (21)(iii), we obtain Ã = 0.
The equality Ã = 0, by (21)(i, ii, iii), gives D̃ = 0. So, we get

Ã− D̃ = uk+1−κuk = 0, which is a polynomial equation in terms λ and
κ. Since nH1 = 3κ + (n − 3)λ is assumed to be constant, so we obtain
a polynomial equation in terms λ, which implies that λ and then κ and
Hk+1 are constant on U . This is a contradiction and implies that, the
3rd claim e1(Hk+1) ≡ 0 is proved.

The forth stage is assumption ei(Hk+1) 6= 0 for some i ≥ 4. By a
same manner, from (18)(iv) we get(

n− 4

k − 2

)
−n− 2k + 7

2(n− k − 1)
κ3λk−2 +

(
n− 4

k − 1

)
3(−n− 2k + 5)

2(n− k − 2)
κ2λk−1

+

(
n− 4

k

)
3(−n− 2k + 3)

2(n− k − 3)
κλk +

(
n− 4

k + 1

)
−n− 2k + 1

2(n− k − 4)
λk+1 = 0.

Since nH1 = 3κ + (n − 3)λ is assumed to be constant, so we obtain a
polynomial equation in terms λ, which implies that λ and then κ and
Hk+1 are constant on U . Hence, Mn

1 is isoparametric and by Theorem
2.6 in [12], we get λκ = 0. �

Finally, about the case that shape operator is of type IV , we restate
Corollary 2.9 from [12], which says that each isoparametric timelike



22 F. PASHAIE

hypersurface Mn
1 of En+1

1 with shape operator of type IV and complex
principal curvatures κ± λi (where λ 6= 0) has at most one non-zero real
principal curvature.

Theorem 3.7. Let Mn
1 be a timelike hypersurface of En+1

1 with shape
operator of type IV , two complex principal curvatures κ ± λi with con-
stant λ2 + κ2 = κ0, a real principal curvature η and constant ordinary
mean curvature H1. If Mn

1 satisfies the Lk-biconservativity condition
(3)(ii) for an integer k ∈ {1, ..., n − 1}, then it has constant k + 1th
mean curvature.

Proof. Assume that, an isometric immersion x : Mn
1 → En+1

1 satisfies
all conditions of the theorem. By the assumption, with respect to a
suitable (local) orthnormal tangent frame {e1, · · · , en} on Mn

1 , the shape
operator S has the matrix form B̃4. Considering the open subset U =
{p ∈ M : ∇Hk+1(p) 6= 0}, we try to show U = ∅. By assumption,
the shape operator S of M4

1 is of type IV with at most three distinct
eigenvalue functions. Then, we have Se1 = κe1 − λe2, Se2 = λe1 + κe2,
Sei = ηei for i = 3, · · · , n. Then, we have(

n

k + 1

)
Hk+1 = µ1,2;k+1 + 2κµ1,2;k + (κ2 + λ2)µ1,2;k−1,

Pk+1e1 = (κµ1,2;k + µ1,2;k+1)e1 + λµ1,2;ke2,

Pk+1e2 = −λµ1,2;ke1 + (κµ1,2;k + µ1,2;k+1)e2,

and Pk+1ei = µi,k+1ei for i = 3, · · · , n.

Using the polar decomposition ∇Hk+1 =
n∑
i=1

εiei(Hk+1)ei, from con-

dition (3)(ii) we get

(i) (κµ1,2;k + µ1,2;k+1 −
3

2

(
n

k + 1

)
Hk+1)ε1e1(Hk+1)

− λµ1,2;kε2e2(Hk+1) = 0,

(ii) λµ1,2;kε1e1(Hk+1) + (κµ1,2;k + µ1,2;k+1

− 3

2

(
n

k + 1

)
Hk+1)ε2e2(Hk+1) = 0,

(iii) (µi;k+1 −
3

2

(
n

k + 1

)
Hk+1)εiei(Hk+1) = 0, (i = 3, · · · , n).

(22)
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Claim: ei(Hk+1) = 0 for i = 1, · · · , n.
If e1(Hk+1) 6= 0, then by dividing both sides of equalities (22)(i, ii) by

ε1e1(Hk+1), and using the notations ζ :=
ε2e2(Hk+1)
ε1e1(Hk+1)

, we get a system of
equations as

(i) κµ1,2;k + µ1,2;k+1 −
3

2

(
n

k + 1

)
Hk+1 = λµ1,2;kζ,

(ii) λµ1,2;k + (κµ1,2;k + µ1,2;k+1 −
3

2

(
n

k + 1

)
Hk+1)ζ = 0,

(23)

which gives λµ1,2;k(1 + ζ2) = 0 and then ληk = 0. Since λ is assumed
non-zero, we get η = 0 and by (23)(i), Hk+1 = 0 on U . This is a
contradiction which proves that e1(Hk+1) = 0.

If e2(Hk+1) 6= 0, then by dividing both sides of equalities (22)(i, ii)

by ε1e1(Hk+1), and using the notations ζ̄ :=
ε1e1(Hk+1)
ε2e2(Hk+1)

, we get a system

of equations as

(i) (κµ1,2;k + µ1,2;k+1 −
3

2

(
n

k + 1

)
Hk+1)ζ̄ − λµ1,2;k = 0,

(ii) λµ1,2;kζ̄ + κµ1,2;k + µ1,2;k+1 −
3

2

(
n

k + 1

)
Hk+1 = 0,

which gives λµ1,2;k(1 + ζ̄2) = 0 and then ληk = 0. Then, similar to the
first case, we get e2(Hk+1) = 0.

The third stage is assumption ei(Hk+1) 6= 0 for some i ≥ 3. By a
same manner, from (22)(iii) we get(

n− 3

k − 1

)
−n− 2k + 4

2(n− k − 1)
κ0η

k−1 +

(
n− 3

k

)
−n− 2k + 2

n− k − 2
κηk

+

(
n− 3

k + 1

)
−n− 2k

2(n− k − 3)
ηk+1 = 0.

Since nH1 = 2κ + (n − 2)η is assumed to be constant, so we obtain a
polynomial equation in terms λ, which implies that λ and then κ and
Hk+1 are constant on U . �
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