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Abstract. In this paper, we introduce a hemi-slant submanifold of a
3-Sasakian manifold. First, we obtain some new results in terms of the
operators Ti and fi. By using Gauss, Codazzi and Ricci equations, we
prove some results involving Ricci and scalar curvatures by using the
slant angle and the mean curvature vector of the submanifold.

AMS Subject Classification: 53C15; 53C40; 53C42; 53C50
Keywords and Phrases: Hemi-slant submanifold, quasi-Einstein man-
ifold, 3-Sasakian space form

1 Introduction

At the beginning of the last decade of twentieth century, Chen defined
the concept of slant submanifolds [7] and proved many interesting fun-
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damental results for these submanifolds in his book [8]. After that, this
notion has been investigated and generalized by many authors for some
ambient manifolds which were equipped with various structures such as
almost complex, contact and quaternionic structures [2, 3, 9, 14]. Hemi-
slant submanifolds in contact structures were defined by Cabrerizo et
al. [5]. Since one of the distributions of hemi-slant submanifolds are
anti-invariant, the hemi-slant submanifold can be considered as partic-
ular class of the bi-slant submanifolds. Later, B. Sahin obtained some
interesting results on warped products of hemi-slant submanifolds in
Kaehler manifolds [15]. In [16], second author and Chen investigated
warped product bi-slant submanifolds and as a generalization of these
submanifolds, they also introduce the idea of pointwise bi-slant subman-
ifolds [10], when the ambient manifold was a Kaehlerian manifold.

In [13, 14], first author and Malek defined 3-slant submanifolds of
3-structure manifolds. In this paper, we extend these subjects to the
hemi-slant submanifolds of a special class of almost contact 3-structures
which is called 3-Sasakian manifolds.

The paper is organised as follows: In Section 2, we review the ba-
sic notations about 3-Sasakian manifolds. In Section 3, we introduce
hemi-slant submanifolds of 3-structures and Sasakian 3-hemi slant sub-
manifolds. We prove that a hemi-slant submanifold M of a 3-Sasakian
manifold (M̃, ξi, ηi, ϕi)i∈{1,2,3} which admits a 3-Sasakian structure Ti, is
anti-invariant if and only if Ti is parallel. Moreover, we obtain some re-
sults in terms of the tangential and normal components of ϕi. In Section
4, we suppose the ambient manifold of the hemi-slant submanifold be a
3-Sasakian space form and obtain fundamental results by using Gauss,
Codazzi and Ricci equations. We deduce some new results for Ricci ten-
sor and scalar curvatures involving the mean curvature and slant angle
of the submanifold.

2 Preliminaries

Definition 2.1. [4] A Riemannian manifold (M̃, g) has an almost con-
tact metric structure if it is endowed by the tensor fields ξ, η and ϕ of
type (1, 0), (0, 1) and (1, 1) respectively, such that
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ϕ2(X) = −X + η(X)ξ, η(ξ) = 1, (1)

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), ∀X,Y ∈ TM̃. (2)

Definition 2.2. [12] Let M̃ be a Riemannian manifold and for i =
1, 2, 3, (ηi, ξi, ϕi), be three almost contact structures on M̃ satisfying

ηi(ξj) = 0, ϕiξj = −ϕjξi = ξk, ηi(ϕj) = −ηj(ϕi) = ηk, (3)

ϕi ◦ ϕj − ηj⊗ξi = −ϕj ◦ ϕi + ηi ◦ ξj = ϕk, (4)

for a permutation (i, j, k) of (1, 2, 3), then M̃ has an almost contact 3-
structure (ξi, ηi, ϕi). In addition, if there exists a compatible Riemannian
metric g on M̃ which for all vector fieldsX,Y on M̃ the following relation
holds

g(ϕiX,ϕiY ) = g(X,Y )− ηi(Y )ηi(X), (5)

then (M̃, ξi, ηi, ϕi, g) is an almost contact metric 3-structure manifold
which in this paper shortly is called as 3-structure.

It is well-known that this compatible metric is skew-symmetric with
respect to the ϕi, i.e. g(ϕiX,Y ) = −g(X,ϕiY ). Moreover, the dimen-
sion of a 3-structure is 4k + 3 [17].

The 3-structure (M̃, ξi, ηi, ϕi, g) is called a 3-Sasakian manifold if the
following conditions satisfy

(∇̃Xϕi)Y = g(X,Y )ξi − ηi(Y )X, (6)

∇̃Xξi = −ϕiX, (7)

for any X ∈ TM̃ where ∇̃ is the Riemannian connection on M̃ .

Let the Ricci tensor of the Riemannian manifold (M̃, g) satisfies
S(X,Y ) = ag(X,Y ) + bA(X)A(Y ), for an 1-form A and a, b ∈ C∞(M̃),
then M̃ is a quasi Einstein manifold [6]. If b = 0, then (M̃, g) is called
an Einstein manifold. 3-Sasakian manifolds are famous examples of the
Einstein manifolds.
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3 Hemi-slant submanifolds of 3-structures

For a submanifold M of a Riemannian manifold M̃ , we have the Gauss
and Weingarten formulas as follows [17]

∇̃XY = ∇XY + σ(X,Y ), ∀X,Y ∈ TM (8)

∇̃XV = −AVX +DXV, ∀V ∈ (TM)⊥. (9)

Here, ∇̃ and ∇ are the Riemannian connections of (M̃, g) and (M, g), σ
and A are the second fundamental form and the associated operator of
σ, respectively. Also, the connection on the normal bundle is denoted
by D.

The curvature tensors R̃ and R with respect to the connections ∇̃
and ∇ satisfy

g(R̃(X,Y )Z,W ) = g(R(X,Y )Z,W ) + g(σ(X,Z), σ(Y,W ))

− g(σ(X,W ), σ(Y,Z)), (10)

for all vector fields X,Y, Z,W on M , which is called equation of Gauss.
Moreover, for the normal component (R(X,Y )Z)⊥ of R̃(X,Y )Z the
equation of Codazzi states

(R̃(X,Y )Z)⊥ = (∇̃Xσ)(Y, Z)− (∇̃Y σ)(X,Z). (11)

Let M be a submanifold of (M̃, ξi, ηi, ϕi, g). For any X ∈ TM and
V ∈ T⊥M , we put

ϕiX = TiX + FiX, ϕiV = tiV + fiV, (12)

where Ti, ti are tangential and Fi, fi are normal projections of ϕi.
One can verify that

g(tiV, Y ) = −g(V, FiY ), (13)

g(fiV,X) = −g(V, TiX). (14)

The submanifold M is invariant if at any point p ∈M , ϕi(TpM) ⊂ TpM
and is anti-invariant if ϕi(TpM) ⊂ T⊥p M . Therefore, based on the nota-
tion of Equation (14), on invariant (resp. anti-invariant) submanifolds
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we get Fi = 0 (resp. Ti = 0).

Motivated by Chen [7, 8] works on slant immersions and submani-
folds which are interesting generalizations of invariant ( complex) and
anti-invariant (totally real) submanifolds, the first author and Malek
defined the following type of submanifolds.

Definition 3.1. [13] A submanifold M of a 3-structure (M̃, ϕi, ξi, ηi, g),
i ∈ {1, 2, 3} is a 3-slant submanifold, if for all p ∈ M and for any X ∈
TpM, (X 6= 0), the angel α = ̂ϕiX,TjX has a constant value, for all
i, j ∈ {1, 2, 3}.

So, in 3-slant submanifolds, the choice of point p and X does not ef-
fect on the value of the slant angle α. For example, on anti-invariant and
invariant submanifolds the slant angle α between ϕiX and the tangent
space TpM are equal to π

2 and 0, respectively.

Definition 3.2. Suppose that M is a submanifold of a 3-structure
(M̃, ϕi, ξi, ηi, g) and admits orthogonal distributions Dα,D⊥ and < ξi >,
where TM = Dα ⊕D⊥⊕ < ξi >. We say M is a 3-hemi slant submani-
fold, if
(a) D⊥ is anti-invariant, this means, ϕi(D

⊥) ⊂ T⊥M .
(b) Dα is a 3-slant distribution with respect to the ϕi’s and has slant

angle α 6= 0, i.e. ∀X ∈ Dα, the angle α = ̂ϕiX,Dα is constant.

Lemma 3.3. [11] Let M be a 3-slant submanifold of 3-structure (M̃, g).
Then for any X ∈ TM which is normal to ξi, we have TiTj (X) =
− cos2 αX, where α is the slant angle and i, j ∈ {1, 2, 3}.

Theorem 3.4. Let for i ∈ {1, 2, 3}, (M̃, ϕi, ξi, ηi, g) be a 3-Sasakian
manifold and M be its 3-hemi slant submanifold. Then the structure
vector fields ξi’s are parallel with respect to the connection ∇ if and only
if α = π

2 on M .

Proof. From Eq. (7), we have

∇̃Xξi = −ϕiX, ∀X ∈ TM. (15)

On the other hand, Gauss formula implies

∇̃Xξi = ∇Xξi + σ(X, ξi). (16)
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Therefore, if ξi is parallel, then we obtain σ(X, ξi) = −ϕiX. Thus
ϕiX ∈ T⊥M , so M is an anti-invariant submanifold.

Conversely, if M is an anti-invariant submanifold then for any X ∈
TM , we have ϕiX ∈ T⊥M . Thus from (15) and (16), we get ϕiX =
−σ(X, ξi) and ∇Xξi = 0, i.e., ξi is parallel. �

Definition 3.5. Let M be a 3-hemi slant submanifold of a 3-structure
(M̃, ϕi, ξi, ηi, g), i ∈ {1, 2, 3}. Then M is called a Sasakian 3-hemi slant
submanifold if

(∇XTi)Y = g(X,Y )ξi − ηi(Y )X, ∀X,Y ∈ TM.

Theorem 3.6. Let M be a Sasakian 3-hemi slant submanifold of 3-
structure (M̃, ξi, ηi, ϕi, g). Then the tensor field Ti is parallel if and only
if the submanifold is anti-invariant.

Proof. Since M is a Sasakian 3-hemi slant submanifold, if any X,Y ∈
Dα and then we have

(∇XTi)Y = g(X,Y )ξi − ηi(Y )X.

If T is parallel, then by taking X = TiX,Y = TjX, we obtain

0 = g(TiX,TjX)ξi − ηi(TjX)TiX = −g(TiTjX,X)ξi. (17)

From Lemma 3.3, we get

cos2 α g(X,X)ξi = 0. (18)

Since g is a positive definite metric, from (18), we find that α = π
2 ,thus

M is an anti-invariant submanifold. The converse is trivial. �

Theorem 3.7. For a 3-hemi slant submanifold M of a 3-Sasakian man-
ifold (M̃, ξi, ηi, ϕi, g), i ∈ {1, 2, 3}, the following relation holds

g((∇XTi)Y,Z) = −g((∇XTi)Z, Y ), ∀X,Y ∈ TM.

Proof. On a 3-Sasakian manifold (M̃, ξi, ηi, ϕi, g), we have

(∇̃Xϕi)Y = g(X,Y )ξi − ηi(Y )X = R(ξi, X)Y.
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Therefore, by using (12) and Gauss-Weingarten formulas, we see

R(ξi, X)Y = ∇XTiY + σ(X,TiY ) +DXFiY −AFiYX−
Ti(∇XY )− tiσ(X,Y )− Fi(∇XY )− fiσ(X,Y ).

We consider the tangential components of the previous equation and
obtain

R(ξi, X)Y = (∇XTi)Y −AFiYX − tiσ(X,Y ).

Thus, we have

g((∇XTi)Y,Z) = g(R(ξi, X)Y,Z) + g(AFiYX,Z) + g(tiσ(X,Y ), Z).

From (14), self-adjoint property of A and symmetry properties of R and
σ, previous equation gives

g((∇XTi)Y,Z) = g(σ(X,Z), FiY )− g(R(ξi, X)Z, Y )− g(σ(X,Y ), FiZ)

= −g(R(ξi, X)Z, Y )− g(tiσ(X,Z), Y )− g(AFiZX,Y ) = −g(R(ξi, X)Z

+ tiσ(X,Z) +AFiZX,Y ) = −g((∇XTi)Z, Y ).

�

Theorem 3.8. For a 3-hemi slant submanifold M of a 3-Sasakian man-
ifold (M̃, ξi, ηi, ϕi, g), i ∈ {1, 2, 3}, the operator fi is an anti-symmetric
tensor field with respect to the normal covariant derivative, this means,
for all X ∈ TM and U, V ∈ T⊥M , we have

g((DXfi)V,U) = −g((DXfi)U, V ).

Proof. For any X ∈ TM and V ∈ T⊥M , we have

∇̃XϕiV − ϕi∇̃XV = (∇̃Xϕi)V = g(X,V )ξi − ηi(V )X = 0, (19)

Then, from (12), we get

∇̃XtiV + ∇̃XfiV − ϕi (−AVX +DXV ) = 0.
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By using Gauss-Weingarten formulas and (12) we obtain

∇XtiV + σ(X, tiV ) +DXfiV −AfiVX − tiDXV + TiAVX

− fiDXV + FiAVX = (∇Xti)V + (DXfi)V + σ(X, tiV )−
AfiVX + ϕiAVX = 0. (20)

For any U ∈ T⊥M , by taking the inner product of U and Equation (20),
we get

g(DXfi)V,U) = g(−(∇Xti)V − σ(X, tiV )− ϕiAVX +AfiVX,U)

= g(∇Xti)U, V )− g(σ(X, tiV ), U)− g(ϕiAVX,U)

= g(∇Xti)U, V )− g(AUX, tiV ) + g(AVX, tiU)

= g(∇Xti)U, V ) + g(FiAUX,V ) + g(σ(X, tiU), V )

= g(∇Xti)U, V ) + g(ϕiAUX,V ) + g(σ(X, tiU), V )

= −g(−(∇Xti)U − ϕiAUX − σ(X, tiU)−AfiUX,V )

= −g((DXfi)U, V ).

Therefore, fi is an anti-symmetric tensor field. �

Theorem 3.9. For a 3-hemi slant submanifold M of a 3-Sasakian man-
ifold (M̃, ξi, ηi, ϕi, g), If fi and ti are parallel operators, then the shape
operator A vanishes on M .

Proof. For any X ∈ TM, V ∈ T⊥M , from (19), we have

(∇̃Xϕi)V = (∇̃Xti)V + (∇̃Xfi)V + ϕiAVX = 0.

Since fi and ti are parallel, then we get ϕiAVX = 0, for any X ∈
TM, V ∈ T⊥M . This means the shape operator A = 0. �

4 Submanifolds of 3-Sasakian space forms

A 3-Sasakian space form M̃(c) is a 3-Sasakian manifold (M̃, ξi, ηi, ϕi, g),
i ∈ {1, 2, 3}, such that for a constant c ∈ R, its ϕi-holomorphic sectional
curvature is equal to c at any point of M̃ . Since all the Sasakian struc-
tures (ξi, ηi, ϕi, g), i ∈ {1, 2, 3} are Sasakian space forms (cf. [17], p314),
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so the curvature tensor R̃ satisfies in the following relation (cf. [1], p342)

R̃(X,Y )Z =

(
c+ 3

4

)
[g(Y,Z)X − g(X,Z)Y ] +

(
c− 1

4

) 3∑
i=1

[(ηi(X)Y

− ηi(Y )X)ηi(Z) + (g(X,Z)ηi(Y )− g(Y, Z)ηi(X))ξi + g(ϕiY, Z)ϕiX

− g(ϕiX,Z)ϕiY + 2g(ϕiY,X)ϕiZ]. (21)

By using Lemma 3.3 and (5) we can prove the following lemma.

Lemma 4.1. Let M be a 3-hemi slant submanifold of a 3-Sasakian
manifold (M̃, ξi, ηi, ϕi, g), i ∈ {1, 2, 3}. Then for all X,Y ∈ Dα

g(FiX,FiY ) = sin2 αg(X,Y ), g(TiX,TiY ) = cos2 αg(X,Y ). (22)

Theorem 4.2. There is no proper 3-hemi slant submanifold of a 3-
Sasakian space form (M̃(c), ξi, ηi, ϕi, g), i ∈ {1, 2, 3}, such that the sec-
ond fundamental form be parallel and c 6= 1.

Proof. For all X,Y ∈ Dα and Z ∈ D⊥, the equation of Codazzi implies

g(R̃⊥(X,Y )Z,ϕiZ) = g((∇̃Xσ)(Y,Z)− (∇̃Y σ)(X,Z), ϕiZ).

By the hypothesis of the theorem that σ is parallel, we find

g(R̃⊥(X,Y )Z,ϕiZ) = 0. (23)

On the other hand, from (21) we conclude

g(R̃⊥(X,Y )Z,ϕiZ) =

(
c− 1

4

) 3∑
i=1

2g(X,ϕiY )g(ϕiZ,ϕiZ). (24)

Thus (23) and (24) imply

(c− 1)

3∑
i=1

g(X,ϕiY )g(ϕiZ,ϕiZ) = 0. (25)

Since c 6= 1 then by taking Y = TjX and using (22), we obtain

3∑
i,j=1

g(X,ϕiTjX)g(Z,Z) = cos2 αg(X,X)g(Z,Z) = 0.

Since g is a Riemannian metric, from the last relation we conclude that
α = π

2 , that is, M is an anti-invariant submanifold. �
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Theorem 4.3. Suppose M is a 3-hemi slant submanifold of a 3-Sasakian
space form (M̃(c), ξi, ηi, ϕi, g), i ∈ {1, 2, 3}. If R⊥ = 0 and c 6= 1 and for
any V ∈ T⊥M , AVAfiV = AfiVAV , then the slant angle α is either
equal to π

2 or 0.

Proof. For any X,Y ∈ TM and U, V ∈ T⊥M , from the equation of
Ricci, we have

g(R̃(X,Y )V,U) = g(R⊥(X,Y )V,U)− g([AV , AU ]X,Y ). (26)

By considering U = fiV and X = TiY in (26) and using the hypothesis
of the theorem that is R⊥ = 0 and AVAfiV = AfiVAV , we obtain

g(R̃(TiY, Y )V, fiV ) = 0. (27)

Also, from (21), we derive

g(R̃(X,Y )V,U) =
(c− 1)

4

3∑
i=1

{g(ϕiY, V )g(ϕiX,U)−

g(ϕiX,V )g(ϕiY,U) + 2g(X,ϕiY )g(ϕiV,U)}. (28)

Interchanging U = fiV and X = TiY in (28) and using Lemma 4.1, we
deduce that

g(R̃(TiY, Y )V, fiV ) = cos2 α sin2 α

(
c− 1

2

)
g(Y, Y )g(V, V ). (29)

From (27) and (29), we find

cos2 α sin2 α

(
c− 1

2

)
g(Y, Y )g(V, V ) = 0. (30)

Since g is a Riemannian metric and c 6= 1, then from (30), we conclude
that either α = π

2 or α = 0. �

Theorem 4.4. Let (M̃(c), ξi, ηi, ϕi, g), i ∈ {1, 2, 3} be a 3-Sasakian space
form and M be a 3-hemi slant submanifold of M̃(c) with slant angle α
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and dimension of n. Then for any X,W ∈ TM , the Ricci tensor S of
submanifold M satisfies in the following relation

S(X,W ) =

{(
c+ 3

4

)
(4p+ q) + 6

(
c− 1

4

)
(3 cos2 α+ 1)

}
g(X,W )

+

{
−
(
c+ 3

4

)
+

(
c− 1

4

)
(6 cos2 α− 4p− q + 2)

} 3∑
i=1

ηi(X)ηi(W )+

ng(σ(X,W ), H)−
n∑
j=1

g(σ(X, ej), σ(ej ,W )),

where n = 4p+ q+ 3 such that p = 1
4 dim(Dα) and q = dim(D⊥) and H

is the mean curvature.

Proof. For any X,Y, Z,W ∈ TM , from Equations (10) and (21), we
get

g(R(X,Y )Z,W ) =

(
c+ 3

4

)
{g(Y,Z)g(X,W )− g(X,Z)g(Y,W )}

+

(
c− 1

4

) 3∑
i=1

{ηi(Z)ηi(X)g(Y,W )− ηi(Z)ηi(Y )g(X,W )+

g(X,Z)ηi(Y )ηi(W )− g(Y,Z)ηi(X)ηi(W ) + g(ϕiY,Z)g(ϕiX,W )−
g(ϕiX,Z)g(ϕiY,W ) + 2g(ϕiY,X)g(ϕiZ,W )} − g(σ(X,Z), σ(Y,W ))

+ g(σ(X,W ), σ(Y, Z)). (31)

Let TM = Dα⊕D⊥⊕ < ξi > and {e1, . . . , ep, ep+1 = secαT1e1, . . . , e4p =
secαT3ep}, {e4p+1, e4p+3, ...e4p+q}, {e4p+q+i = ξi} be local orthonormal
frames of Dα, D⊥ and < ξi >, respectively. By using these adapted
frames for contracting g(R(X,Y )Z,W ) on Y,Z, we should compute the
following components.

S(X,W ) =

p∑
i=1

g(R(X, ei)ei,W ) +
3∑
i=1

4p∑
j=p+1

g(R(X, secαTiej) secαTiej ,

W ) +

4p+q∑
k=4p+1

g(R(X, ek)ek,W ) +

3∑
i=1

g(R(X, ξi)ξi,W ). (32)



12 M. B. KAZEMI, S. UDDIN AND S. TARIGHI

Now, we use (31) to find the terms of the right side of Equation (32).
For the first term, since

∑p
i=1 g(ei, ei) = p, ηi(ej) = 0, g(ei, ϕjei) = 0

and
∑p

i=1 g(X, ei)g(ei,W ) = g(X,Y ), we have

p∑
i=1

g(R(X, ei)ei,W ) =

(
c+ 3

4

) p∑
i=1

{g(ei, ei)g(X,W )−

g(X, ei)g(ei,W )}+

(
c− 1

4

) 3∑
j=1

p∑
i=1

{ηj(X)ηj(ei)g(ei,W )−

ηj(ei)ηj(ei)g(X,W ) + ηj(ei)ηj(W )g(X, ei)− ηj(X)ηj(W )g(ei, ei)

+ g(X,ϕjei)g(ϕjei,W )− g(ei, ϕjei)g(ϕjX,W ) + 2g(X,ϕjei)

g(ϕjei,W )} −
p∑
i=1

{g(σ(ei,W ), σ(X, ei)) + g(σ(X,W ), σ(ei, ei))}

=

(
c+ 3

4

)
(p− 1)g(X,W ) +

(
c− 1

4

)
{

3∑
j=1

(−pηj(X)ηj(W )+

3g(TjX,TjW ))} −
p∑
i=1

{g(σ(ei,W ), σ(X, ei))− g(σ(X,W ), σ(ei, ei))}.

(33)

Also, from (22) we have g(secαTiej , secαTiej) = 1, so the second term
of (32) implies

3∑
i=1

4p∑
j=p+1

g(R(X, secαTiej) secαTiej ,W ) =

(
c+ 3

4

)
{3p g(X,W )−

g(X,W )}+

(
c− 1

4

) 3∑
i=1

{−3p ηi(X)ηi(W ) + 3g(TiX,TiW )}−

4p∑
j=p+1

{g(σ(secαTiej ,W ), σ(X, secαTiej))− g(σ(X,W ),

σ(secαTiej , secαTiej))}. (34)

Since D⊥ is anti-invariant, we get g(X,ϕiek) = g(X,ϕiY ) = 0. So,
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for the third term we obtain

4p+q∑
k=4p+1

g(R(X, ek)ek,W ) =

(
c+ 3

4

)
(q − 1)g(X,W )+

(
c− 1

4

) 3∑
i=1

{−qηi(X)ηi(W ) + 3g(ϕiX,ϕiW )}−

4p+q∑
k=4p+1

{g(σ(ek,W ), σ(X, ek))− g(σ(X,W ), σ(ek, ek)}. (35)

From (7) and (8), we conclude 0 = ∇̃ξiξi = ∇ξiξi + σ(ξi, ξi), thus
σ(ξi, ξi) = 0. Therefore, the last term of (32) gives

3∑
i=1

g(R(X, ξi)ξi,W ) = 3

(
c+ 3

4

)
g(X,W )−

(
c+ 3

4

) 3∑
i=1

ηi(X)ηi(W )− 3

(
c− 1

4

)
g(X,W )−

(
c− 1

4

) 3∑
i=1

ηi(X)ηi(W )−
3∑
i=1

g(σ(X, ei), σ(ei,W )). (36)

Finally, by taking in to account of (32), the definition of mean cur-
vature H = 1

n

∑n
i=1 σ(ei, ei) and sum of Equations (33), (34), (35) and

(36) imply

S(X,W ) = (
c+ 3

4
)(4p+ q)g(X,W ) + 6

(
c− 1

4

)
(3 cos2 α+ 1)g(X,W )

−
(
c+ 3

4

) 3∑
i=1

ηi(X)ηi(W ) +

(
c− 1

4

)
(6 cos2 α− 4p− q + 2)

3∑
i=1

ηi(X)ηi(W ) + ng(σ(X,W ), H)−
n∑
j=1

g(σ(X, ej), σ(ej ,W )), (37)

which is the required result. �
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Corollary 4.5. Let M be a totally geodesic n-dimensional 3-hemi slant
submanifold of a 3-Sasakian space form M̃(c). Then M is a quasi Ein-
stein manifold.

Proof. Since σ = 0, if we consider

κ =

(
c+ 3

4

)
(4p+ q) + 6

(
c− 1

4

)
(3 cos2 α+ 1),

µ =

(
c− 1

4

)
(6 cos2 α− 4p− q + 2)−

(
c+ 3

4

)
;

then from (37), we derive

S(X,W ) = κg(X,W ) + µ
3∑
i=1

ηi(X)ηi(W ).

Hence, M is a quasi-Einstein manifold. �

Theorem 4.6. Let (M̃(c), ξi, ηi, ϕi, g), i ∈ {1, 2, 3} be a 3-Sasakian space
form and M be an n-dimensional 3-hemi slant submanifold of M̃(c) with
scalar curvature r and slant angle α, then

r ≤ n
{(

c− 3

4

)
(4p+ q) + 6

(
c− 1

4

)
(3 cos2 α+ 1)

}
+

3

(
c− 1

4

)
(6 cos2 α− 4p− q + 2)− 3

(
c+ 3

4

)
+ n2‖H‖2. (38)

Proof. By contracting (37) on X,W , we get

r = n

{(
c− 3

4

)
(4p+ q) + 6

(
c− 1

4

)
(3 cos2 α+ 1)

}
+

3

(
c− 1

4

)
(6 cos2 α− 4p− q + 2)− 3

(
c+ 3

4

)
+ n2‖H‖2 − ‖σ‖2.

Since ‖σ‖2 ≥ 0, the inequality is satisfied. �



RICCI TENSOR OF 3-HEMI-SLANT SUBMANIFOLDS 15

Corollary 4.7. Let (M̃(c), ξi, ηi, ϕi, g), i ∈ {1, 2, 3} be a 3-Sasakian space
form and M be a minimal 3-semi invariant submanifold of M̃(c) with
scalar curvature r, then

r ≤ n{(c+ 3

4
)(2p+ q − 3

n
) + 24

(
c− 1

4

)
}+ 3

(
c− 1

4

)
(8− 2p− q).

where n = 2p+ q + 3 is the dimension of M .

Proof. Put the dimension of invariant distribution dimD = 2p, dim〈ξi〉
=3 and the dimension of anti-invariant distribution D⊥ = q. Then, the
result is easily obtained from (38) by considering H = 0 and α = 0. �
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